
GeoServer User Manual
Release 2.5.x

GeoServer

January 10, 2014

Contents

i

ii

GeoServer User Manual, Release 2.5.x

GeoServer is an open source software server written in Java that allows users to share and edit geospa-
tial data. Designed for interoperability, it publishes data from any major spatial data source using open
standards.

This User Manual is a comprehensive guide to all aspects of using GeoServer. Whether you are a novice or
a veteran user of this software, we hope that this documentation will be a helpful reference.

Contents 1

GeoServer User Manual, Release 2.5.x

2 Contents

CHAPTER 1

Introduction

This section is for more information on GeoServer, its background, and what it can do for you.

For those who wish to get started with GeoServer right away, feel free to skip to the Installation section.

1.1 Overview

GeoServer is an open source software server written in Java that allows users to share and edit geospa-
tial data. Designed for interoperability, it publishes data from any major spatial data source using open
standards.

Being a community-driven project, GeoServer is developed, tested, and supported by a diverse group of
individuals and organizations from around the world.

GeoServer is the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service
(WFS) and Web Coverage Service (WCS) standards, as well as a high performance certified compliant Web
Map Service (WMS). GeoServer forms a core component of the Geospatial Web.

1.2 History

GeoServer was started in 2001 by The Open Planning Project (TOPP), a non-profit technology incubator
based in New York. TOPP was creating a suite of tools to enable open democracy and to help make gov-
ernment more transparent. The first of these was GeoServer, which came out of a recognition that a suite of
tools to enable citizen involvement in government and urban planning would be greatly enhanced by the
ability to share spatial data.

The GeoServer founders envisioned a Geospatial Web, analogous to the World Wide Web. With the World
Wide Web, one can search for and download text. With the Geospatial Web, one can search for and down-
load spatial data. Data providers would be able to publish their data straight to this web, and users could
directly access it, as opposed to the now indirect and cumbersome methods of sharing data that exist today.

Those involved with GeoServer founded the GeoTools project, an open source GIS Java toolkit. Through
GeoTools, support for Shapefiles, Oracle databases, ArcSDE integration, and much more was added.

Around the same time as GeoServer was founded, The OpenGIS Consortium (now the Open Geospatial
Consortium) was working on the Web Feature Service standard. It specifies a protocol to make spatial data
directly available on the web, using GML (Geographic Markup Language), an interoperable data format. A
Web Map Service was also created, a protocol for creating and displaying map images created from spatial
data.

3

http://www.opengeospatial.org
http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wcs
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms
http://theopenplanningproject.org/
http://geotools.org
http://www.opengeospatial.org
http://www.opengeospatial.org

GeoServer User Manual, Release 2.5.x

Other projects became interrelated. Refractions Research created PostGIS, a free and open spatial database,
which enabled GeoServer to connect to a free database. Also, MetaCarta created OpenLayers, an open
source browser-based map viewing utility. Together, these tools are all have enhanced the functionality of
GeoServer.

GeoServer can now output data to many other spatial data viewers, such as Google Earth, a popular 3-D
virtual globe. In addition, GeoServer is currently working directly with Google in order to allow GeoServer
data to be searchable on Google Maps. Soon a search for spatial data will be as easy as a Google search for
a web page. Thus GeoServer is continuing on its mission to make spatial data more accessible to all.

1.3 Getting Involved

There are many ways that one can help out with the GeoServer project. GeoServer fully embraces an open
source development model that does not see a split between user and developer, producer and consumer,
but instead sees everyone as a valuable resource in a collaborative quest to build something better than any
of us could alone.

1.3.1 Development

Helping to develop GeoServer is the obvious way to help out. Developers usually start with bug fixes and
small patches, and then move into larger contributions as they learn the system. Our developers are more
than happy to help out - try the Developers mailing list below - as you learn and get acquainted. We try
our hardest to keep our code clean and well documented. You can find the project on github.

1.3.2 Documentation

One of the best and most needed ways to help out is with the documentation. Our official documentation
is contained as part of our official code repository in order to maintain a uniform look and feel.

1.3.3 Mailing lists

GeoServer maintains two email lists: GeoServer Users and GeoServer Developers. These lists are publicly
available and are a great resource for those who are new to GeoServer, who need a question answered, or
who are interested in contributing code. The Users list is mainly for those who have questions relating to
the use of GeoServer, and the Developers list is for more code-specific and roadmap-based discussions. If
you see a question asked on these lists that you know the answer to, please respond!

1.3.4 IRC

GeoServer has an IRC channel, #geoserver, on the Freenode network. GeoServer developers frequent this
channel, and so it is a great way to give and receive information in real time.

1.3.5 Bug tracking

If you have a problem when working with GeoServer, then please let us know through the mailing lists.
GeoServer uses JIRA , a bug tracking website, to manage issue reports; you’ll need to create an account
first. As GeoServer is open source, everyone is encouraged to fix bugs and submit patches. Even if you are
not a core developer, we welcome patches through JIRA, or pull requests to github.

4 Chapter 1. Introduction

http://www.refractions.net
http://metacarta.com
http://openlayers.org
https://www.github.com/geoserver/
http://lists.sourceforge.net/lists/listinfo/geoserver-users
http://lists.sourceforge.net/lists/listinfo/geoserver-devel
http://freenode.net
http://jira.codehaus.org/browse/GEOS
https://xircles.codehaus.org/
https://xircles.codehaus.org/
https://www.github.com/geoserver/

GeoServer User Manual, Release 2.5.x

1.3.6 Translation

We would like GeoServer available in as many languages as possible, just as we want spatial data to be
available to all. The two areas of GeoServer to translate are the text for the Web Administration Interface
and this documentation. Eventually we would even like to set up GeoServer community sites in different
languages. If you are interested in this please let us know via the mailing lists.

1.3.7 Suggest improvements

If you have suggestions as to how we can make GeoServer better, we would love to hear them. You can
contact us through the mailing lists linked above or in the IRC.

1.3.8 Spread the word

A further way to help out the GeoServer project is to spread the word about it. Word of mouth information
sharing is more powerful than any amount spent on marketing, and the more people who use our software,
the better it will become.

1.3.9 Fund improvements

A final way to help out is to push for GeoServer to be used in your own organization. A number of com-
merical organizations offer support for GeoServer, and any improvements made due to that funding will
benefit the entire GeoServer community.

1.4 License

GeoServer is free software and is licensed under the GNU General Public License.:

GeoServer, open geospatial information server
Copyright (C) 2001 - 2011 The Open Planning Project dba OpenPlans
http://openplans.org

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version (collectively, "GPL").

As an exception to the terms of the GPL, you may copy, modify,
propagate, and distribute a work formed by combining GeoServer with the
Eclipse Libraries, or a work derivative of such a combination, even if
such copying, modification, propagation, or distribution would otherwise
violate the terms of the GPL. Nothing in this exception exempts you from
complying with the GPL in all respects for all of the code used other
than the Eclipse Libraries. You may include this exception and its grant
of permissions when you distribute GeoServer. Inclusion of this notice
with such a distribution constitutes a grant of such permissions. If
you do not wish to grant these permissions, remove this paragraph from
your distribution. "GeoServer" means the GeoServer software licensed
under version 2 or any later version of the GPL, or a work based on such
software and licensed under the GPL. "Eclipse Libraries" means Eclipse
Modeling Framework Project and XML Schema Definition software
distributed by the Eclipse Foundation and licensed under the Eclipse

1.4. License 5

http://geoserver.org/display/GEOS/Commercial+Support
http://geoserver.org/display/GEOS/Commercial+Support

GeoServer User Manual, Release 2.5.x

Public License Version 1.0 ("EPL"), or a work based on such software and
licensed under the EPL.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA

This product includes software developed by the Apache Software Foundation (http://www.apache.org/)
licensed under the Apache License Version 2.0 and Apache License Version 1.1.

6 Chapter 1. Introduction

http://www.apache.org/

CHAPTER 2

Installation

There are many ways to install GeoServer on your system. This section will discuss the various installation
paths available.

2.1 Windows

There are a few ways to install GeoServer on Windows. The simplest way is to use the Windows installer,
but you can also perform a manual installation with the OS-independent binary.

Note: To run GeoServer as part of a servlet container such as Tomcat, please see the Web archive (WAR)
section.

2.1.1 Windows Installer

The Windows installer provides an easy way to set up GeoServer on your system. With no configuration
files to edit or command line setting, everything can be done through the Windows GUI.

1. Navigate to the GeoServer Download page at http://geoserver.org/display/GEOS/Download.

2. Select the version of GeoServer that you wish to download. If you’re not sure, select the Stable version
at http://geoserver.org/display/GEOS/Stable.

3. Click on the link for the Windows installer.

Figure 2.1: Downloading the Windows installer

7

http://geoserver.org/display/GEOS/Download
http://geoserver.org/display/GEOS/Stable

GeoServer User Manual, Release 2.5.x

4. After downloading, double-click on the file to launch.

5. At the Welcome screen, click Next.

Figure 2.2: Welcome screen

6. Read the License and click I Agree.

Figure 2.3: GeoServer license

7. Select the directory of the installation, then click Next.

8. Select the Start Menu directory name and location, then click Next.

9. Enter the path to a valid Java Runtime Environment (JRE). GeoServer requires a valid JRE in or-
der to run, so this step is required. The installer will inspect your system and attempt to automat-
ically populate this box with the path contained in your %JAVA_HOME% variable. If this variable
is undefined, you may not have a JRE on your system. In this case, you can download a JRE at
http://www.oracle.com/technetwork/java/javase/downloads/index.html. Once the JRE is down-
loaded and installed, restart the GeoServer installer. When finished, click Next.

8 Chapter 2. Installation

http://www.oracle.com/technetwork/java/javase/downloads/index.html

GeoServer User Manual, Release 2.5.x

Figure 2.4: GeoServer install directory

Figure 2.5: Start menu location

2.1. Windows 9

GeoServer User Manual, Release 2.5.x

Note: An example of a valid path would be C:\Program Files\Java\jre6.

Warning: Don’t include the \bin in the JRE path. So if javaw.exe is located at C:\Program
Files\Java\jre6\bin\javaw.exe, set the path to be C:\Program Files\Java\jre6.

Note: Oracle Java SE 6 or newer is strongly recommended. (As of GeoServer 2.2.x, Oracle JRE 5
is no longer supported.) A Java Development Kit (JDK) is not required to run GeoServer. For more
information about Java and GeoServer, please see the section on Java Considerations.

Figure 2.6: Selecting a valid JRE

10. Enter the path to your GeoServer data directory or select the default. Previous GeoServer users may
already have a data directory that they wish to use. If this is your first time using GeoServer, you
should select the Default data directory. When finished, click Next.

Figure 2.7: Setting a GeoServer data directory

10 Chapter 2. Installation

GeoServer User Manual, Release 2.5.x

11. Enter the username and password for administration of GeoServer. GeoServer’s Web Administration
Interface requires authentication for management, and what is entered here will become those admin-
istrator credentials. The defaults are admin / geoserver. It is recommended to change these from the
defaults, but this is not required. When finished, click Next.

Figure 2.8: Setting the username and password for GeoServer administration

12. Enter the port that GeoServer will respond on. This affects the location of the GeoServer Web Admin-
istration Interface, as well as the endpoints of the GeoServer Web Map Service and Web Feature Service.
The default port is 8080, although any valid unused port will work. When finished, click Next.

Figure 2.9: Setting the GeoServer port

13. Select whether GeoServer should be run manually or installed as a service. When run manually,
GeoServer is run like a standard application under the current user. When installed as a service,
GeoServer in integrated into Windows Services, and thus is easier to administer. If running on a
server, or to manage GeoServer as a service, select Install as a service. Otherwise, select Run manually.
When finished, click Next.

2.1. Windows 11

GeoServer User Manual, Release 2.5.x

Figure 2.10: Installing GeoServer as a service

14. Review your selections and click the Back button if any changes need to be made. Otherwise, click
Install.

Figure 2.11: Verifying settings

15. GeoServer will install on your system. When finished, click Finish to close the installer.

16. If you installed GeoServer as a service, it is already running. Otherwise, you can start GeoServer by
going to the Start Menu, and clicking Start GeoServer in the GeoServer folder.

17. Navigate to http://[SERVER_URL]:[PORT]/geoserver/ (Ex:
http://localhost:8080/geoserver/) to access the GeoServer Web Administration Interface.

If you see GeoServer in your browser, then congratulations, GeoServer is successfully installed!

12 Chapter 2. Installation

GeoServer User Manual, Release 2.5.x

Figure 2.12: GeoServer installed and running successfully

2.1.2 Windows Binary

Note: This section is for the OS-independent binary. Please see the section on the Windows Installer for the
wizard-based installer for Windows.

The most common way to install GeoServer is using the OS-independent binary. This version is a GeoServer
web application (webapp) bundled inside Jetty, a lightweight servlet container system. It has the advan-
tages of working very similarly across all operating systems plus being very simple to set up.

Installation

1. Navigate to the GeoServer Download page and pick the appropriate version to download.

2. Select OS-independent binary on the download page.

3. Download the archive, and unpack to the directory where you would like the program to be located.
A typical place would be C:\Program Files\GeoServer.

Setting environment variables

You will need to set the JAVA_HOME environment variable if it is not already set. This is the
path to your JDK/JRE such that %JAVA_HOME%\bin\java.exe exists. You can download a JRE at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Note: Oracle Java SE 6 or newer is strongly recommended. (As of GeoServer 2.2.x, Oracle JRE 5 is no
longer supported.) A Java Development Kit (JDK) is not required to run GeoServer. For more information
about Java and GeoServer, please see the section on Java Considerations.

1. Navigate to Control Panel → System → Advanced → Environment Variables.

2. Under System variables click New.

3. For Variable name enter JAVA_HOME. For Variable value enter the path to your JDK/JRE.

4. Click OK three times.

2.1. Windows 13

http://www.mortbay.org/jetty/
http://geoserver.org/display/GEOS/Download
http://www.oracle.com/technetwork/java/javase/downloads/index.html

GeoServer User Manual, Release 2.5.x

Note: You may also want to set the GEOSERVER_HOME variable, which is the directory where GeoServer
is installed, and the GEOSERVER_DATA_DIR variable, which is the location of the GeoServer data directory
(usually %GEOSERVER_HOME\data_dir). The latter is mandatory if you wish to use a data directory other
than the one built in to GeoServer. The procedure for setting these variables is identical to the above. Note
that the specified data directory should be a valid GeoServer Data Directory.

Running

Note: This can be done either via Windows Explorer or the command line.

1. Navigate to the bin directory inside the location where GeoServer is installed.

2. Run startup.bat. A command-line window will appear and persist. This window contains diag-
nostic and troubleshooting information. This window should not be closed, or else GeoServer will
shut down.

3. To access the Web Administration Interface, navigate to http://localhost:8080/geoserver.

Stopping

Either close the persistent command-line window, or run the shutdown.bat file inside the bin directory.

Uninstallation

1. Stop GeoServer (if it is running)

2. Delete the directory where GeoServer is installed.

2.2 Mac OS X

There are a few ways to install GeoServer on OS X. The simplest way is to use the OS X installer, but you
can also perform a manual installation with the OS-independent binary.

Note: To run GeoServer as part of a servlet container such as Tomcat, please see the Web archive (WAR)
section.

2.2.1 Mac OS X Installer

1. Navigate to the GeoServer Download page and click your preferred GeoServer version–Stable, Latest
or Nightly.

2. On the resulting page, download the Mac OS X Installer format of your preferred GeoServer version.

3. Double click on the .dmg file to start the download.

4. Drag the GeoServer icon to the Applications folder.

5. Navigate to your applications folder, and double click on the GeoServer icon.

14 Chapter 2. Installation

http://geoserver.org/display/GEOS/Stable

GeoServer User Manual, Release 2.5.x

Figure 2.13: Starting the Mac OSX Installer of GeoServer

Note: Accept any security warnings regarding GeoServer as an application downloaded
from the Internet.

6. In the resulting GeoServer console window, start GeoServer by going to Server→Start.

Figure 2.14: Starting GeoServer

7. The console window will log GeoServer’s loading. Once GeoServer is completely started, a browser
window will open at the URL http://localhost:8080/geoserver. Welcome to GeoServer!

2.2.2 Mac OS X Binary

Note: This section is for the OS-independent binary. Please see the section on the Mac OS X for the wizard-
based installer for OS X.

2.2. Mac OS X 15

GeoServer User Manual, Release 2.5.x

The most common way to install GeoServer is using the OS-independent binary. This version is a GeoServer
web application (webapp) bundled inside Jetty, a lightweight servlet container system. It has the advan-
tages of working very similarly across all operating systems plus being very simple to set up.

Installation

1. Navigate to the GeoServer Download page and click your preferred GeoServer version–Stable, Latest
or Nightly.

2. On the resulting page, download and save the Binary (OS independent) format of your preferred
GeoServer version.

Note: Download GeoServer wherever you find appropriate. In this example we download
the GeoServer archive to the Desktop. If GeoServer is in a different location, simply replace
Desktop in the following command to your own folder path.

3. After saving the Geoserver archive, move to the location of your download, by first opening a terminal
window (Applications→Utitlies→Terminal) and then typing the following command:

cd Desktop/

4. Confirm that you are in the right directory by listing its contents. You should see your specific
GeoServer archive (e.g., GeoServer-2.0-RC1-bin.zip) by typing:

ls -l

5. Unzip geoserver-2.0-RC1.zip to /usr/local/geoserver with the following two commands:

unzip $geoserver-2.0-RC1.zip .
sudo mv geoserver-2.0-RC1/ geoserver

Note: Notice the . in the first command. This means the archive will unzip in the current
directory.

6. Add an environment variable to save the location of GeoServer by typing the following command:

echo "export GEOSERVER_HOME=/usr/local/geoserver" >> ~/.profile
. ~/.profile

7. Make yourself the owner of the geoserver folder. Type the following command in the terminal
window, replacing USER_NAME with your own username :

sudo chown -R USER_NAME /usr/local/geoserver/

8. Start GeoServer by changing into the directory geoserver/bin and executing the startup.sh
script:

cd geoserver-1.7.0/bin
sh startup.sh

9. Visit http://localhost:8080/geoserver in a web browser.

16 Chapter 2. Installation

http://www.mortbay.org/jetty/
http://geoserver.org/display/GEOS/Stable

GeoServer User Manual, Release 2.5.x

2.3 Linux

Warning: Under construction

GeoServer requires Java to be installed on your system. Oracle Java SE 6 or newer is strongly recom-
mended. (As of GeoServer 2.2.x, Oracle JRE 5 is no longer supported.) A Java Development Kit (JDK) is not
required to run GeoServer. For more information about Java and GeoServer, please see the section on Java
Considerations.

The most common way to install GeoServer is using the OS-independent binary. This version is a GeoServer
web application (webapp) bundled inside Jetty, a lightweight servlet container system. It has the advan-
tages of working very similarly across all operating systems plus being very simple to set up.

2.3.1 Debian

Setup a local geoserver instance with tomcat7 in Debian wheezy/sid.

Preparation

1. Follow instructions from Web archive (WAR) until step 3 and return here again.

2. Root permissions are needed, to make some changes to the linux system. Gain superuser rights by
executing on a terminal: su

3. If not already available on your debian system, install the tomcat7 servlet container with your
favourite package administration tool (synaptic, apt-get or aptitude). This tutorial uses aptitude:
aptitude install tomcat7

Installation

1. Copy as user root the geoserver web application archive into tomcat7’s webapp directory: cp
geoserver.war /var/lib/tomcat7/webapps

2. Tomcat should recognize the WAR archive and immediately start to deploy the web application. This
process takes some time and depends on your hardware used. Congratulations, your local geoserver
is now up and running.

2.4 Web archive (WAR)

GeoServer is packaged as a standalone servlet for use with existing servlet container applications such as
Apache Tomcat and Jetty.

Note: GeoServer has been mostly tested using Tomcat, and therefore these instructions may not work with
other container applications.

2.4.1 Java

GeoServer requires Java to be installed on your system. Oracle Java SE 6 or newer is strongly recom-
mended. (As of GeoServer 2.2.x, Oracle JRE 5 is no longer supported.) A Java Development Kit (JDK) is not

2.3. Linux 17

http://www.mortbay.org/jetty/
http://localhost:8080/geoserver
http://tomcat.apache.org/
https://jetty.mortbay.com/

GeoServer User Manual, Release 2.5.x

required to run GeoServer. For more information about Java and GeoServer, please see the section on Java
Considerations.

2.4.2 Installation

1. Navigate to the GeoServer Download page and pick the appropriate version to download.

2. Select Web archive on the download page.

3. Download and unpack the archive. Copy the file geoserver.war to the directory that contains your
container application’s webapps.

4. Your container application should unpack the web archive and automatically set up and run
GeoServer.

Note: A restart of your container application may be necessary.

2.4.3 Running

Use your container application’s method of starting and stopping webapps to run GeoServer.

1. To access the Web Administration Interface, open a browser and navigate to
http://container_application_URL/geoserver. For example, with Tomcat running
on port 8080 on localhost, the URL would be http://localhost:8080/geoserver.

2.4.4 Uninstallation

1. Stop the container application.

2. Remove the GeoServer webapp from the container application’s webapps directory.

2.5 Upgrading

The general GeoServer upgrade process involves installing the new version on top of the old and ensuring
it points at the same data directory used by the previous version. See Migrating a Data Directory between
different versions for more details.

This section contains details about upgrading to specific GeoServer versions.

2.5.1 Upgrade to 2.2

Security configuration

GeoServer 2.2 comes with a significant retrofit of the Security subsystem. The changes focus mostly on
authentication and user management. On upgrade GeoServer will update configuration in the security
directory. The specific changes are described here.

18 Chapter 2. Installation

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Obtaining a master password

Starting with Geoserver 2.2 a master password is needed. This password is used to log in as root user and
to protect the Geoserver key store.

During the upgrade process, Geoserver tries to find a proper master password. The following rules apply

• The default admin password geoserver is not allowed.

• The minimal length of the password is 8 characters.

The algorithm for finding a password:

1. Look for an existing user called admin. If there is such a user and the password obeys the rules above,
use it.

2. Look for a user having the role ROLE_ADMINISTRATOR. If there is such a user and the password
obeys the rules above, use it.

3. Generate a random password with 8 characters of length

The algorithm stores a file masterpw.info into the security directory. If an existing password of a user
is used, the content of this file is like

This file was created at 2012/08/11 15:57:52

Master password is identical to the password of user: admin

Test the master password by logging in as user "root"

This file should be removed after reading !!!.

If a master password was generated, the content is like

This file was created at 2012/08/11 15:57:52

The generated master password is: pw?"9bWL

Test the master password by logging in as user "root"

This file should be removed after reading !!!.

After reading this file, remember the master password and remove this file.

RESTconfig security and administrative access

The security changes also include a new type of access mode for layer level security that allows for control-
ling administrative access to workspaces. In this context administrative access includes access via the web
admin ui, or the RESTconfig api. For more details see Layer security.

A side effect of this change can have consequences for RESTconfig api users. Previously access via REST
was controlled by specifying constraints on url patterns as described here. Administrative workspace/layer
security now adds a second level of access control. Therefore in order for a user to access resources via REST
that user must also have sufficient administrative privileges.

By default administrative access for workspaces/layers is granted to the ROLE_ADMINISTRATOR role. So
if REST security defines url level constraints that involve roles with lesser privileges, access to resources
will be denied. The most common case of this is when users make the REST api accessible anonymously.

2.5. Upgrading 19

GeoServer User Manual, Release 2.5.x

The solution to this problem is to reduce the administrative access role to that required by REST url security.
In the case where access to the REST api is granted anonymously this is not recommended. Allowing a
server to be administered anonymously is a huge security hole.

20 Chapter 2. Installation

CHAPTER 3

Getting Started

This section contains short tutorials for common tasks in GeoServer, to get new users using the system
quickly and easily.

3.1 Web Administration Interface Quickstart

The Web Administration Tool is a web-based application used to configure all aspects of GeoServer, from
adding and publishing data to changing service settings.

The web admin tool is accessed via a web browser at http://<host>:<port>/geoserver (for a default
installation on the local host the link is http://localhost:8080/geoserver/web). When the app starts it
displays the public Welcome page.

Figure 3.1: Welcome Page

3.1.1 Logging In

In order to change any server settings or configure data a user must first be authenticated. Navigate to
the upper right hand corner to log into GeoServer. The default username and password is admin and
geoserver. These can be changed by editing the security/users.properties file in the GeoServer
Data Directory.

Figure 3.2: Login

21

http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.5.x

Once logged in, the Welcome screen changes to show the available admin functions. These are available
from links under the sections on the left-hand menu.

3.1.2 Server

The Server section provides access to GeoServer environment information. It is a combination of diagnostic
and configuration tools, and can be particularly useful for debugging.

The Server Status page shows a summary of server configuration parameters and run-time status.

Figure 3.3: Status Page

The Contact Information page sets the public contact information in the Capabilities document of the WMS
server.

The Global Settings page configures messaging, logging, character and proxy settings for the entire server.

The JAI Settings page is used to configure several JAI parameters, used by both WMS and WCS operations.

The About GeoServer section provides links to the GeoServer documentation, homepage and bug tracker.

22 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.4: Contact Page

3.1.3 Services

The Services section is for advanced users needing to configure the request protocols used by GeoServer.
The Web Coverage Service (WCS) page manages metadata information, common to WCS, WFS and WMS
requests. The Web Feature Service (WFS) page permits configuration of features, service levels, and GML
output. The Web Map Service (WMS) page sets raster and SVG options.

3.1.4 Data

The Data links directly to a data type page with edit, add, and delete functionality. All data types sub-
sections follow a similar workflow. As seen in the Styles example below, the first page of each data type
displays a view page with an indexed table of data.

Each data type name links to a corresponding configuration page. For example, all items listed below
Workspace, Store and Layer Name on the Layers view page, link to its respective configuration page.

In the data type view panel, there are three different ways to locate a data type–sorting, searching, and
scrolling .

To alphabetically sort a data type, click on the column header.

For simple searching, enter the search criteria in the search box and hit Enter.

To scroll through data type pages, use the arrow button located on the bottom and top of the view table.

As seen in the Stores example below, the buttons for adding and removing a data type can be found at the
top of the view page.

To add a new data, select the Add button, and follow the data type specific prompts. To delete a data type In
order to remove a data type, click on the data type’s corresponding check box and select the Remove button.
(Multiple data types, of the same kind, can be checked for batch removal.)

3.1. Web Administration Interface Quickstart 23

GeoServer User Manual, Release 2.5.x

Figure 3.5: Global Settings Page

24 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.6: JAI Settings

Figure 3.7: About Section

3.1. Web Administration Interface Quickstart 25

GeoServer User Manual, Release 2.5.x

Figure 3.8: Styles View page

Figure 3.9: Layers View

Figure 3.10: On the left an unsorted column; on the right a sorted column.

26 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.11: Search results for the query “top”.

Figure 3.12: Page scroll for data types.

Figure 3.13: Buttons to add and remove Stores

Figure 3.14: Stores checked for deletion

3.1. Web Administration Interface Quickstart 27

GeoServer User Manual, Release 2.5.x

3.1.5 Demos

The Demos page contains links to example WMS, WCS and WFS requests for GeoServer as well as a link
listing all SRS info known to GeoServer. You do not need to be logged into GeoServer to access this page.

Figure 3.15: Demos page

3.1.6 Layer Preview

The Layer Preview page provides layer previews in various output formats, including the common Open-
Layers and KML formats. This page helps to visually verify and explore the configuration of a particular
layer.

Figure 3.16: Layer Preview page

Each layer row consists of a Type, Name, Title, and available formats for viewing. The Type column shows
an icon indicating the layer datatype. Name displays the Workspace and Layer Name of a layer, while Title
displays the brief description configured in the Edit Layer Data panel. Common Formats include OpenLayers,
KML, and GML where applicable, while the All Formats include additional output formats for further use
or data sharing.

Figure 3.17: Single Layer preview row

28 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

3.2 Publishing a Shapefile

This tutorial walks through the steps of publishing a Shapefile with GeoServer.

Note: This tutorial assumes that GeoServer is running at http://localhost:8090/geoserver/web.

3.2.1 Getting Started

1. Download the file nyc_roads.zip. This archive contains a Shapefile of roads from New York City
that will be used during in this tutorial.

2. Unzip the nyc_roads.zip. The extracted folder nyc_roads contains the following four files:

nyc_roads.shp
nyc_roads.shx
nyc_roads.dbf
nyc_roads.prj

#. Move the nyc_roads folder into <GEOSERVER_DATA_DIR>/data, where <GEOSERVER_DATA_DIR>
is the root of the GeoServer data directory. If no changes have been made to the GeoServer file structure,
the path is geoserver/data_dir/data/nyc_roads.

3.2.2 Create a New Workspace

The first step is to create a workspace for the Shapefile. A workspace is a container used to group similar
layers together.

1. In a web browser navigate to http://localhost:8080/geoserver/web.

2. Log into GeoServer as described in Logging In.

3. Navigate to Data→Workspaces.

Figure 3.18: Workspaces page

4. To create a new workspace click the Add new workspace button. You will be prompted to enter a
workspace Name and Namespace URI.

3.2. Publishing a Shapefile 29

http://localhost:8090/geoserver/web
http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.5.x

Figure 3.19: Configure a New Worksapce

5. Enter the Name as nyc_roads and the Namespace URI as http://opengeo.org/nyc_roads. A
workspace name is a identifier describing your project. It must not exceed ten characters or contain
spaces. A Namespace URI (Uniform Resource Identifier) is typically a URL associated with your
project, perhaps with an added trailing identifier indicating the workspace.

Figure 3.20: NYC Roads Workspace

6. Click the Submit button. The nyc_roads workspace will be added to the Workspaces list.

3.2.3 Create a Data Store

1. Navigate to Data→Stores.

2. In order to add the nyc_roads Shapefile, you need to create a new Store. Click on the Add new store
button. You will be redirected to a list of the data sources supported by GeoServer.

3. Select Shapefile - ESRI(tm) Shapefiles (.shp). The New Vector Data Source page will display.

4. Begin by configuring the Basic Store Info. Select the workspace nyc_roads from the drop down menu.
Enter the Data Source Name as NYC Roads. and enter a brief Description (such as “Roads in New York
City”).

5. Under Connection Parameters specify the location URL of the Shapefile as
file:data/nyc_roads/nyc_roads.shp.

30 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.21: Data Sources

Figure 3.22: Basic Store Info and Connection Parameters

3.2. Publishing a Shapefile 31

GeoServer User Manual, Release 2.5.x

6. Click Save. You will be redirected to the New Layer chooser page in order to configure the nyc_roads
layer.

3.2.4 Create a Layer

1. On the New Layer chooser page, select the layer nyc_roads.

Figure 3.23: New Layer chooser

2. The Edit Layer page defines the Data and Publishing parameters for a layer. Enter a short Title and an
Abstract for the nyc_roads layer.

Figure 3.24: Basic Resource Information

3. Generate the layer’s bounding boxes by clicking the Compute from data and then Compute from Native
bounds.

4. Set the layer’s style by switching to the Publishing tab.

5. Select the line style from the Default Style drop down list.

6. Finalize the layer configuration by scrolling to the bottom of the page and clicking Save.

32 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.25: Generate Bounding Boxes

Figure 3.26: Select Default Style

3.2. Publishing a Shapefile 33

GeoServer User Manual, Release 2.5.x

3.2.5 Preview the Layer

1. In order to verify that the nyc_roads layer is published correctly you can preview the layer. Navigate
to the Layer Preview screen and find the nyc_roads:nyc_roads layer.

Figure 3.27: Layer Preview

2. Click on the OpenLayers link in the Common Formats column.

3. Success! An OpenLayers map loads in a new page and displays the Shapefile data with the default
line style. You can use the Preview Map to zoom and pan around the dataset, as well as display the
attributes of features.

Figure 3.28: Preview map of nyc_roads

34 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

3.3 Publishing a PostGIS Table

This tutorial walks through the steps of publishing a PostGIS table with GeoServer.

Note: This tutorial assumes that GeoServer is running at http://localhost:8080/geoserver.

Note: This tutorial assumes PostGIS has been previously installed on the system.

3.3.1 Getting Started

1. Download the zip file nyc_buildings.zip. It contains a PostGIS dump of a dataset of buildings
from New York City that will be used during in this tutorial.

2. Create a PostGIS database called “nyc”. This can be done with the following command line:

createdb -T template_postgis nyc

If the PostGIS install is not set up with the “postgis_template” then the following sequence of com-
mands will perform the equivalent:
...

3. Unzip nyc_buildings.zip to some location on the file system. This will result in the file
nyc_buildings.sql.

4. Import nyc_buildings.sql into the nyc database:

psql -f nyc_buildings.sql nyc

3.3.2 Create a Data Store

The first step is to create a data store for the PostGIS database “nyc”. The data store tells GeoServer how to
connect to the database.

1. In a web browser navigate to http://localhost:8080/geoserver.

2. Navigate to Data→Stores.

3. Create a new data store by clicking the PostGIS NG link.

4. Enter the Basic Store Info. Keep the default Workspace, and enter the Data Source Name as
nyc_buildings and a brief Description.

5. Specify the PostGIS database Connection Parameters

dbtype postgisng
host localhost
post 5432
database nyc
schema public
user postgres
passwd enter postgres password
validate connections enable with check box

3.3. Publishing a PostGIS Table 35

http://localhost:8080/geoserver
http://localhost:8080/geoserver

GeoServer User Manual, Release 2.5.x

Figure 3.29: Adding a New Data Source

Figure 3.30: Basic Store Info

Note: The username and password parameters are specific to the user who created the postgis
database. Depending on how PostgreSQL is configured the password parameter may be unnecessary.

6. Click Save.

3.3.3 Create a Layer

1. Navigate to Data→Layers.

2. Click Add a new resource.

3. From the New Layer chooser drop-down menu, select cite:nyc_buidings.

4. On the resulting layer row, select the layer name nyc_buildings.

5. The Edit Layer page defines the Data and Publishing parameters for a layer. Enter a short Title and an
Abstract for the nyc_buildings layer.

6. Generate the layer’s bounding boxes by clicking the Compute from data and then Compute from Native
bounds.

36 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

Figure 3.31: Connection Parameters

Figure 3.32: New Layer drop down selection

Figure 3.33: New Layer row

3.3. Publishing a PostGIS Table 37

GeoServer User Manual, Release 2.5.x

Figure 3.34: Basic Resource Info

Figure 3.35: Generate Bounding Boxes

38 Chapter 3. Getting Started

GeoServer User Manual, Release 2.5.x

7. Set the layer’s style by switching to the Publishing tab.

8. Select the polygon style from the Default Style drop down list.

Figure 3.36: Select Default Style

9. Finalize the layer configuration by scrolling to the bottom of the page and clicking Save.

3.3.4 Preview the Layer

1. In order to verify that the nyc_buildings layer is published correctly you can preview the layer.
Navigate to the Layer Preview screen and find the cite:nyc_buildings layer.

Figure 3.37: Layer Preview

2. Click on the OpenLayers link in the Common Formats column.

3. Success! An OpenLayers map loads in a new page and displays the layer data with the default poly-
gon style. You can use the Preview Map to zoom and pan around the dataset, as well as display the
attributes of features.

3.4 Styling a Map

When a new dataset is added to GeoServer the layer for it is usually assigned a very basic style. To properly
visualize the data a style specific to that data must be created.

3.4. Styling a Map 39

GeoServer User Manual, Release 2.5.x

Figure 3.38: Preview map of nyc_buildings

This tutorial walks through the steps to create a new style in GeoServer and provides an introduction to the
Styled Layer Descriptor (SLD) styling language.

Note: It is assumed that the tutorials Publishing a Shapefile and Publishing a PostGIS Table have been com-
pleted.

3.4.1 Getting started

Before continuing with this tutorial it is strongly recommended that the section Introduction to SLD be first
read.

3.4.2 Creating a new style

40 Chapter 3. Getting Started

CHAPTER 4

GeoServer Data Directory

The GeoServer data directory is the location in the file system where GeoServer stores its configuration
information. The configuration defines things such as what data is served by GeoServer, where it is stored,
and how services such as WFS and WMS interact with and serve the data. The data directory also contains
a number of support files used by GeoServer for various purposes.

For production use, it is a good idea to define an external data directory for GeoServer instances, to make it
easier to upgrade. To learn how to create a data directory for a GeoServer installation see the Creating a New
Data Directory section. Setting the Data Directory describes how to configure GeoServer to use an existing
data directory.

Since GeoServer provides both interactive and programmatic interfaces to manage confiuration informa-
tion, in general users do not need to know about the internal structure of the data directory. As background,
an overview is provided in the Structure of the Data Directory section.

4.1 Creating a New Data Directory

The easiest way to create a new data directory is to copy one that comes with a standard GeoServer instal-
lation.

If GeoServer is running in Standalone mode the data directory is located at <installation
root>/data_dir.

Note: On Windows systems the <installation root> is located at C:\Program Files\GeoServer
<VERSION>.

If GeoServer is running in Web Archive mode inside of a servlet container, the data directory is located at
<web application root>/data.

Once the data directory has been found copy it to a new external location. To point a GeoServer instance at
the new data directory proceed to the next section Setting the Data Directory.

4.2 Setting the Data Directory

Setting the location of the GeoServer data directory is dependent on the type of GeoServer installation.
Follow the instructions below specific to the target platform.

Note: If the location of the GeoServer data directory is not set explicitly, the directory data_dir under
the root of the GeoServer installation is used.

41

GeoServer User Manual, Release 2.5.x

4.2.1 Windows

On Windows platforms the location of the GeoServer data directory is controlled by the
GEOSERVER_DATA_DIR environment variable. The method of setting this variable depends on the Win-
dows version.

Windows XP

1. From the Desktop or Start Menu right-click the My Computer icon and select Properties.

2. On the resulting dialog select the Advanced tab and click the Environment Variables button.

3. Click the New button and create a environment variable called GEOSERVER_DATA_DIR and set it to
the desired location.

Windows Vista

To be documented.

4.2.2 Linux

On Linux platforms the location of the GeoServer data directory is controlled by the
GEOSERVER_DATA_DIR environment variable. Setting the variable can be achieved with the follow-
ing command (in a bash shell):

% export GEOSERVER_DATA_DIR=/var/lib/geoserver_data

Place the command in the .bash_profile or .bashrc file (again assuming a bash shell). Ensure that this
done for the user running GeoServer.

42 Chapter 4. GeoServer Data Directory

GeoServer User Manual, Release 2.5.x

4.2.3 Mac OS X

Binary Install

For the binary install of GeoServer on Mac OS X, the data directory is set in the same way as for Linux.

Mac OS X Install

For the Mac OS X install, set the GEOSERVER_DATA_DIR environment variable to the desired directory
location. See this page for details on how to set an environment variable in Mac OS X

4.2.4 Web Archive

When running a GeoServer WAR inside a servlet container the data directory can be specified in a number
of ways. The recommended method is to set a servlet context parameter. An alternative is to set a Java
system property.

Servlet context parameter

To specify the data directory using a servlet context parameter, create the following <context-param>
element in the WEB-INF/web.xml file for the GeoServer application:

<web-app>
...
<context-param>
<param-name>GEOSERVER_DATA_DIR</param-name>
<param-value>/var/lib/geoserver_data</param-value>

</context-param>
...

</web-app>

Java system property

It is also possible to specify the data directory location with a Java system property. This method can be
useful during upgrades, as it avoids the need to set the data directory after every upgrade.

Warning: Using a Java system property will typically set the property for all applications running in
the servlet container, not just GeoServer.

The method of setting the Java system property is dependent on the servlet container:

For Tomcat:

Edit the file bin/setclasspath.sh under the root of the Tomcat installation. Specify the
GEOSERVER_DATA_DIR system property by setting the CATALINA_OPTS variable:

CATALINA_OPTS="-DGEOSERVER_DATA_DIR=/var/lib/geoserver_data"

For Glassfish:

Edit the file domains/<<domain>>/config/domain.xml under the root of the Glassfish installation,
where <<domain>> refers to the domain that the GeoServer web application is deployed under. Add a
<jvm-options> element inside the <java-config> element:

4.2. Setting the Data Directory 43

http://developer.apple.com/mac/library/qa/qa2001/qa1067.html

GeoServer User Manual, Release 2.5.x

...
<java-config>

...
<jvm-options>-DGEOSERVER_DATA_DIR=/var/lib/geoserver_data</jvm-options>

</java-config>
...

4.3 Structure of the Data Directory

This section gives an overview of the structure and contents of the GeoServer data directory.

This is not intended to be a complete reference to the GeoServer configuration information, since gener-
ally the data directory configuration files should not be accessed directly. Instead, the Web Administration
Interface can be used to view and modify the configuration manually, and for programmatic access and
manipulation the REST configuration API should be used.

The directories that do contain user-modifiable content are: logs, palettes, templates,
user-projection, and www.

The following figure shows the structure of the GeoServer data directory:

<data_directory>/

global.xml
logging.xml
wms.xml
wfs.xml
wcs.xml

data/
demo/
geosearch/
gwc/
layergroups/
logs/
palettes/
plugIns/
security/
styles/
templates/
user_projections/
workspaces/

|
+- workspace dirs...

|
+- datastore dirs...

|
+- layer dirs...

www/

4.3.1 The .xml files

The top-level .xml files contain information about the services and various global options for the server
instance.

44 Chapter 4. GeoServer Data Directory

GeoServer User Manual, Release 2.5.x

File Description
global.xml Contains settings common to all services, such as contact information, JAI settings,

character sets and verbosity.
logging.xmlSpecifies logging parameters, such as logging level, logfile location, and whether to log

to stdout.
wcs.xml Contains the service metadata and various settings for the WCS service.
wfs.xml Contains the service metadata and various settings for the WFS service.
wms.xml Contains the service metadata and various settings for the WMS service.

4.3.2 workspaces

The workspaces directory contain metadata about the layers published by GeoServer. It contains a direc-
tory for each defined workspace. Each workspace directory contains directories for the datastores defined
in it. Each datastore directory contains directories for the layers defined for the datastore. Each layer direc-
tory contains a layer.xml file, and either a coverage.xml or a featuretype.xml file depending on
whether the layer represents a raster or vector dataset.

4.3.3 data

The data directory can be used to store file-based geospatial datasets being served as layers. (This should
not be confused with the main “GeoServer data directory”.) This directory is commonly used to store
shapefiles and raster files, but can be used for any data that is file-based.

The main benefit of storing data files under the data directory is portability. Consider a shapefile stored ex-
ternal to the data directory at a location C:\gis_data\foo.shp. The datastore entry in catalog.xml
for this shapefile would look like the following:

<datastore id="foo_shapefile">
<connectionParams>

<parameter name="url" value="file://C:/gis_data/foo.shp" />
</connectionParams>

</datastore>

Now consider trying to port this data directory to another host running GeoServer. The location
C:\gis_data\foo.shp probably does not exist on the second host. So either the file must be copied
to this location on the new host, or catalog.xml must be changed to reflect a new location.

This problem can be avoided by storing foo.shp in the data directory. In this case the datastore entry
in catalog.xml becomes:

<datastore id="foo_shapefile">
<connectionParams>
<parameter name="url" value="file:data/foo.shp"/>

</connectionParams>
</datastore>

The value attribute is rewritten to be relative to the data directory. This location independence allows the
entire data directory to be copied to a new host and used directly with no additional changes.

4.3.4 demo

The demo directory contains files which define the sample requests available in the Sample Request Tool
(http://localhost:8080/geoserver/demoRequest.do). See the Demos page for more information.

4.3. Structure of the Data Directory 45

http://localhost:8080/geoserver/demoRequest.do

GeoServer User Manual, Release 2.5.x

4.3.5 geosearch

The geosearch directory contains information for regionation of KML files.

4.3.6 gwc

The gwc directory holds the cache created by the embedded GeoWebCache service.

4.3.7 layergroups

The layergroups directory contains configuration information for the defined layergroups.

4.3.8 logs

The logs directory contains configuration information for logging profiles, and the default
geoserver.log log file. See also Advanced log configuration.

4.3.9 palettes

The palettes directory is used to store pre-computed Image Palettes. Image palettes are used by the
GeoServer WMS as way to reduce the size of produced images while maintaining image quality. See also
Paletted Images.

4.3.10 security

The security directory contains the files used to configure the GeoServer security subsystem. This in-
cludes a set of property files which define access roles, along with the services and data each role is autho-
rized to access. See the Security section for more information.

4.3.11 styles

The styles directory contains Styled Layer Descriptor (SLD) files which contain styling information used
by the GeoServer WMS. For each file in this directory there is a corresponding entry in catalog.xml:

<style id="point_style" file="default_point.sld"/>

See the Styling section for more information about styling and SLD .

4.3.12 templates

The templates directory contains files used by the GeoServer templating subsystem. Templates are used
to customize the output of various GeoServer operations. See also Freemarker Templates.

4.3.13 user_projections

The user_projections directory contains a file called epsg.properties which is used to define cus-
tom spatial reference systems that are not part of the official EPSG database. See also Custom CRS Definitions.

46 Chapter 4. GeoServer Data Directory

http://www.epsg.org/CurrentDB.html

GeoServer User Manual, Release 2.5.x

4.3.14 www

The www directory is used to allow GeoServer to serve files like a regular web server. The contents of this
directory are served at http:/<host:port>/geoserver/www. While not a replacement for a full blown
web server, this can be useful for serving client-side mapping applications. See also Serving Static Files.

4.4 Migrating a Data Directory between different versions

4.4.1 Minor and major version numbers

There should generally be no problems or issues migrating data directories between major and minor ver-
sions of GeoServer (i.e. from 2.0.0 to 2.0.1 and vice versa, or from 1.6.x to 1.7.x and vice versa).

4.4.2 Migrating between GeoServer 1.7.x and 2.0.x

When using GeoServer 2.0.x with a data directory from the 1.7.x branch, modifications will occur to the
directory immediately that will make the data directory incompatible with 1.7.x! Below is a list of changes
made to the data directory.

Files and directories added

wfs.xml
wcs.xml
wms.xml
logging.xml
global.xml
workspaces/*
layergroups/*
styles/*.xml

Files renamed

• catalog.xml renamed to catalog.xml.old

• services.xml renamed to services.xml.old

4.4.3 Reverting from GeoServer 2.0.x to 1.7.x

In order to revert the directory to be compatible with 1.7.x again:

1. Stop GeoServer.

2. Delete the following files and directories:

wfs.xml
wcs.xml
wms.xml
logging.xml
global.xml
workspaces/*
layergroups/*
styles/*.xml

4.4. Migrating a Data Directory between different versions 47

GeoServer User Manual, Release 2.5.x

3. Rename catalog.xml.old to catalog.xml.

4. Rename services.xml.old to services.xml.

4.4.4 Migrating between GeoServer 2.1.x and 2.2.x

The security changes that ship with GeoServer 2.2 require modifications to the security directory of the
GeoServer data directory.

Files and directories added

security/*.xml
security/masterpw.*
security/geoserver.jceks
security/auth/*
security/filter/*
security/masterpw/*
security/pwpolicy/*
security/role/*
security/usergroup/*

Files renamed

• security/users.properties renamed to security/users.properties.old

4.4.5 Reverting from GeoServer 2.2.x and 2.1.x

In order to restore the GeoServer 2.1 configuration:

1. Stop GeoServer.

2. Rename users.properties.old to users.properties.

3. Additionally (although not mandatory) delete the following files and directories:

security/
config.xml
geoserver.jceks
masterpw.xml
masterpw.digest
masterpw.info
auth/
filter/
masterpw/
pwpolicy/
role/
usergroup/

4.4.6 Migrating between GeoServer 2.2.x and 2.3.x

The security improvements that ship with GeoServer 2.3 require modifications to the security directory
of the GeoServer data directory.

48 Chapter 4. GeoServer Data Directory

GeoServer User Manual, Release 2.5.x

Files and directories added

security/filter/roleFilter/config.xml

Files modified

security/filter/formLogout/config.xml
security/config.xml

Backup files

security/filter/formLogout/config.xml.2.2.x
security/config.xml.2.2.x

4.4.7 Reverting from GeoServer 2.3.x

In order to restore the GeoServer 2.2 configuration:

1. Stop GeoServer.

2. Copy security/config.xml.2.2.x to security/config.xml.

3. Copy security/filter/formLogout/config.xml.2.2.x to security/filter/formLogout/config.xml.

4. Additionally (although not mandatory) delete the following files and directories:

security/
filter/

roleFilter/
config.xml

formLogout/
config.xml.2.2.x

config.xml.2.2.x

4.4. Migrating a Data Directory between different versions 49

GeoServer User Manual, Release 2.5.x

50 Chapter 4. GeoServer Data Directory

CHAPTER 5

Web Administration Interface

The Web Administration Interface is a web-based tool for configuring all aspects of GeoServer, from adding
data to changing service settings. In a default GeoServer installation, this interface is accessed via a web
browser at http://localhost:8080/geoserver/web. However, this URL may vary depending on your local
installation.

5.1 Interface basics

This section will introduce the basic concepts of the web administration interface (generally abbreviated to
“web admin” .)

5.1.1 Welcome Page

For most installations, GeoServer will start a web server on localhost at port 8080, accessible at the following
URL:

http://localhost:8080/geoserver/web

Note: This URL is dependent on your installation of GeoServer. When using the WAR installation, for
example, the URL will be dependent on your container setup.

When correctly configured, a welcome page will open in your browser.

Figure 5.1: Welcome Page

The welcome page contains links to various areas of the GeoServer configuration. The About GeoServer
section in the Server menu provides external links to the GeoServer documentation, homepage, and bug

51

http://localhost:8080/geoserver/web

GeoServer User Manual, Release 2.5.x

tracker. The page also provides login access to the geoserver console. This security measure prevents unau-
thorized users from making changes to your GeoServer configuration. The default username and password
is admin and geoserver. These can be changed only by editing the security/users.properties file
in the GeoServer Data Directory.

Figure 5.2: Login

Regardless of authorization access, the web admin menu links to the Demo and Layer Preview portion of the
console. The Demos page contains links to various information pages, while the Layer Preview page provides
spatial data in various output formats.

When logged on, additional options will be presented.

Figure 5.3: Additional options when logged in

Geoserver Web Coverage Service (WCS), Web Feature Service (WFS), and Web Map Service (WMS) config-
uration specifications can be accessed from this welcome page as well. For further information, please see
the section on Services.

5.2 Server

The Server section of the Web Administration Interface provides access to GeoServer configuration and diag-
nostic tools, which may be useful for debugging.

52 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

5.2.1 Status

The Server Status page provides a summary of server configuration parameters and run-time status. It
provides a useful diagnostic tool in a testing environment.

Figure 5.4: Status Page

Status Field Descriptions

The following table describes the current status indicators.

5.2. Server 53

GeoServer User Manual, Release 2.5.x

Option Description
Locks A WFS has the ability to lock features to prevent more than one person from

updating the feature at one time. If data is locked, edits can be performed by a single
WFS editor. When the edits are posted, the locks are released and features can be
edited by other WFS editors. A zero in the locks field means all locks are released. If
locks is non-zero, then pressing “free locks,” releases all feature locks currently help
by the server, and updates the field value to zero.

Connections Refers to the numbers of vector stores, in the above case 4, that were able to connect.
Memory Usage The amount of memory current used by GeoServer. In the above example, 55.32 MB

of memory is being used. Clicking on the “Free Memory” button, cleans up memory
marked for deletion by running the garbage collector.

JVM Version Denotes which version of the JVM (Java Virtual Machine) is been used to power the
server. Here the JVM is Apple Inc.: 1.5.0_16.

Native JAI GeoServer uses Java Advanced Imaging (JAI) framework for image rendering and
coverage manipulation. When properly installed (true), JAI makes WCS and WMS
performance faster and more efficient.

Native JAI
ImageIO

GeoServer uses JAI Image IO (JAI) framework for raster data loading and image
encoding. When properly installed (true), JAI Image I/O makes WCS and WMS
performance faster and more efficient.

JAI Maximum
Memory

Expresses in bytes the amount of memory available for tile cache, in this case
33325056 bytes. The JAI Maximum Memory value must be between 0.0 and {0}

JAI Memory
Usage

Run-time amount of memory is used for the tile cache. Clicking on the “Free
Memory” button, clears available JAI memory by running the tile cache flushing.

JAI Memory
Threshold

Refers to the percentage, e.g. 75, of cache memory to retain during tile removal. JAI
Memory Threshold value must be between 0.0 and 100.

Number of JAI
Tile Threads

The number of parallel threads used by to scheduler to handle tiles

JAI Tile Thread
Priority

Schedules the global tile scheduler priority. The priority value is defaults to 5, and
must fall between 1 and 10.

Update
Sequence

Refers to the number of times (60) the server configuration has been modified

Resource cache GeoServer does not cache data, but it does cache connection to stores, feature type
definitions, external graphics, font definitions and CRS definitions as well. The
“Clear” button forces those caches empty and makes GeoServer reopen the stores
and re-read image and font information, as well as the custom CRS definitions stored
in ${GEOSERVER_DATA_DIR}/user_projections/epsg.properties.

Configuration
and catalog

GeoServer keeps in memory all of its configuration data. If for any reason that
configuration information has become stale (e.g., an external utility has modified the
configuration on disk) the “Reload” button will force GeoServer to reload all of its
configuration from disk.

Timestamps Field Descriptions

Option Description
GeoServer Currently a placeholder. Refers to the day and time of current GeoServer install.
Configuration Currently a placeholder. Refers to the day and time of last configuration change.
XML Currently a placeholder.

5.2.2 Contact Information

The Contact Information is used in the Capabilities document of the WMS server, and is publicly accessible.
Please complete this form with the relevant information.

54 Chapter 5. Web Administration Interface

https://jai.dev.java.net
https://jai-imageio.dev.java.net

GeoServer User Manual, Release 2.5.x

Figure 5.5: Contact Page

Contact Information Fields

Field Description
Contact Contact information for webmaster
Organization Name of the organization with which the contact is affiliated
Position Position of the contact within their organization
Address Type Type of address specified, such as postal
Address Actual street address
City City of the address
State State or province of the address
Zip code Postal code for the address
Country Country of the address
Telephone Contact phone number
Fax Contact Fax number
Email Contact email address

5.2.3 Global Settings

The Global Setting page configures messaging, logging, character, and proxy settings for the entire server.

Verbose Messages

Verbose Messages, when enabled, will cause GeoServer to return XML with newlines and indents. Because
such XML responses contain a larger amount of data, and in turn requires a larger amount of bandwidth, it
is recommended to use this option only for testing purposes.

5.2. Server 55

GeoServer User Manual, Release 2.5.x

Figure 5.6: Global Settings Page

56 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Verbose Exception Reporting

Verbose Exception Reporting returns service exceptions with full Java stack traces. It writes to the
GeoServer log file and offers one of the most useful configuration options for debugging. When disabled,
GeoServer returns single-line error messages.

Enable Global Services

When enabled, allows access to both global services and virtual services. When disabled, clients will only be
able to access virtual services. Disabling is useful if GeoServer is hosting a large amount of layers and you
want to ensure that client always request limited layer lists. Disabling is also useful for security reasons.

Resource Error Handling

This setting determines how GeoServer will respond when a layer becomes inaccessible for some reason.
By default, when a layer has an error (for example, when the default style for the layer is deleted), a service
exception is printed as part of the capabilities document, making the document invalid. For clients that rely
on a valid capabilities document, this can effectively make a GeoServer appear to be “offline”.

An administrator may prefer to configure GeoServer to simply omit the problem layer from the capabilities
document, thus retaining the document integrity and allowing clients to connect to other published layers.

There are two options:

OGC_EXCEPTION_REPORT: This is the default behavior. Any layer errors will show up as Service Ex-
ceptions in the capabilities document, making it invalid.

SKIP_MISCONFIGURED_LAYERS: With this setting, GeoServer will elect simply to not describe the
problem layer at all, removing it from the capabilities document, and preserving the integrity of the rest of
the document. Note that having a layer “disappear” may cause other errors in client functionality.

Number of Decimals

Refers to the number of decimal places returned in a GetFeature response. Also useful in optimizing band-
width. Default is 8.

Character Set

Specifies the global character encoding that will be used in XML responses. Default is UTF-8, which is
recommended for most users. A full list of supported character sets is available on the IANA Charset
Registry.

Proxy Base URL

GeoServer can have the capabilities documents report a proxy properly. The Proxy Base URL field is the
base URL seen beyond a reverse proxy.

5.2. Server 57

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

GeoServer User Manual, Release 2.5.x

Logging Profile

Logging Profile corresponds to a log4j configuration file in the GeoServer data directory. (Apache log4j is a
Java-based logging utility.) By default, there are five logging profiles in GeoServer; additional customized
profiles can be added by editing the log4j file.

There are six logging levels used in the log itself. They range from the least serious TRACE, through DE-
BUG, INFO, WARN, ERROR and finally the most serious, FATAL. The GeoServer logging profiles combine
logging levels with specific server operations. The five pre-built logging profiles available on the global
settings page are:

1. Default Logging (DEFAULT_LOGGING)—Provides a good mix of detail without being VERBOSE. De-
fault logging enables INFO on all GeoTools and GeoServer levels, except certain (chatty) GeoTools
packages which require WARN.

2. GeoServer Developer Logging (GEOSERVER_DEVELOPER_LOGGING)-A verbose logging profile that
includes DEBUG information on GeoServer and VFNY. This developer profile is recommended for
active debugging of GeoServer.

3. GeoTools Developer Logging (GEOTOOLS_DEVELOPER_LOGGING)—A verbose logging profile that
includes DEBUG information only on GeoTools. This developer profile is recommended for active
debugging of GeoTools.

4. Production Logging (PRODUCTION_LOGGING) is the most minimal logging profile, with only WARN
enabled on all GeoTools and GeoServer levels. With such production level logging, only problems are
written to the log files.

5. Verbose Logging (VERBOSE_LOGGING)—Provides more detail by enabling DEBUG level logging on
GeoTools, GeoServer, and VFNY.

Log to StdOut

Standard output (StdOut) determines where a program writes its output data. In GeoServer, the Log to
StdOut setting enables logging to the text terminal that initiated the program. If you are running GeoServer
in a large J2EE container, you might not want your container-wide logs filled with GeoServer information.
Clearing this option will suppress most GeoServer logging, with only FATAL exceptions still output to the
console log.

Log Location

Sets the written output location for the logs. A log location may be a directory or a file, and can
be specified as an absolute path (e.g., C:\GeoServer\GeoServer.log) or a relative one (for ex-
ample, GeoServer.log). Relative paths are relative to the GeoServer data directory. Default is
logs/geoserver.log.

XML POST request log buffer

In more verbose logging levels, GeoServer will log the body of XML (and other format) POST requests. It
will only log the initial part of the request though, since it has to store (buffer) everything that gets logged
for use in the parts of GeoServer that use it normally. This setting sets the size of this buffer, in characters.
A setting of 0 will disable the log buffer.

58 Chapter 5. Web Administration Interface

http://logging.apache.org/log4j/1.2/index.html

GeoServer User Manual, Release 2.5.x

Feature type cache size

GeoServer can cache datastore connections and schemas in memory for performance reasons. The cache
size should generally be greater than the number of distinct featuretypes that are expected to be accessed
simultaneously. If possible, make this value larger than the total number of featuretypes on the server, but
a setting too high may produce out-of-memory errors.

5.2.4 Coverage Access settings

The Coverage Access Settings page in the Server menu in the Web Administration Interface provides config-
uration options to customize thread pool executors and ImageIO caching memory.

Figure 5.7: Coverage Access Settings

Thread Pool Executor Settings

The imageMosaic reader may load, in parallel, different files that make up the mosaic by means of a Thread-
PoolExecutor . A global ThreadPoolExecutor instance is shared by all the readers supporting and using
concurrent reads. This section of the Coverage Access Settings administration page allows to configure the
parameters of the executor.

Core Pool Size—Sets the core pool size of the thread pool executor. A positive integer must be specified.

Maximum Pool Size—Sets the maximum pool size of the thread pool executor. A positive integer must be
specified.

Keep Alive Time—Sets the time to be wait by the executor before terminating an idle thread in case there
are more threads than corePoolSize.

Queue Type—The executor service uses a BlockingQueue to manage submitted tasks. Using an unbounded
queue is recommended which allows to queue all the pending requests with no limits (Unbounded). With
a direct type, incoming requests will be rejected when there are already maximumPoolSize busy threads.

Note: If a new task is submitted to the list of tasks to be executed, and less than corePoolSize threads are
running, a new thread is created to handle the request. Incoming tasks are queued in case corePoolSize or
more threads are running.

Note: If a request can’t be queued or there are less than corePoolSize threads running, a new thread is
created unless this would exceed maximumPoolSize.

5.2. Server 59

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html/
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html/
http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html/

GeoServer User Manual, Release 2.5.x

Note: If the pool currently has more than corePoolSize threads, excess threads will be terminated if they
have been idle for more than the keepAliveTime.

Note: If a new task is submitted to the list of tasks to be executed and there are more than corePoolSize
but less than maximumPoolSize threads running, a new thread will be created only if the queue is full.
This means that when using an Unbounded queue, no more threads than corePoolSize will be running and
keepAliveTime has no influence.

Note: If corePoolSize and maximumPoolSize are the same, a fixed-size thread pool is used.

ImageIO Settings

WMS requests usually produce relatively small images whilst WCS requests may frequently deal with big-
ger datasets. Caching the image in memory before encoding it may be helpful when the size of the image
isn’t too big. For a huge image (as one produced by a big WCS request) it would be better instead caching
through a temporary file with respect to caching in memory. This section allows to specify a threshold
image size to let GeoServer decide whether to use a MemoryCacheImageOutputStream or FileCacheIma-
geOutputStream when encoding the images.

ImageIO Cache Memory Threshold—Sets the threshold size (expressed in KiloBytes) which will made
GeoServer choose between file cache vs memory based cache. If the estimated size of the image to be
encoded is smaller than the threshold value, a MemoryCacheImageOutputStream will be used resulting into
caching the image in memory. If the estimated size of the image to be encoded is greater than the threshold
value, a FileCacheImageOutputStream will be used.

5.2.5 JAI

Java Advanced Imaging (JAI) is an image manipulation library built by Sun Microsystems and distributed
with an open source license. JAI Image I/O Tools provides reader, writer, and stream plug-ins for the
standard Java Image I/O Framework. Several JAI parameters, used by both WMS and WCS operations,
can be configured in the JAI Settings page.

Memory & Tiling

When supporting large images it is efficient to work on image subsets without loading everything to mem-
ory. A widely used approach is tiling which basically builds a tessellation of the original image so that
image data can be read in parts rather than whole. Since very often processing one tile involves surround-
ing tiles, tiling needs to be accompanied by a tile-caching mechanism. The following JAI parameters allow
you to manage the JAI cache mechanism for optimized performance.

Memory Capacity—For memory allocation for tiles, JAI provides an interface called TileCache. Memory
Capacity sets the global JAI TileCache as a percentage of the available heap. A number between 0 and 1
exclusive. If the Memory Capacity is smaller than the current capacity, the tiles in the cache are flushed to
achieve the desired settings. If you set a large amount of memory for the tile cache, interactive operations
are faster but the tile cache fills up very quickly. If you set a low amount of memory for the tile cache, the
performance degrades.

Memory Threshold—Sets the global JAI TileCache Memory threshold. Refers to the fractional amount of
cache memory to retain during tile removal. JAI Memory Threshold value must be between 0.0 and 1.0.
The Memory Threshold visible on the Status page.

60 Chapter 5. Web Administration Interface

http://docs.oracle.com/javase/1.5.0/docs/api/javax/imageio/stream/MemoryCacheImageOutputStream.html/
http://docs.oracle.com/javase/1.5.0/docs/api/javax/imageio/stream/FileCacheImageOutputStream.html/
http://docs.oracle.com/javase/1.5.0/docs/api/javax/imageio/stream/FileCacheImageOutputStream.html/
http://java.sun.com/javase/technologies/desktop/media/jai/
https://jai-imageio.dev.java.net/

GeoServer User Manual, Release 2.5.x

Figure 5.8: JAI Settings

Tile Threads—JAI utilizes a TileScheduler for tile calculation. Tile computation may make use of multi-
threading for improved performance. The Tile Threads parameter sets the TileScheduler, indicating the
number of threads to be used when loading tiles.

Tile Threads Priority—Sets the global JAI Tile Scheduler thread priorities. Values range from 1 (Min) to 10
(Max), with default priority set to 5 (Normal).

Tile Recycling—Enable/Disable JAI Cache Tile Recycling. If selected, Tile Recycling allows JAI to re-use
already loaded tiles, with vital capability for performances.

Native Acceleration—To improve the computation speed of image processing applications, the JAI comes
with both Java Code and native code for many platform. If the Java Virtual Machine (JVM) finds the native
code, then that will be used. If the native code is not available, the Java code will be used. As such, the JAI
package is able to provide optimized implementations for different platforms that can take advantage of
each platform’s capabilities.

JPEG Native Acceleration—Enables/disable JAI JPEG Native Acceleration. When selected, enables JPEG
native code, which may speed performance, but compromise security and crash protection.

PNG Native Acceleration—Enables/disables JAI PNG Native Acceleration. When selected, enables PNG
native code, which may speed performance, but compromise security and crash protection.

Mosaic Native Acceleration—To reduce the overhead of handling them, large data sets are often split into
smaller chunks and then combined to create an image mosaic. An example of this is aerial imagery which is
usually comprises thousands of small images at very high resolution. Both native and JAI implementations
of mosaic are provided. When selected, Mosaic Native Acceleration use the native implementation for
creating mosaics.

5.3 Layer Preview

This page provides layer views in various output formats. A layer must be enabled to be previewed.

Each layer row consists of a type, name, title, and available formats for viewing.

5.3. Layer Preview 61

GeoServer User Manual, Release 2.5.x

Figure 5.9: Layer’s Preview Page

Field Description
Raster (grid) layer
Vector (feature) layer
Layer group

Name refers to the Workspace and Layer Name of a layer, while Title refers to the brief description con-
figured in the Edit Layer Data panel. In the following example, nurc refers to the Workspace, Arc_Sample
refers to the Layer Name and “A sample ArcGrid field” is specified on the Edit Later Data panel.

Figure 5.10: Single Layer preview row

5.3.1 Output Formats

The Layer Preview page supports a variety of output formats for further use or data sharing. You can
preview all three layer types in the common OpenLayers and KML formats. Similarly, using the “All
formats” menu you can preview all layer types in seven additional output formats—AtomPub, GIF, GeoRss,
JPEG, KML (compressed), PDF, PNG, SVG, and TIFF. Only Vector layers provide the WFS output previews,
including the common GML as well as the CSV, GML3, GeoJSON and shapefile formats. The table below
provides a brief description of all supported output formats, organized by output type (image, text, or
data).

Image Outputs

All image outputs can be initiated from a WMS getMap request on either a raster, vector or coverage data.
WMS are methods that allows visual display of spatial data without necessarily providing access to the
features that comprise those data.

62 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Format Description
KML KML (Keyhole Markup Language) is an XML-based language schema for expressing

geographic data in an Earth browser, such as Google Earth or Google Maps. KML uses a
tag-based structure with nested elements and attributes. For GeoServer, KML files are
distributed as a KMZ, which is a zipped KML file.

JPEG WMS output in raster format. The JPEG is a compressed graphic file format, with some loss
of quality due to compression. It is best used for photos and not recommended for exact
reproduction of data.

GIF WMS output in raster format. The GIF (Graphics Interchange Format) is a bitmap image
format best suited for sharp-edged line art with a limited number of colors. This takes
advantage of the format’s lossless compression, which favors flat areas of uniform color with
well defined edges (in contrast to JPEG, which favors smooth gradients and softer images).
GIF is limited to an 8-bit palette, or 256 colors.

SVG WMS output in vector format. SVG (Scalable Vector Graphics) is a language for modeling
two-dimensional graphics in XML. It differs from the GIF and JPEG in that it uses graphic
objects rather than individual points.

TIFF WMS output in raster format. TIFF (Tagged Image File Format) is a flexible, adaptable format
for handling multiple data in a single file. GeoTIFF containts geographic data embedded as
tags within the TIFF file.

PNG WMS output in raster format. The PNG (Portable Network Graphics) file format was created
as the free, open-source successor to the GIF. The PNG file format supports truecolor (16
million colors) while the GIF supports only 256 colors. The PNG file excels when the image
has large, uniformly coloured areas.

Open-
Layers

WMS GetMap request outputs a simple OpenLayers preview window. OpenLayers is an
open source JavaScript library for displaying map data in web browsers. The OpenLayers
output has some advanced filters that are not available when using a standalone version of
OpenLayers. Further, the generated preview contains a header with easy configuration
options for display.

PDF A PDF (Portable Document Format) encapsulates a complete description of a fixed-layout 2D
document,including any text, fonts, raster images, and 2D vector graphics.

Figure 5.11: Sample Image Output-an OpenLayers preview of nurc:Pk50095

5.3. Layer Preview 63

http://openlayers.org/

GeoServer User Manual, Release 2.5.x

Text Outputs

For-
mat

Description

Atom-
Pub

WMS output of spatial data in XML format. The AtomPub (Atom Publishing Protocol) is an
application-level protocol for publishing and editing Web Resources using HTTP and XML.
Developed as a replacement for the RSS family of standards for content syndication, Atom
allows subscription of geo data.

GeoRss WMS GetMap request output of vector data in XML format. RSS (Rich Site Summary) is an
XML format for delivering regularly changing web content. GeoRss is a standard for encoding
location as part of a RSS feed.supports Layers Preview produces a RSS 2.0 documents, with
GeoRSS Simple geometries using Atom.

GeoJ-
SON

JavaScript Object Notation (JSON) is a lightweight data-interchange format based on the
JavaScript programming language. This makes it an ideal interchange format for browser
based applications since it can be parsed directly and easily in to javascript. GeoJSON is a
plain text output format that add geographic types to JSON.

CSV WFS GetFeature output in comma-delimited text. CSV (Comma Separated Values) files are text
files containing rows of data. Data values in each row are separated by commas. CSV files also
contain a comma-separated header row explaining each row’s value ordering. GeoServer’s
CSVs are fully streaming, with no limitation on the amount of data that can be outputted.

A fragment of a simple GeoRSS for nurc:Pk50095 using Atom:

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:georss="http://www.georss.org/georss" version="2.0">
<channel>

<title>Pk50095</title>
<description>Feed auto-generated by GeoServer</description>
<link>></link>
<item>
<title>fid--f04ca6b_1226f8d829e_-7ff4</title>
<georss:polygon>46.722110379286 13.00635746384126

46.72697223230676 13.308182612644663 46.91359611878293
13.302316867622581 46.90870264238999 12.999446822650462
46.722110379286 13.00635746384126

</georss:polygon>
</item>

</channel>
</rss>

Data Outputs

All data outputs are initiated from a WFS GetFeature request on vector data.

For-
mat

Description

GML2/3GML (Geography Markup Language) is the XML grammar defined by the Open Geospatial
Consortium (OGC) to express geographical features. GML serves as a modeling language for
geographic systems as well as an open interchange format for geographic data sharing. GML2
is the default (Common) output format, while GML3 is available from the “All Formats” menu.

Shape-
file

The ESRI Shapefile, or simply a shapefile, is the most commonly used format for exchanging
GIS data. GeoServer outputs shapefiles in zip format, with a directory of .cst, .dbf, .prg, .shp,
and .shx files.

64 Chapter 5. Web Administration Interface

http://www.georss.org
http://json.org/
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium

GeoServer User Manual, Release 2.5.x

5.4 Data

This section is the largest and perhaps the most important section of the Web Administration Interface.
Each subsection links directly to a data type page with add, edit, and delete capabilities.

In the example below, the data view page displays a table of indexed data.

Figure 5.12: Layers page

To sort a data type alphabetically, click the column header.

Figure 5.13: Unsorted (left) and sorted (right) columns

For simple searching of data type contents, enter the search criteria in the search box and click Enter.
GeoServer will search the data types that are relevant to your query, and return a Search Results page.

Specific details for adding, editing and deleting various data types are discussed in the following sections.

5.4. Data 65

GeoServer User Manual, Release 2.5.x

Figure 5.14: Search results for the query “top”

5.4.1 Workspaces

This section describes how to view and configure workspaces. Analogous to a namespace, a workspace is a
container which organizes other items. In GeoServer, a workspace is often used to group similar layers to-
gether. Individual layers are often referred to by their workspace name, colon, then store. For example, Ex:
topp:states. Two different layers with the same name can exist as long as they exist in different workspaces.
For example, Ex: sf:states, topp:states.

Figure 5.15: Workspaces page

Edit Workspace

To view details and edit a workspace, click a workspace name.

Figure 5.16: Workspace named “topp”

A workspace consists of a name and a Namespace URI (Uniform Resource Identifier). The workspace
name is limited of ten characters and may not contain space. A URI is similar to a URL, except URIs don’t
need to point to a location on the web, and only need to be a unique identifier. For a Workspace URI, we
recommend using a URL associated with your project, with perhaps a different trailing identifier, such as
http://www.openplans.org/topp for the “topp” workspace.

66 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Add or Remove a Workspace

The buttons for adding and removing a workspace can be found at the top of the Workspaces view page.

Figure 5.17: Buttons to add and remove

To add a workspace, select the Add new workspace button. You will be prompted to enter the the workspace
name and URI.

Figure 5.18: New Workspace page with example

To remove a workspace, click the workspace’s corresponding check box. As with the layer deletion pro-
cess, multiple workspaces can be checked for removal on a single results page. Click the Remove selected
workspaces(s) button. You will be asked to confirm or cancel the deletion. Clicking OK will remove the
workspace.

Figure 5.19: Workspace removal confirmation

5.4.2 Stores

A store connects to a data source that contains raster or vector data. A data source can be a file or group of
files, a table in a database, a single raster file, or a directory, for example a Vector Product Format library.
Using the store construct means that connection parameters are defined once, rather than for each piece of
data in a source. As such, it is necessary to register a store before loading any data.

5.4. Data 67

GeoServer User Manual, Release 2.5.x

Figure 5.20: Stores View

While there are many potential formats for data source, there are only four types of stores. For raster data,
a store can be a file. For vector data, a store can be a file, database, or server.

Type Icon Description
raster data in a file
vector data in a file
vector data in a database
vector server (web feature server)

Editing a Store

To view and edit a store, click a store name. The exact contents of this page depend on the specific format
chosen. (See the sections Working with Vector Data, Working with Raster Data, and Working with Databases for
information about specific data formats.) In the example lists the contents of the nurc:ArcGridSample
store.

While connection parameters will vary depending on data format, some of the basic information is common
across formats. The Workspace menu lists all registered workspaces. The store is assigned to the selected
workspace (nurc). Data Source Name is the store name as listed on the view page. The Description is optional
and only displays in the administration interface. Enabled enables or disables access to the store, along with
all data defined in it.

Adding a Store

The buttons for adding and removing a workspace can be found at the top of the Stores page.

To add a workspace, select the Add new Store button. You will be prompted to choose a data source.
GeoServer natively supports many formats (with more available via extensions). Click the appropriate
data source to continue.

The next page will configure the store. (The example below shows the ArcGrid raster configuration page.)
However, since connection parameters differ across data sources, the exact contents of this page depend on
the store’s specific format. See the sections Working with Vector Data, Working with Raster Data, and Working
with Databases for information on specific data formats.

68 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.21: Editing a raster data store

Figure 5.22: Buttons to add and remove stores

Figure 5.23: Choosing the data source for a new store

5.4. Data 69

GeoServer User Manual, Release 2.5.x

Figure 5.24: Configuration page for an ArcGrid raster data source

Removing a Store

To remove a store, click the store’s corresponding check box. Multiple stores can be selected for batch
removal.

Figure 5.25: Stores selected for deletion

Click the Remove selected Stores button. You will be asked to confirm the deletion of the the data within each
store. Selecting OK removes the store(s), and will redirect to the main Stores page.

5.4.3 Layers

In Geoserver, the term layer refers to raster or vector data that contains geographic features. Vector layers
are analogous to featureTypes and raster layers are analogous to coverages. Layers represent each feature
that needs to be shown on a map. All layers have a source of data, known as a Store.

70 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.26: Confirm deletion of stores

In the layers section, you can view and edit an existing layers, add (register) a new layer, or delete (unreg-
ister) a layer. As in previous View tables, the Layers View page displays relevant dependencies, that is, the
layer within the store within the workspace. The View page also displays the layer’s status and native SRS.

Figure 5.27: Layers View

Layer Types

Layers are organized into two types of data, raster and vector. These two formats differ in how they store
spatial information. Vector types store information about feature types as mathematical paths—a point as
a single x,y coordinate, lines as a series of x,y coordinates, and polygons as a series of x,y coordinates that
start and end on the same place. Raster format data is a cell-based representation of features on the earth
surface. Each cell has a distinct value, and all cells with the same value represent a specific feature.

5.4. Data 71

GeoServer User Manual, Release 2.5.x

Field Description
raster (grid)
vector (feature)

Edit Layer Data

Clicking the layer name opens a layer configuration panel. The Data tab, activated by default, allows you
to define and change data parameters for a layer.

Figure 5.28: Layers Data View

Basic Info

The beginning sections–Basic Resource Info, Keywords and Metadata link are analogous to the Service Meta-
data section for WCS, WFS and WMS. These sections provide “data about the data,” specifically textual
information that make the layer data easier to work with it.

Name—Identifier used to reference the layer in WMS requests

Title—Human-readable description to briefly identify the layer to clients (required)

Abstract—Describes the layer

Keywords—List of short words associated with the layer to assist catalog searching

Metadata Link—Allows linking to external documents that describe the data layer. Currently only two
standard format types are valid: TC211 and FGDC. TC211 refers to the metadata structure established by
the ISO Technical Committee for Geographic Information/Geomatics (ISO/TC 211) while FGDC refers to
those set out by the Federal Geographic Data Committee (FGDC) of the United States.

Coordinate Reference Systems

A coordinate reference system (CRS) defines how your georeferenced spatial data relates to real locations
on the Earth’s surface. CRSs are part of a more general model called Spatial Reference Systems (SRS), which

72 Chapter 5. Web Administration Interface

http://www.isotc211.org/
http://www.fgdc.gov/

GeoServer User Manual, Release 2.5.x

Figure 5.29: Adding a metadata link n FGDC format

includes referencing by coordinates and geographic identifiers. Geoserver needs to know what Coordinate
Reference System of your data. This information is used for computing the latitude/longitude bounding
box and reprojecting the data during both WMS and WFS requests

Figure 5.30: Adding a metadata link n FGDC format

Native SRS—Refers to the projection the layer is stored in. Clicking the projection link displays a descrip-
tion of the SRS.

Declared SRS—Refers to what GeoServer gives to clients

SRS Handling:—Determines how GeoServer should handle projection when the two SRS differ

Bounding Boxes

The bounding box determines the extent of a layer. The Native Bounding Box are the bounds of the data
projected in the Native SRS. You can generate these bounds by clicking the Compute from data button. The
Lat/Long Bounding Box computes the bounds based on the standard lat/long. These bounds can be gener-
ated by clicking the Compute from native bounds button.

Figure 5.31: Bounding Box for sf:archsites

Coverage Parameters (Raster)

Optional coverage parameters are possible for certain types of raster data. WorldImage formats request a
valid range of grid coordinates in two dimensions known as a ReadGridGeometry2D. For ImageMosaic, you
can use InputImageThresholdValue, InputTransparentColor, and OutputTransparentColor to control the render-
ing of the mosaic in terms of thresholding and transparency.

5.4. Data 73

GeoServer User Manual, Release 2.5.x

Feature Type Details (Vector)

Instead of coverage parameters, vector layers have a list of the Feature Type Details. These include the
Property and Type of a data source. For example, the sf:archsites layer show below includes a geometry,
the_geom of type point.

Figure 5.32: Feature Types Detaisl for sf:archsites

The Nillable refers to whether the property requires a value or may be flagged as being null. Meanwhile
Min/Max Occurrences refers to how many values a field is allowed to have. Currently both Nillable and
Min/Max Occurrences are set to true and 0/1 but might be extended with future work on complex features.

Edit Publishing Information

The publishing tab is for configuring HTTP and WCS settings.

Figure 5.33: Editing Publishing Data

• Enabled—A layer that is not enabled won’t be available to any kind of request, it will just show up in
the configuration (and in REST-config)

74 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

• Additional styles—A layer is advertised by default. A non-advertised layer will be available in all data
access requests (for example, WMS GetMap, WMS GetFeature) but won’t appear in any capabilities
document or in the layer preview.

HTTP Settings—Cache parameters that apply to the HTTP response from client requests. If Response Cache
Headers is selected, GeoServer will not request the same tile twice within the time specified in Cache Time.
One hour measured in seconds (3600), is the default value for Cache Time.

WMS Settings—Sets the WMS specific publishing parameters

Figure 5.34: WMS Settings

• Default style:—Style that will be used when the client does not specify a named style in GetMap re-
quests

• Additional styles—Other styles that can be associated to this layers. Some clients (and the GeoServer
own preview) will present those as styling alternatives for that layer to the end user

• Default rendering buffer (available since version 2.0.3)—the default value of the buffer
GetMap/GetFeatureInfo vendor parameter. See the WMS vendor parameters for more details

• Default WMS path—Location of the layer in the WMS capabilities layer tree. Useful to build non-
opaque layer groups

WMS Attribution—Sets publishing information about data providers

• Attribution Text—Human-readable text describing the data provider. This might be used as the text
for a hyperlink to the data provider’s web site.

• Attribution Link—URL to the data provider’s website.

• Logo URL—URL to an image that serves as a logo for the data provider.

• Logo Content Type, Width, and Height —These fields provide information about the logo image that
clients may use to assist with layout. GeoServer will auto-detect these values if you click the Auto-
detect image size and type link at the bottom of the section.

The text, link, and URL are each advertised in the WMS Capabilities document if they are provided. Some
WMS clients will display this information to advise users which providers provide a particular dataset. If
you omit some of the fields, those that are provided will be published and those that are not will be omitted
from the Capabilities document.

5.4. Data 75

GeoServer User Manual, Release 2.5.x

Figure 5.35: WMS Attribution

WFS Settings—Sets the maximum number of features for a layer a WFS GetFeature operation should gen-
erate (regardless of the actual number of query hits)

WCS Settings—Provides a list the SRS the layer can be converted to. New Request SRS allows you to add
an SRS to that list.

Interpolation Methods—Sets the raster rendering process

Formats—Lists which output formats a layers supports

Default Title—Assigns a style to a layer. Additional styles are ones published with the layer in the capa-
bilities document.

Geosearch—When enabled, allows the Google Geo search crawler to index from this particular layer. See
What is a Geo Sitemap? for more information.

KML Format Settings—Limits features based on certain criteria, otherwise known as regionation. Choose
which feature should show up more prominently than others with the guilabel:Default Regionating Attribute.
There are four types of Regionating Methods:

• external-sorting—Creates a temporary auxiliary database within GeoServer. The first request to build
an index takes longer than subsequent requests.

• geometry—Externally sorts by length (if lines) or area (if polygons)

• native-sorting—Uses the default sorting algorithm of the backend where the data is hosted. It is faster
than external-sorting, but will only work with PostGIS datastores.

• random—Uses the existing order of the data and does not sort

Add or Delete a Layer

At the upper left-hand corner of the layers view page there are two buttons for the adding and deletion of
layers. The green plus button allows you to add a new layer, referred to as resource. The red minus button
allows you to remove selected layers.

Figure 5.36: Buttons to Add or Remove a Layer

76 Chapter 5. Web Administration Interface

http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=94554

GeoServer User Manual, Release 2.5.x

Clicking the Add a new resource button brings up a New Layer Chooser panel. The menu displays all currently
enabled stores. From this menu, select the Store where the layer should be added.

Figure 5.37: List of all currently enabled stores

Upon selection of a Store, a view table of existing layers within the selected store will be displayed. In
this example, giant_polygon, poi, poly_landmarks and tiger_roads are all layers within the NYC
store.

Figure 5.38: View of all layers

On selecting a layer name, you are redirected to a layer edit page. Edit Layer Data

To delete a layer, click the check box on the left side of each layer row. As shown below, multiple layers can
be selected for removal on a single results page. It should be noted, however, that selections for removal
will not persist from one results pages to the next.

All layers can be selected for removal by selecting the check box in the header row.

Once layer(s) are selected, the Remove selected resources link is activated. Once you’ve clicked the link, you
will be asked to confirm or cancel the deletion. Selecting OK successfully deletes the layer.

5.4.4 Layer Groups

A layer group is a container in which layers and other groups can be organized in a hierarchical structure.
A layer group can be referred to by one name, this allows for simpler WMS requests, as the request need
only refer to one layer as opposed to multiple individual layers.

Layer group behaviour can be configured by setting its mode. There are 4 available values:

• single: the layer group is exposed as a single layer with a name.

5.4. Data 77

GeoServer User Manual, Release 2.5.x

Figure 5.39: Layers nurc:Img_Sample, sf:restricted, sf:streams selected for deletion

Figure 5.40: All layers selected to be deleted

78 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

• named tree: the layer group can be referred to by one name, but also exposes its nested layers and
groups in the capabilities document.

• container tree: the layer group is exposed in the capabilities document, but does not have a name,
making it impossible to render it on its own. This is called “containing category” in the WMS specifi-
cation.

• Earth Observation tree: a special type of group created to manage the WMS Earth Observation re-
quirements. This group does not render its nested layers and groups, but only a “preview layer”
called Root Layer. When this mode is chosen, a new field “Root Layer” will be exposed in the config-
uration UI.

In case a layer is included in a any non single group it won’t be listed anymore in the flat layer list, although
it will still be possible to include the same layer in different layer groups.

Figure 5.41: Layer Groups page

Edit Layer Group

To bring up the layer group edit page, click a layer group name. The initial fields allow you configure
the name, title, abstract, workspace, bounds, projection and mode of the layer group. To automatically set
bounding box, select the Generate Bounds button. You may also provide your own custom bounding box
parameters. To select an appropriate projection click the Find button.

Note: A layer group can consist of layers with dissimilar bounds and projections. GeoServer will automat-
ically reproject all layers to the projection of the layer group.

The table at the bottom of the page lists layers and groups contained within the current layer group. We
refer to layers and layer groups as publishable elements. When a layer group is processed, the layers are
rendered in the order provided, so the publishable elements at the bottom of list will be rendered last and will
show on top of the other publishable elements.

A publishable element can be positioned higher or lower on this list by clicking the green up or down arrows,
respectively.

The Style column shows the style associated with each layer. To change the style associated with a layer,
click the appropriate style link. A list of enabled styles will be displayed. Clicking on a style name reassigns
the layer’s style.

To remove a publishable element from the layer group, select its button in the Remove column. You will now
be prompted to confirm or cancel this deletion.

A layer can be added to the list by clicking the Add Layer... button at the top of the table. From the list of
layers, select the layer to be added by clicking the layer name. The selected layer will be appended to the
bottom of the publishable list.

5.4. Data 79

GeoServer User Manual, Release 2.5.x

Figure 5.42: Layer Groups Edit page

Figure 5.43: Style editing for a layer within a layer group

80 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.44: Dialog for adding a layer to a layer group

A layer group can be added by clicking the Add Layer Group... button at the top of the table. From the list of
layer groups, select the layer group to be added by clicking its name. The selected group will be appended
to the bottom of the publishable list.

Figure 5.45: Dialog for adding a layer group to a layer group

You can view layer groups in the Layer Preview section of the web admin.

Add a Layer Group

The buttons for adding and removing a layer group can be found at the top of the Layer Groups page.

To add a new layer group, select the “Add a new layer group” button. You will be prompted to name the
layer group.

When finished, click Submit. You will be redirected to an empty layer group configuration page. Begin by
adding layers by clicking the Add layer... button (described in the previous section). Once the layers are
positioned accordingly, press Generate Bounds to automatically generate the bounding box and projection.
Press Save to save the new layer group.

5.4. Data 81

GeoServer User Manual, Release 2.5.x

Figure 5.46: Openlayers preview of the layer group “tasmania”

Figure 5.47: Buttons to add or remove a layer group

Figure 5.48: New layer group dialog

82 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.49: New layer group configuration page

Remove a layer group

To remove a layer group, click the check box next to the layer group. Multiple layer groups can be selected
for batch removal. Click the remove selected layer group(s) link. You will be asked to confirm or cancel the
deletion. Selecting OK successfully removes the layer group.

5.4.5 Styles

Styles render, or make available, geospatial data. Styles for GeoServer are written in Styled Layer Descriptor
(SLD), a subset of XML. Please see the section on Styling for more information on working with styles.

On the Styles page, you can register or create a new style, edit an existing style, or delete remove a style.

Edit Styles

The Style Editor page presents options for configuring a style’s name and code. SLD names are specified at
the top in the name field. Typing or pasting of SLD code can be done in one of two modes. The first mode
is an embedded EditArea a rich editor. The second mode is an unformatted text editor. Check the Toggle
Editor to switch between modes.

The rich editor is designed for text formatting, search and replace, line numbering, and real-time syntax
highlighting. You can also switch view to full-screen mode for a larger editing area.

5.4. Data 83

http://www.cdolivet.com/index.php?page=editArea

GeoServer User Manual, Release 2.5.x

Figure 5.50: Removing a layer group

Figure 5.51: Styles page

84 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.52: Rich text editor

Figure 5.53: Plain text editor

5.4. Data 85

GeoServer User Manual, Release 2.5.x

Button Description

search

go to line

fullscreen mode

undo

redo

toggle syntax highlight on/off

reset highlight (if desynchronized from text)

about

To confirm that the SLD code is fully compliant with the SLD schema, click the Validate button. A message
box will confirm whether the style contains validation errors.

Note: GeoServer will sometimes render styles that fail validation, but this is not recommended.

Figure 5.54: No validation errors

Figure 5.55: Validation error message

Add a Style

The buttons for adding and removing a style can be found at the top of the Styles page.

Figure 5.56: Adding or removing a style

To add a new layer group, select the Add a new style button. You will be redirected to an editor page. Enter
a name for the style. The editor page provides two options for submitting an SLD. You can paste the SLD
directly into the editor, or you can select and upload a local file that contains the SLD.

Once a style is successfully submitted, you will be redirected to the main Styles page where the new style
will be listed.

Remove a Style

To remove a style, select the check box next to the style. Multiple layer groups can be selected for batch
removal. Click the Remove selected style(s) link at the top of the page. You will be asked to confirm or cancel
the deletion. Clicking OK removes the layer group.

86 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.57: Uploading an SLD file from your local computer

Figure 5.58: Confirmation prompt for removing styles

5.5 Services

GeoServer serves data using protocols established by the Open Geospatial Consortium (OGC). Web Cov-
erage Service (WCS) supports requests for coverage data (rasters), Web Feature Service (WFS) supports
requests of geographical feature data (vectors), and Web Map Service (WMS) allows for requests of images
generated from geographical data.

This section of the Web Administration Interface describes how to configure these services for GeoServer.

5.5.1 WCS

The Web Coverage Service (WCS) provides few options for changing coverage functionality. While various
elements can be configured for WFS and WMS requests, WCS allows only metadata information to be
edited. This metadata information, entitled Service Metadata, is common to WCS, WFS and WMS requests.

Service Metadata

WCS, WFS, and WMS use common metadata definitions. These nine elements are described in the follow-
ing table. Though these field types are the same regardless of service, their values are not shared. As such,
parameter definitions below refer to the respective service. For example, “Enable” on the WFS Service page,
enables WFS service requests and has no effect on WCS or WMS requests.

5.5. Services 87

http://www.opengeospatial.org/

GeoServer User Manual, Release 2.5.x

Figure 5.59: WCS Configuration page

Field Description
Enabled Specifies whether the respective services–WCS, WFS or WMS–should be enabled or

disabled. When disabled, the respective service requests will not be processed.
Strict CITE
compliance

When selected, enforces strict OGC Compliance and Interoperability Testing Initiative
(CITE) conformance. Recommended for use when running conformance tests.

Maintainer Name of the maintaining body
Online
Resource

Defines the top-level HTTP URL of the service. Typically the Online Resource is the
URL of the service “home page.” (Required)|

Title A human-readable title to briefly identify this service in menus to clients (required)
Abstract Provides a descriptive narrative with more information about the service
Fees Indicates any fees imposed by the service provider for usage of the service. The

keyword NONE is reserved to mean no fees and fits most cases.
Access
Constraints

Describes any constraints imposed by the service provider on the service. The keyword
NONE is reserved to indicate no access constraints are imposed and fits most cases.

Keywords List of short words associated with the service to aid in cataloging and searching

5.5.2 WFS

The Web Feature Service (WFS) page supports the configuration of features, service levels, and GML output.

Service Metadata

See the section on Service Metadata.

88 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.60: WFS configuration options

Features

The Open Geospatial Consortium (OGC) Web Feature Service (WFS) is a protocol for serving geographic
features across the Web. Feature information that is encoded and transported using WFS includes both
feature geometry and feature attribute values. Basic Web Feature Service (WFS) supports feature query and
retrieval. Feature limits and bounding can be configured on the WFS page.

Maximum number of features—Maximum number of features sets the global feature limit that a WFS
GetFeature operation should generate, regardless of the actual number of query hits. A WFS request can
potentially contain a large dataset that is impractical to download to a client, and/or too large for a client’s
renderer. Maximum feature limits are also available for feature types. The default number is 1000000.

Return bounding box—Includes in the GetFeature GML output, an auto-calculated bounds element on
each feature type. Not typically enabled, as including bounding box takes up extra bandwidth.

Service Levels

GeoServer is compliant with the full “Transactional Web Feature Server” (WFS-T) level of service as defined
by the OGC. Specifying the WFS service level limits the capabilities of Geoserver while still remaining
compliant. The WFS Service Level is an integer bitmask that indicates what WFS operations are “turned
on.” It defines the available operations and content at a service instance

Basic—Basic service levels provides facilities for searching and retrieving feature data with the GetCapa-
bilities, DescribeFeatureType and GetFeature operations. It is compliant with the OGC basic Web Feature
Service. This is considered a READ-ONLY web feature service.

Transactional—In addition to all basic WFS operations, transactional service level supports transaction
requests. A transaction request facilities the creation, deletion, and updating of geographic features in
conformance with the OGC Transactional Web Feature Service (WFS-T).

Complete—Includes the LockFeature support to the suite of transactional level operations. LockFeature op-
erations help resolve links between related resources by processing lock requests on one or more instances
of a feature type.

5.5. Services 89

http://www.opengeospatial.org/

GeoServer User Manual, Release 2.5.x

GML

Geography Markup Language (GML) is the XML-based specification defined by the Open Geospatial Con-
sortium (OGC) to express geographical features. GML serves as a modeling language for geographic sys-
tems as well as an open interchange format for geographic transactions on the Internet.

The older GML standard, GML 2 encodes geographic information, including both spatial and non-spatial
properties. GML3 extends GML2 support to 3D shapes (surfaces and solids) as well as other advanced
facilities. GML3 is modular superset of GML2 that simplifies and minimizes the implementation size by
allowing users to select out necessary parts. Additions in GML3 include support for complex geometries,
spatial and temporal reference systems, topology, units of measure, metadata, gridded data, and default
styles for feature and coverage visualization. GML3 is almost entirely backwards compatible with GML2.

WFS 1.1.0 requests return GML3 as the default GML and style a Spatial Reference System (SRS) is in the
URN format. Meanwhile WFS 1.0.0 requests return GML2 as default and specify SRS in the XML or nor-
mal format. These formats effect the longitude/latitude (x/y) order of the returned data and are further
described below.

Normal—Returns the typical EPSG number, EPSG:XXXX. This formats the geographic coordinates in lon-
gitude/latitude (x/y) order.

XML—Returns a URL that identifies each EPSG code: http://www.opengis.net/gml/srs/epsg.xml#XXXX.
This formats the geographic coordinates in longitude/latitude (x/y) order.

URN—(WFS 1.1.1 only) Returns the colon delimited SRS formatting: urn:x-ogc:def:crs:EPSG:XXXX.
This formats data in the traditional axis order for geographic and cartographic systems—latitude/longitude
(y/x).

5.5.3 WMS

The Web Map Service (WMS) page supports the configuration of raster rendering and SVG options.

Figure 5.61: WMS configuration options

Service Metadata

See the section on Service Metadata.

90 Chapter 5. Web Administration Interface

http://portal.opengeospatial.org/files/?artifact_id=11339

GeoServer User Manual, Release 2.5.x

Raster Rendering Options

The Web Map Service Interface Standard (WMS) provides a simple way to request and serve geo-registered
map images. During pan and zoom operations, WMS requests generate map images through a variety
of raster rendering processes. Such image manipulation is generally called resampling, interpolation, or
down-sampling. GeoServer supports three resampling methods that determine how cell values of a raster
are outputted. These sampling methods—Nearest Neighbor, Bilinear Interpolation and Bicubic—are avail-
able on the Default Interpolation menu.

Nearest Neighbor—Uses the center of nearest input cell to determine the value of the output cell. Original
values are retained and no new averages are created. Because image values stay exactly the same, rendering
is fast but possibly pixelated from sharp edge detail. Nearest neighbor interpolation is recommended for
categorical data such as land use classification.

Bilinear—Determines the value of the output cell based by sampling the value of the four nearest cells
by linear weighting. The closer an input cell, the higher its influence of on the output cell value. Since
output values may differ from nearest input, bilinear interpolation is recommended for continuous data
like elevation and raw slope values. Bilinear interpolation takes about five times as long as nearest neighbor
interpolation.

Bicubic—Looks at the sixteen nearest cells and fits a smooth curve through the points to find the output
value. Bicubic interpolation may both change the input value as well as place the output value outside of
the range of input values. Bicubic interpolation is recommended for smoothing continuous data, but this
incurs a processing performance overhead.

Watermark Settings

Watermarking is the process of embedding an image into a map. Watermarks are usually used for branding,
copyright, and security measures. Watermarks are configured in the WMS watermarks setting section.

Enable Watermark—Turns on watermarking. When selected, all maps will render with the same water-
mark. It is not currently possible to specify watermarking on a per-layer or per-feature basis.

Watermark URL—Location of the graphic for the watermark. The graphic can be referenced as an ab-
solute path (e.g., C:GeoServerwatermark.png), a relative one inside GeoServer’s data directory (e.g.,
watermark.png), or a URL (e.g., http://www.example.com/images/watermark.png).

Each of these methods have their own advantages and disadvantages. When using an absolute or relative
link, GeoServer keeps a cached copy of the graphic in memory, and won’t continually link to the original
file. This means that if the original file is subsequently deleted, GeoServer won’t register it missing until
the watermark settings are edited. Using a URL might seem more convenient, but it is more I/O intensive.
GeoServer will load the watermark image for every WMS request. Also, should the URL cease to be valid,
the layer will not properly display.

Watermark Transparency–Determines the opacity level of the watermark. Numbers range between 0
(opaque) and 100 (fully invisible).

Watermark Position—Specifies the position of the watermark relative to the WMS request. The nine op-
tions indicate which side and corner to place the graphic (top-left, top-center, top-right, etc). The default
watermark position is bottom-right. Note that the watermark will always be displayed flush with the
boundary. If extra space is required, the graphic itself needs to change.

Because each WMS request renders the watermark, a single tiled map positions one watermark relative
to the view window while a tiled map positions the watermark for each tile. The only layer specific as-
pect of watermarking occurs because a single tile map is one WMS request, whereas a tiled map contains
many WMS requests. (The latter watermark display resembles Google Maps faint copyright notice in their
Satellite imagery.) The following three examples demonstrate watermark position, transparency and tiling
display, respectively.

5.5. Services 91

GeoServer User Manual, Release 2.5.x

Figure 5.62: Single tile watermark (aligned top-right, transparency=0)

Figure 5.63: Single tile watermark (aligned top-right, transparency=90)

92 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.64: Tiled watermark (aligned top-right, transparency=90)

SVG Options

The GeoServer WMS supports SVG (Scalable Vector Graphics) as an output format. GeoServer currently
supports two SVG renderers, available from the SVG producer menu.

1. Simple—Simple SVG renderer. It has limited support for SLD styling, but is very fast.

2. Batik—Batik renderer (as it uses the Batik SVG Framework). It has full support for SLD styling, but is
slower.

Enable Anti-aliasing Anti-aliasing is a technique for making edges appear smoother by filling in the edges
of an object with pixels that are between the object’s color and the background color. Anti-aliasing creates
the illusion of smoother lines and smoother selections. Turning on anti-aliasing will generally make maps
look nicer, but will increase the size of the images, and will take longer to return. If you are overlaying the
anti-aliased map on top of others, beware of using transparencies as the anti-aliasing process mixes with
the colors behind and can create a “halo” effect.

5.6 Tile Caching

This section of the Web Administration Interface describes how to configure the tile caching options for
GeoServer. GeoServer uses GeoWebCache to provide direct and integrated tile caching, and can dramati-
cally increase your server’s responsiveness and reliability.

For more information on GeoServer’s integrated tile cache, please see the section on Caching with GeoWeb-
Cache.

The pages in this menu can be accessed on the left side of the screen under the heading Tile Caching.

5.6.1 Tile Layers

This page shows a listing of all of the layers known to the integrated GeoWebCache. It is similar to the Layer
Preview for GeoWebCache, with many of the same options.

Note: There is also a link to the GeoWebCache standalone demo page <webadmin_tilecaching_demopage>.

5.6. Tile Caching 93

GeoServer User Manual, Release 2.5.x

Figure 5.65: Tile Caching menu

Layer information

For each layer cached by GeoWebCache, the following information is available.

Disk Quota

The maximum amount of disk space that can be used for this layer. By default, this will be set to N/A
(unbounded) unless Disk Quotas are enabled.

Disk Used

The current disk space being used by tiles for this particular layer.

Enabled

Indicates whether tile caching is enabled for this layer. It is possible to have a layer definition here but to
not have tile caching enabled (set in the layer properties).

94 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Preview

Similar to Layer Preview, this will generate a simple OpenLayers application populated with tiles from one
of the available gridset/image format combinations. Select the desired option from the menu to view in
OpenLayers.

Seed/Truncate

Opens the GeoWebCache page for automatically seeding and truncating the tile cache. Use this if you want
to pre-populate some of your cache.

Empty

Will remove all saved tiles from the cache. This is identical to a full truncate operation for the layer.

Add or remove cached layers

The list of layers displayed on this page is typically the same as, or similar to, the full list of layers known
to GeoServer. However, it may not be desirable to have every layer published in GeoServer have a cached
layer component. In this case, simply select the box next to the layer to remove, and click Remove selected
cached layers. The layer will be removed from GeoWebCache, and the disk cache for this layer will be entirely
removed.

Warning: Deleting the tile cache cannot be undone.

Figure 5.66: Removing a cached layer

To add in a layer from GeoServer (if it wasn’t set up to be added automatically), click the Add a new cached
layer link.

You have two options for layer configuration. The first option is to load the layer using the default (global)
settings. To do this, select the layer you wish to start caching, and click the Configure selected layers with
caching defaults link. The second option is to configure the caching parameters manually, via the layer con-
figuration pages. To do this, just click the layer name itself.

5.6.2 Demo page

In addition to the Tile Layers page, there is also a demo page where you can view configured layers, reload
the configuration (when changing settings or adding new layers), and seed or refresh the existing cache on

5.6. Tile Caching 95

GeoServer User Manual, Release 2.5.x

Figure 5.67: Adding a new cached layer

a per-layer basis.

As this interface is part of the standalone GeoWebCache, some of the functionality here is duplicated from
the Tile Layers page.

Figure 5.68: Built-in demo page

Viewing

To view the demo page, append /gwc/demo to the address of your GeoServer instance. For example, if
your GeoServer is at the following address:

http://localhost:8080/geoserver

The GeoWebCache demo page is accessible here:

http://localhost:8080/geoserver/gwc/demo

If there is a problem loading this page, verify the steps on the Using GeoWebCache page have been carried
out successfully.

96 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Reload configuration

The demo page contains a list of every layer that GeoWebCache is aware of. This is typically (though not
necessarily) identical to the list of layers as published in the GeoServer WMS capabilities document. If con-
figuration changes are made to GeoServer, GeoWebCache will not automatically become aware of them.
To ensure that GeoWebCache is using the latest configuration information, click the Reload Configuration
button. Reloading the configuration will trigger authentication to GeoServer, and will require an admin-
istration username and password. Use the same username and password that you would use to log on to
the Web Administration Interface. (See Interface basics for more information.) After a successful logon, the
number of layers found and loaded will be displayed.

Figure 5.69: Reloading the configuration

Layers and output formats

For each layer that GeoWebCache serves, links are typically available for a number of different projections
and output formats. By default, OpenLayers applications are available using image formats of PNG, PNG8,
GIF, and JPEG in both EPSG:4326 (standard lat/lon) and EPSG:900913 (used in Google Maps) projections.
In addition, KML output is available (EPSG:4326 only) using the same image formats, plus vector data
(“kml”).

Also on the list is an option to seed the layers (Seed this layer). More on this option below.

Seeding

You can configure seeding processes via the Web Administration Interface. See the Tile Layers page for more
information.

It is also possible to configure seeding process via the Demo page. The page contains a link next to each
layer entitled Seed this layer. This link will trigger authentication with the GeoServer configuration. Use the
same username and password that you would use to log on to the Web Administration Interface. (See Interface
basics for more information.) After a successful logon, a new page shows up with seeding options.

The seeding options page contains various parameters for configuring the way that the layer is seeded.

5.6. Tile Caching 97

GeoServer User Manual, Release 2.5.x

Option Description
Number of
threads to
use

Possible values are between 1 and 16.

Type of
operation

Sets the operation. There are three possible values: Seed (creates tiles, but does not
overwrite existing ones), Reseed (like Seed, but overwrites existing tiles) and
Truncate (deletes all tiles within the given parameters)

SRS Specifies the projection to use when creating tiles (default values are EPSG:4326
and EPSG:900913)

Format Sets the image format of the tiles. Can be application/vnd.google-earth.kml+xml
(Google Earth KML), image/gif (GIF), image/jpeg (JPEG), image/png (24 bit PNG),
and image/png8 (8 bit PNG)

Zoom start Sets the minimum zoom level. Lower values indicate map views that are more
zoomed out. When seeding, GeoWebCache will only create tiles for those zoom
levels inclusive of this value and Zoom stop.

Zoom stop Sets the maximum zoom level. Higher values indicate map views that are more
zoomed in. When seeding, GeoWebCache will only create tiles for those zoom
levels inclusive of this value and Zoom start.

Bounding box (optional) Allows seeding to occur over a specified extent, instead of the full extent
of the layer. This is useful if your layer contains data over a large area, but the
application will only request tiles from a subset of that area. The four boxes
correspond to Xmin, Ymin, Xmax, and Ymax.

Warning: Currently there is no progress bar to inform you of the time required to perform the operation,
nor is there any intelligent handling of disk space. In short, the process may take a very long time, and
the cache may fill up your disk. You may wish to set a Disk quota before running a seed job.

5.6.3 Caching defaults

The Caching Defaults page shows the global configuration options for the tile caching functionality in
GeoServer, an embedded GeoWebCache.

Note: For more information about this embedded version, please see the section on Caching with GeoWeb-
Cache.

GWC Provided Services

In addition to the GeoServer endpoints, GeoWebCache provides other endpoints for OGC services. For
example, the GeoServer WMS endpoint is available at:

http://GEOSERVER_URL/wms?...

The GeoWebCache WMS endpoint is:

http://GEOSERVER_URL/gwc/service/wms?...

The following settings describe the different services that can be enabled with GeoWebCache.

98 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.70: Provided services

Enable direct integration with GeoServer WMS

Direct integration allows WMS requests served through GeoServer to be cached as if they were received and
processed by GeoWebCache. This provides all the advantages of using a tile server while still employing
the more-flexible GeoServer WMS as a fallback. See the section on Using GeoWebCache for more details
about this feature.

With direct integration, tile caching is enabled for all standard WMS requests that contain the tiled=true
parameter and conform to all required parameters.

This setting is disabled by default. When enabling this option, it is a good idea to also turn on Disk Quotas
as well, to prevent unbounded growth of the stored tiles.

Enable WMS-C Service

Enables the Cached Web Map Service (WMS-C) service. When this setting is enabled, GeoWebCache will
respond to its own WMS-C endpoint:

http://GEOSERVER_URL/gwc/service/wms?SERVICE=WMS&VERSION=1.1.1&TILED=true&...

When the service is disabled, calls to the capabilities document will return a Service is disabled
message.

Enable TMS Service

Enables the Tiled Map Service (TMS) endpoint in GeoWebCache. With the TMS service, GeoWebCache will
respond to its own TMS endpoint:

http://GEOSERVER/URL/gwc/service/tms/1.0.0

When the service is disabled, calls to the capabilities document will return a Service is disabled
message.

Enable WMTS Service

Enables the Web Map Tiled Service (WMTS) endpoint in GeoWebCache. When this setting is enabled,
GeoWebCache will respond to its own WMTS endpoint:

http://GEOSERVER/URL/gwc/service/wmts?...

5.6. Tile Caching 99

GeoServer User Manual, Release 2.5.x

When the service is disabled, calls to the capabilities document will return a Service is disabled
message.

Enable Data Security

Enables the Geoserver Data Security in the embedded GeoWebCache.

Default Caching Options for GeoServer Layers

This section describes the configuration of the various defaults and other global options for the tile cache
in GeoServer.

Figure 5.71: Default caching options

Automatically configure a GeoWebCache layer for each new layer or layer group

This setting, enabled by default, determines how layers in GeoServer are handled via the embedded Ge-
oWebCache. When this setting is enabled, an entry in the GeoWebCache layer listing will be created when-
ever a new layer or layer group is published in GeoServer. Use this setting to keep the GeoWebCache
catalog in sync. (This is enabled by default.)

Automatically cache non-default styles

By default, only requests using the default style for a given layer will be cached. When this setting is
enabled, all requests for a given layer, even those that use a non-standard style will be cached. Disabling
this may be useful in situations where disk space is an issue, or when only one default style is important.

Default metatile size

A metatile is several tiles combined into a larger one. This larger metatile is generated and then subdivided
before being served back (and cached) as standard tiles. The advantage of using metatiling is in situations
where a label or geometry lies on a boundary of a tile, which may be truncated or altered. With metatiling,
these tile edge issues are greatly reduced.

Moreover, with metatiling, the overall time it takes to seed the cache is reduced in most cases, when com-
pared with rendering a full map with single tiles. In fact, using larger metatiling factors is a good way to
reduce the time spent in seeding the cache.

The disadvantage of metatiling is that at large sizes, memory consumption can be an issue.

The size of the default metatile can be adjusted here. By default, GeoServer sets a metatile size of 4x4, which
strikes a balance between performance, memory usage, and rendering accuracy.

100 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Default gutter size

The gutter size sets the amount of extra space (in pixels) used when generating a tile. Use this in conjunction
with metatiles to reduce problems with labels and features not being rendered incorrectly due to being on
a tile boundary.

Default Cache Formats

This setting determines the default image formats that can be cached when tiled requests are made. There
are four image formats that can be used when saving tiles:

• PNG (24-bit PNG)

• PNG8 (8-bit PNG)

• JPEG

• GIF

The default settings are subdivided into vector layers, raster layers, and layer groups. You may select any
of the above four formats for each of the three types of layers. Any requests that fall outside of these
layer/format combinations will not be cached if sent through GeoServer, and will return an error if sent to
the GeoWebCache endpoints.

These defaults can be overwritten on a per-layer basis when editing the layer properties.

Figure 5.72: Default image formats

Default Cached Gridsets

This section shows the gridsets that will be automatically configured for cached layers. While there are
some pre-configured gridsets available, only two are enabled by default. These correspond to the most
common and universal cases:

• EPSG:4326 (geographic) with 22 maximum zoom levels and 256x256 pixel tiles

• EPSG:900913 (spherical Mercator) with 31 maximum zoom levels and 256x256 pixel tiles

Figure 5.73: Default gridsets

5.6. Tile Caching 101

GeoServer User Manual, Release 2.5.x

To add a pre-existing grid set, select it from the Add default grid set menu, and click the Add icon (green
circle with plus sign).

Figure 5.74: Adding an existing gridset to the list of defaults

These definitions are described in more detail on the Gridsets page.

5.6.4 Gridsets

A gridset defines a spatial reference system, bounding box (extent), a list of zoom levels (resolutions or scale
denominators), and tile dimensions. Tile requests must conform to the gridset matrix, otherwise caching
will not occur.

This page allows you to edit existing saved gridsets or create new ones. There are five preconfuigred
gridsets, all in one of two coordinate reference systems: EPSG:4326 and EPSG:900913. For additional CRS
support, new gridsets can be created. Another reason to create a new gridset would be to set a different tile
size or different number of zoom levels.

Figure 5.75: Gridsets menu

Creating a new gridset

To create a new gridset, click Create new gridset. You will then be asked to enter a range of parameters.

102 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.76: Creating a new gridset

Name

The short name of the new gridset.

Description

Metadata on the gridset.

Coordinate Reference System

The Coordinate Reference System (CRS) to use in the gridset. You can select from any CRS that GeoServer
recognizes. After selection, both the units (meters, feet, degrees, etc.) and the number of meters per unit
will be displayed.

Gridset bounds

Sets the maximum extent for the gridset. Typically this is set to be the maximum extent of the CRS used,
but a smaller value can be substituted if desired. To populate the max extent in the fields, click Compute
from maximum extent of CRS.

Tile width and height

Sets the tile dimensions. Default is 256x256 pixels. The tile dimensions can be anything from 16 to 2048
pixels. In addition, the tiles need not be square.

5.6. Tile Caching 103

GeoServer User Manual, Release 2.5.x

Tile matrix set

The tile matrix set (or tile pyramid) is a list of zoom levels containing ever increasing amounts of tiles. This
three dimensional collection of tile “slots” creates the framework where actual image tiles will be saved.
You can define the tile matrix based on resolutions or scale denominators.

Click Add zoom level to generate the first zoom level. The parameters will be automatically configured such
that the full extent of will be contained by a single pixel’s height. The number of pixels in a given zoom
level will be displayed, along with the Pixel Size, Scale, and an optional Name, where you can give a name
to each zoom level if desired.

Typically each additional zoom level is twice as large in each dimension, and so contains four times as many
tiles as the previous zoom level. The actual values will be populated automatically during subsequent
clicking of the Add zoom level link. These defaults are usually sufficient, and you need only determine the
maximum number of zoom levels desired for this gridset.

When finished, click Save. Before you will be able to use this new gridset with a layer, you will need to add
this gridset to the layer’s list of available gridsets. This is done on an individual layer’s properties page. You
can also add this gridset to the default list on the Caching defaults page.

Figure 5.77: Tile matrix set

Editing a gridset

Click an existing gridset to open it for editing. Please note that the built-in gridsets cannot be edited. They
can, however, be copied.

Copying a gridset

As there are many configuration options for a gridset, it is often more convenient to copy an existing gridset.
For any of the existing gridsets, click the Create a copy link to copy the gridset information to a new gridset.

Removing a gridset

To remove a gridset, select the check box next to the gridset or gridsets, and click Remove selected gridsets.

Warning: Removing a gridset definition will remove not only the gridset definition, but also any tiles
on any layers generated with this gridset.

104 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.78: Editing a gridset

Figure 5.79: This gridset is read-only

Figure 5.80: Removing a gridset

5.6. Tile Caching 105

GeoServer User Manual, Release 2.5.x

5.6.5 Disk Quotas

The Disk Quotas page manages the disk usage for cached tiles and allows you to set the global disk quota.
Individual layer quotas can be set in the layer’s properties page.

By default, disk usage for cached tiles is unbounded. However, this can cause disk capacity issues, espe-
cially when using Direct WMS integration (see Disk Quotas for more on this). Setting a disk quota establishes
disk usage limits.

When finished making any changes, remember to click Submit.

Figure 5.81: Disk quota

Enable disk quota

When enabled, the disk quota will be set according to the options listed below. The setting is disabled by
default.

Disk block size

This setting determines how the tile cache calculates disk usage. The value for this setting should be equiv-
alent to the disk block size of the storage medium where the cache is located. The default block size is 4096
bytes.

Disk quota check frequency

This setting determines how often the cache is polled for any overage. Smaller values (more frequent
polling) will slightly increase disk activity, but larger values (less frequent polling) may cause the disk
quota to be temporarily exceeded. The default is 10 seconds.

106 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Maximum tile cache size

The maximum size for the cache. When this value is exceeded and the cache is polled, tiles will be removed
according to the policy. Note that the unit options are mebibytes (MiB) (approx. 1.05MB), gibibytes (GiB)
(approx. 1.07GB), and tebibytes (TiB) (approx. 1.10TB). Default is 500 MiB.

The graphic below this setting illustrates the size of the cache relative to the disk quota.

Tile removal policy

When the disk quota is exceeded, this policy determines how the tiles to be deleted are identified. Options
are Least Frequently Used (removes tiles based on how often the tile was accessed) or Least Recently Used
(removes tiles based on date of last access). The optimum configuration is dependent on your data and
server usage.

5.7 Security

GeoServer has a robust security subsystem, modeled on Spring Security. Most of the security features are
available through the Web Administration Interface. This section describes how to configure GeoServer secu-
rity.

5.7.1 Settings

The Settings page controls the global GeoServer security settings.

Figure 5.82: Security Settings page

Active role service

This option sets the active role service (provides information about roles). Role services are managed on the
Users, Groups, Roles page. There can be only one active role service at one time.

5.7. Security 107

http://static.springsource.org/spring-security/site/

GeoServer User Manual, Release 2.5.x

Encryption

The GeoServer user interface (UI) can sometimes expose parameters in plain text inside the URLs. As a
result, it may be desirable to encrypt the URL parameters. To enable encryption, select Encrypt web admin
URL parameters. This will configure GeoServer to uses a PBE-based Password encryption.

For example, with this feature enabled, the page:

http://GEOSERVER/web/?wicket:bookmarkablePage=:org.geoserver.security.web.SecuritySettingsPage

would now be found at the following URL:

http://GEOSERVER/web/?x=hrTNYMcF3OY7u4NdyYnRanL6a1PxMdLxTZcY5xK5ZXyi617EFEFCagMwHBWhrlg*ujTOyd17DLSn0NO2JKO1Dw

Password encryption

This setting allows you to select the type of Password encryption used for passwords. The options are Plain
text, Weak PBE, or Strong PBE.

If Strong PBE is not available as part of the JVM, a warning will display and the option will be disabled.
To enable Strong PBE, you must install external policy JARs that support this form of encryption. See the
section on Password encryption for more details about these settings.

Figure 5.83: Warning if Strong PBE is not available

5.7.2 Authentication

This page manages the authentication options, including authentication providers and the authentication
chain.

Anonymous authentication

By default, GeoServer will allow anonymous access to the Web Administration Interface. Without authentica-
tion, users will still be able to view the Layer Preview, capabilities documents, and basic GeoServer details.
Anonymous access can be disabled by clearing the Allow anonymous authentication check box. Anonymous
users navigating to the GeoServer page will get an HTTP 401 status code, which typically results in a
browser-based request for credentials.

Note: Read more about Authenticating to the Web Admin Interface.

Figure 5.84: Anonymous authentication checkbox

108 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Authentication providers

This section manages the Authentication providers (adding, removing, and editing). The default authenti-
cation provider uses basic username/password authentication. JDBC and LDAP authentication can also be
used.

Click Add new to create a new provider. Click an existing provider to edit its parameters.

Figure 5.85: List of authentication providers

Username/password provider

The default new authentication provider uses a user/group service for authentication.

Figure 5.86: Creating a new authentication provider with a username and password

Option Description
Name Name of the provider
User Group
Service

Name of the user/group service associated with this provider. Can be any one of the
active user/group services.

JDBC provider

The configuration options for the JDBC authentication provider are illustrated below.

5.7. Security 109

GeoServer User Manual, Release 2.5.x

Figure 5.87: Configuring the JDBC authentication provider

Option Description
Name Name of the JDBC connection in GeoServer
User Group
Service

Name of the user/group service to use to load user information after the user is
authenticated

Driver class
name

JDBC driver to use for the database connection

Connection URL JDBC URL to use when creating the database connection

LDAP provider

The following illustration shows the configuration options for the LDAP authentication provider. The
default option is to use LDAP groups for role assignment, but there is also an option to use a user/group
service for role assignment. Depending on whether this option is selected, the page itself will have different
options.

110 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.88: Configuring the LDAP authentication provider using LDAP groups for role assignment

Figure 5.89: Configuring the LDAP authentication provider using user/group service for authentication

5.7. Security 111

GeoServer User Manual, Release 2.5.x

Option Description
Name Name of the LDAP connection in GeoServer
Server URL URL for the LDAP server connection. It must include the protocol, host, and port,

as well as the “distinguished name” (DN) for the root of the LDAP tree.
TLS Enables a STARTTLS connection. (See the section on Secure LDAP connections.)
User DN pattern Search pattern to use to match the DN of the user in the LDAP database. The

pattern should contain the placeholder {0} which is injected with the uid of the
user. Example: uid={0},ou=people. The root DN specified as port of the
Server URL is automatically appended.

User Filter LDAP Filter used to extract User data from LDAP database. Used alternatively to
User DN pattern and combined with User Format to separate bind and user data
extraction handling. Example: (userPrincipalName={0}). Gets user data
searching for a single record matching the filter. This may contain two
placeholder values: {0}, the full DN of the user, for example
uid=bob,ou=people,dc=acme,dc=com {1}, the uid portion of the full DN,
for example bob.

User Format String formatter used to build username used for binding. Used alternatively to
User DN pattern and combined with User Filter to separate bind and user data
extraction handling. Example: {0}@domain. Binds user with the username built
applying the format. This may contain one placeholder: {0}, the username, for
example bob

Use LDAP groups
for authorization

Specifies whether to use LDAP groups for role assignment

Bind before group
search

Specifies whether to bind to LDAP server with the user credentials before doing
group search

Group search base Relative name of the node in the tree to use as the base for LDAP groups.
Example: ou=groups. The root DN specified as port of the Server URL is
automatically appended. Only applicable when the Use LDAP groups for
authorization(parameter is **checked*.

Group search filter Search pattern for locating the LDAP groups a user belongs to. This may contain
two placeholder values: {0}, the full DN of the user, for example
uid=bob,ou=people,dc=acme,dc=com {1}, the uid portion of the full DN,
for example bob. Only applicable when the Use LDAP groups for authorization(
parameter is **checked*.

Admin Group Name of the group to be mapped to Administrator role (defaults to
ADMINISTRATOR). Example: ADMIN. Adds the role ROLE_ADMINISTRATOR
if the user belongs to a group named ADMIN (case insensitive)

Group Admin
Group

Name of the group to be mapped to Group Administrator role (defaults to
GROUP_ADMIN). Example: GROUPADMIN. Adds the role
ROLE_GROUP_ADMIN if the user belongs to a group named GROUPADMIN
(case insensitive)

User Group
Service

The user/group service to use for role assignment. Only applicable when the Use
LDAP groups for authorization parameter is cleared.

Authentication chain

This section selects the authentication chain. Currently, only one default authentication chain is available.
For further information about the default chain, please refer to Authentication chain.

5.7.3 Passwords

This page configures the various options related to Passwords, the Master password, and Password policies.

112 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.90: Selecting the authentication chain

Note: User passwords may be changed in the Users dialog box accessed from the Users, Groups, Roles page.

Active master password provider

This option sets the active master password provider, via a list of all available master password providers.

Figure 5.91: Active master password provider

To change the master password click the Change password link.

Figure 5.92: Changing the master password

Master Password Providers

This section provides the options for adding, removing, and editing master password providers.

5.7. Security 113

GeoServer User Manual, Release 2.5.x

Figure 5.93: Master password provider list

Password policies

This section configures the various Password policies available to users in GeoServer. New password policies
can be added or renamed, and existing policies edited or removed.

By default there are two password policies in effect, default and master. The default password policy,
intended for most GeoServer users, does not have any active password constraints. The master password
policy, intended for the Root account, specifies a minimum password length of eight characters. Password
policies are applied to users via the user/group service.

Figure 5.94: List of password policies

Clicking an existing policy enables editing, while clicking the Add new button will create a new password
policy.

5.7.4 Users, Groups, Roles

This section provides the configuration options for User/group services and Role services. In addition, users,
groups, and roles themselves and can be added, edited, or removed. A great deal of configuration can be
accomplished in this section and related pages.

User Group Services

In this menu, user/group services can be added, removed, or edited. By default, there is one user/group
service in GeoServer, which is XML-based. It is encrypted with Weak PBE and uses the default password
policy. It is also possible to have a user/group service based on JDBC, with or without JNDI.

Clicking an existing user/group service will enable editing, while clicking the Add new link will configure
a new user/group service.

There are three tabs for configuration: Settings, Users, and Groups.

114 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.95: Creating a new password policy

Figure 5.96: User/group services

5.7. Security 115

GeoServer User Manual, Release 2.5.x

Note: When creating a new user/group service, the form filled out initially can be found under the Settings
tab.

Add new XML user/group service

To add a new XML user/group service, click the Add new link. XML is the default option. The following
figure shows the configuration options for an XML user/group service.

Figure 5.97: Adding an XML user/group service

Option Description
Name The name of the user/group service
Password
encryption

Sets the type of Password encryption. Options are Plain text, Weak PBE, Strong PBE, and
Digest.

Password
policy

Sets the password policy. Options are any active password policies as set in the
Passwords section.

XML filename Name of the file that will contain the user and group information. Default is
users.xml in the security/usergroup/<name_of_usergroupservice>
directory.

Enable
schema
validation

If selected, forces schema validation to occur every time the XML file is read. This
option is useful when editing the XML file by hand.

File reload
interval

Defines the frequency (in milliseconds) in which GeoServer will check for changes to
the XML file. If the file is found to have been modified, GeoServer will recreate the
user/group database based on the current state of the file. This value is meant to be
set in cases where the XML file contents might change “out of process” and not
directly through the web admin interface. The value is specified in milliseconds. A
value of 0 disables any checking of the file.

116 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Add new JDBC user/group service

To add a new XML user/group service, click the Add new link, and then the JDBC option at the top of the
following form. The following figure shows the configuration options for a JDBC user/group service.

Figure 5.98: Adding a user/group service via JDBC

5.7. Security 117

GeoServer User Manual, Release 2.5.x

Option Description
Name Name of the JDBC user/group service in GeoServer
Password
encryption

The method to used to encrypt user passwords

Password policy The policy to use to enforce constraints on user passwords
JNDI When unchecked, specifies a direct connection to the database. When checked,

specifies an existing connection located through JNDI.
Driver class name JDBC driver to use for the database connection
Connection URL Specifies the JDBC URL to use when creating the database connection
Username Username to use when connecting to the database
Password Password to use when connecting to the database
Create database
tables

Specifies whether to create all the necessary tables in the underlying database

Data Definition
Language (DDL) file

Specifies a custom DDL file to use for creating tables in the underlying
database, for cases where the default DDL statements fail on the given
database. If left blank, internal defaults are used.

Data Manipulation
Language (DML) file

Specifies a custom DML file to use for accessing tables in the underlying
database, for cases where the default DML statements fail on the given
database. If left blank, internal defaults are used.

In addition to the parameters listed above, the following additional parameter will apply when the JNDI
flag is set.

Figure 5.99: Adding a user/group service via JDBC with JNDI

118 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Option Description
JNDI resource name JNDI name used to locate the database connection.

Edit user/group service

Once the new user/group service is added (either XML or JDBC), clicking on it in the list of user/group
services will allow additional options to be specified, such as the users and groups associated with the
service.

There are three tabs in the resulting menu: Settings, Users, and Groups. The Settings tab is identical to that
found when creating the user/group service, while the others are described below.

The Users tab provides options to configure users in the user/group service.

Figure 5.100: Users tab

Clicking a username will allow its parameters to be changed, while clicking the Add new link will create a
new user.

Add user

Option Description
User name The name of the user
Enabled When selected, will enable the user to authenticate
Password The password for this user. Existing passwords will be obscured when viewed.
Confirm password To set or change the password enter the password twice.
User properties Key/value pairs associated with the user. Used for associating additional

information with the user.
Group list Full list of groups, including list of groups to which the user is a member.

Membership can be toggled here via the arrow buttons.
Add a new group Shortcut to adding a new group. Also available in the Groups tab.
Role list Full list of roles, including a list of roles to which the user is associated.

Association can be toggled here via the arrow buttons.
Add a new role Shortcut to adding a new role
List of current roles
for the user

List of current roles associated with the user. Click a role to enable editing.

5.7. Security 119

GeoServer User Manual, Release 2.5.x

Figure 5.101: Creating or editing a user

120 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

The Groups tab provides configuration options for groups in this user/group service. There are options to
add and remove a group, with an additional option to remove a group and the roles associated with that
group.

Figure 5.102: Groups tab

Add group

Figure 5.103: Creating or editing a group

5.7. Security 121

GeoServer User Manual, Release 2.5.x

Option Description
Group
name

The name of the group

Enabled When selected the group will be active
Role list Full list of roles, including a list of roles to which the group is associated. Association can

be toggled here via the arrow buttons.
Add a
new role

Shortcut to adding a new role

In this menu, user/group services can be added, removed, or edited. By default, there is one user/group
service in GeoServer, which is XML-based. It is encrypted with Weak PBE and uses the default password
policy. It is also possible to have a user/group service based on JDBC with or without JNDI.

Role services

In this menu, role services can be added, removed, or edited. By default, the active role service in GeoServer
is XML-based, but it is also possible to have a role service based on JDBC, with or without JNDI.

The Administrator role is called ROLE_ADMINISTRATOR.

Figure 5.104: Role services

Clicking an existing role service will open it for editing, while clicking the Add new link will configure a
new role service.

There are two pages for configuration: Settings and Roles.

Note: When creating a new role service, the form filled out initially can be found under the Settings tab.

Add new XML role service

To add a new XML role service, click the Add new link. XML is the default option. The following figure
shows the configuration options for an XML role service.

122 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.105: Adding an XML role service

Option Description
Name The name of the role service
Adminis-
trator
role

The name of the role that performs the administrator functions

XML
filename

Name of the file that will contain the role information. Default is roles.xml in the
security/role/<name_of_roleservice> directory.

File reload
interval

Defines the frequency (in milliseconds) in which GeoServer will check for changes to the
XML file. If the file is found to have been modified, GeoServer will recreate the
user/group database based on the current state of the file. This value is meant to be set in
cases where the XML file contents might change “out of process” and not directly
through the web admin interface. The value is specified in milliseconds. A value of 0
disables any checking of the file.

Add new JDBC role service

To add a new XML role service, click the Add new link, and then the JDBC option at the top of the following
form. The following figure shows the configuration options for a JDBC role service.

5.7. Security 123

GeoServer User Manual, Release 2.5.x

Figure 5.106: Adding a role service via JDBC

124 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Option Description
Name Name of the JDBC role service in GeoServer
Administrator role The name of the role that performs the administrator function
JNDI When unchecked, specifies a direct connection to the database. When checked,

specifies an existing connection located through JNDI.
Driver class name JDBC driver to use for the database connection
Connection URL Specifies the JDBC URL to use when creating the database connection
Username Username to use when connecting to the database
Password Password to use when connecting to the database
Create database
tables

Specifies whether to create all the necessary tables in the underlying database

Data Definition
Language (DDL) file

Specifies a custom DDL file to use for creating tables in the underlying
database, for cases where the default DDL statements fail on the given
database. If left blank, internal defaults are used.

Data Manipulation
Language (DML) file

Specifies a custom DML file to use for accessing tables in the underlying
database, for cases where the default DML statements fail on the given
database. If left blank, internal defaults are used.

In addition to the parameters listed above, the following additional parameter will apply when the JNDI
flag is set.

Figure 5.107: Adding a role service via JDBC with JNDI

Option Description
JNDI resource name JNDI name used to locate the database connection.

5.7. Security 125

GeoServer User Manual, Release 2.5.x

Add new LDAP role service

To add a new LDAP role service, click the Add new link, and then the LDAP option at the top of the following
form. The following figure shows the configuration options for a LDAP role service.

Figure 5.108: Adding a role service via LDAP

126 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Option Description
Name Name of the LDAP role service in GeoServer
Administrator role The name of the role that performs the administrator function
Group
administrator role

The name of the role that performs the group administrator function

Server URL URL for the LDAP server connection. It must include the protocol, host, and
port, as well as the “distinguished name” (DN) for the root of the LDAP tree.

TLS Enables a STARTTLS connection. (See the section on Secure LDAP connections.)
Group search base Relative name of the node in the tree to use as the base for LDAP groups.

Example: ou=groups. The root DN specified as port of the Server URL is
automatically appended.

Group user
membership search
filter

Search pattern for extracting users of a LDAP group a user belongs to. This may
contain some placeholder values: {0}, the username of the user, for example
bob. {1}, the full DN of the user, for example uid=bob,ou=users. To use this
placeholder, the Filter used to lookup user needs to be defined, so that the dn of a
user can be extracted from its username.

All groups search
filter

Search pattern for locating the LDAP groups to be mapped to GeoServer roles
inside the Group search base root node

Filter used to
lookup user.

optional filter used to extract a user dn, to be used together with Group user
membership search filter when the {1} placeholder is specified. This may contain a
placeholder value: {0}, the username of the user, for example bob.

Authenticate to
extract roles

When checked all LDAP searches will be done in authenticated mode, using the
credentials given with the Username and Password options

Username Username to use when connecting to the LDAP server. Only applicable when the
Authenticate to extract roles parameter is checked.

Password Password to use when connecting to the LDAP server. Only applicable when the
Authenticate to extract roles parameter is checked.

Edit role service

Once the new role service is added (either XML or JDBC), clicking it in the list of role services will allow
the additional options to be specified, such as the roles associated with the service.

There are two tabs in the resulting menu: Settings and Roles. The Settings tab is identical to that found when
creating the role service, while the Roles tab is described below.

Figure 5.109: Roles tab

Clicking a role will allow its parameters to be changed, while clicking the Add new link will create a new

5.7. Security 127

GeoServer User Manual, Release 2.5.x

role.

Add role

Figure 5.110: Creating or editing a role

Option Description
Role name The name of role. Convention is uppercase, but is not required.
Parent roles The role that this role inherits. See the section on Roles for more information on

inheritance.
Role
parameters

Key/value pairs associated with the role. Used for associating additional information
with the role.

5.7.5 Data

This section provides access to security settings related to data management and Layer security. Data access
is granted to roles, and roles are granted to users and groups.

Rules

There are two rules available by default, but they don’t provide any restrictions on access by default. The
first rule *.*.r, applied to all roles, states that any operation in any resource in any workspace can be read.
The second rule, *.*.w, also applied to all roles, says the same for write access.

Clicking an existing rule will open it for editing, while clicking the Add a new rule link will create a new
rule.

128 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.111: Rules for data access

Figure 5.112: Creating a new rule

5.7. Security 129

GeoServer User Manual, Release 2.5.x

Option Description
Workspace Sets the allowed workspace for this rule. Options are * (all workspaces), or the name of

each workspace.
Layer Sets the allowed layer for this rule. Options are * (all layers), or the name of each layer

in the above workspace. Will be disabled until the workspace is set.
Access mode Specifies whether the rule refers to either Read or Write mode
Grant access
to any role

If selected, the rule will apply to all roles, with no need to specify

Role list Full list of roles, including a list of roles to which the rule is associated. Association can
be toggled here via the arrow buttons. This option is not applied if Grant access to any
role is checked.

Add a new
role

Shortcut to adding a new role

Catalog Mode

This mode configures how GeoServer will advertise secured layers and behave when a secured layer is
accessed without the necessary privileges. There are three options: HIDE, MIXED, and CHALLENGE. For
further information on these options, please see the section on Layer security.

Figure 5.113: Catalog mode

5.7.6 Services

This section provides access to the settings for Service Security. GeoServer can limit access based on OWS
services (WFS, WMS, etc.) and their specific operations (GetCapabilities, GetMap, and so on).

By default, no service-based security is in effect in GeoServer. However rules can be added, removed, or
edited here.

Figure 5.114: Service access rules list

Clicking the Add a new rule link will create a new rule.

130 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Figure 5.115: New service rule

Option Description
Service Sets the OWS service for this rule. Options are *, meaning all services, wcs, wfs, or

wms.
Method Sets the specific operation for this rule. Options depend on the Service, but include *,

meaning all operations, as well as every service operation known to GeoServer, such as
Capabilities, Transaction, GetMap, and more.

Grant access
to any role

If selected, the rule will apply to all roles (no need to specify which ones)

Role list Full list of roles, including a list of roles to which the rule is associated. Association can
be switched here via the arrow buttons. This option is not applied if Grant access to any
role is checked.

Add a new
role

Shortcut to adding a new role

5.7.7 File Browsing

The GeoServer web admin employs a file browser dialog that will expose locations of the file system other
than the GeoServer directory. These locations include the root of the file system and the users home direc-
tory. In highly secure and multi-tenant environments disabling this feature may be desired.

The property GEOSERVER_FILEBROWSER_HIDEFS can be used to disable this functionality. When set to
true only the GeoServer data directory will be exposed through the file browser.

The property is set through one of the standard means:

• web.xml

5.7. Security 131

GeoServer User Manual, Release 2.5.x

<context-param>
<param-name>GEOSERVER_FILEBROWSER_HIDEFS</param-name>
<param-value>true</param-value>

</context-param>

• System property

-DGEOSERVER_FILEBROWSER_HIDEFS=true

• Environment variable

export GEOSERVER_FILEBROWSER_HIDEFS=true

5.8 Demos

This page contains helpful links to various information pages regarding GeoServer and its features. You do
not need to be logged into GeoServer to access this page.

Figure 5.116: Demos page

5.8.1 Demo Requests

This page has example WMS, WCS and WFS requests for GeoServer that you can use, examine, and change.
Select a request from the drop down list.

Figure 5.117: Selecting demo requests

132 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

Both Web Feature Service (Web Feature Service) as well as Web Coverage Service (Web Coverage Service)
requests will display the request URL and the XML body. Web Map Service (Web Map Service) requests will
only display the request URL.

Figure 5.118: WFS 1.1 DescribeFeatureType sample request

Click Submit to send the request to GeoServer. For WFS and WCS requests, GeoServer will automatically
generate an XML reponse.

Figure 5.119: XML reponse from a WFS 1.1 DescribeFeatureType sample request

Submitting a WMS GetMap request displays an image based on the provided geographic data.

WMS GetFeatureInfo requests retrieve information regarding a particular feature on the map image.

5.8. Demos 133

GeoServer User Manual, Release 2.5.x

Figure 5.120: OpenLayers WMS GetMap request

Figure 5.121: WMS GetFeatureInfo request

134 Chapter 5. Web Administration Interface

GeoServer User Manual, Release 2.5.x

5.8.2 SRS

GeoServer natively supports almost 4,000 Spatial Referencing Systems (SRS), also known as projections,
and more can be added. A spatial reference system defines an ellipsoid, a datum using that ellipsoid,
and either a geocentric, geographic or projection coordinate system. This page lists all SRS info known to
GeoServer.

Figure 5.122: Listing of all Spatial Referencing Systems (SRS) known to GeoServer

The Code column refers to the unique integer identifier defined by the author of that spatial reference sys-
tem. Each code is linked to a more detailed description page, accessed by clicking on that code.

Figure 5.123: Details for SRS EPSG:2000

The title of each SRS is composed of the author name and the unique integer identifier (code) defined by the
Author. In the above example, the author is the European Petroleum Survey Group (EPSG) and the Code
is 2000. The fields are as follows:

5.8. Demos 135

http://www.epsg.org/

GeoServer User Manual, Release 2.5.x

Description—A short text description of the SRS

WKT—A string describing the SRS. WKT stands for “Well Known Text”

Area of Validity—The bounding box for the SRS

136 Chapter 5. Web Administration Interface

CHAPTER 6

Working with Vector Data

This section discusses the vector data sources that GeoServer can access.

The standard GeoServer installation supports the loading and serving of the following data formats:

6.1 Shapefile

A shapefile is a popular geospatial vector data format.

Note: While GeoServer has robust support for the shapefile format, it is not the recommended format
of choice in a production environment. Databases such as PostGIS are more suitable in production and
offer better performance and scalability. See the section on Running in a Production Environment for more
information.

6.1.1 Adding a shapefile

A shapefile is actually a collection of files (with the extensions: .shp, .dbf, .shx, .prj, and sometimes
others). All of these files need to be present in the same directory in order for GeoServer to accurately read
them. As with all formats, adding a shapefile to GeoServer involves adding a new store to the existing
Stores through the Web Administration Interface.

Warning: The .prj file, while not mandatory, is strongly recommended when working with GeoServer
as it contains valuable projection info. GeoServer may not be able to load your shapefile without it!

To begin, navigate to Stores → Add a new store → Shapefile.

137

GeoServer User Manual, Release 2.5.x

Figure 6.1: Adding a shapefile as a store

138 Chapter 6. Working with Vector Data

GeoServer User Manual, Release 2.5.x

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of

the layer created from the store.
Data Source Name Name of the shapefile as known to GeoServer. Can be different from the

filename. The combination of the workspace name and this name will be
the full layer name (ex: topp:states).

Description Description of the shapefile/store.
Enabled Enables the store. If unchecked, no data in the shapefile will be served.
URL Location of the shapefile. Can be an absolute path (such as

file:C:\Data\shapefile.shp) or a path relative to the data directory
(such as file:data/shapefile.shp.

namespace Namespace to be associated with the shapefile. This field is altered by
changing the workspace name.

create spatial index Enables the automatic creation of a spatial index.
charset Character set used to decode strings from the .dbf file.
memory mapped buffer
Cache and reuse memory
maps

Enables the use of memory mapped I/O, improving caching of the file in
memory. Turn off on Windows servers.

When finished, click Save.

6.1.2 Configuring a shapefile layer

Shapefiles contain exactly one layer, which needs to be added as a new layer before it will be able to be
served by GeoServer. See the section on Layers for how to add and edit a new layer.

6.2 Directory of spatial files

The directory store automates the process of loading multiple shapefiles into GeoServer. Loading a direc-
tory that contains multiple shapefiles will automatically add each shapefile to GeoServer.

Note: While GeoServer has robust support for the shapefile format, it is not the recommended format
of choice in a production environment. Databases such as PostGIS are more suitable in production and
offer better performance and scalability. See the section on Running in a Production Environment for more
information.

6.2.1 Adding a directory

To begin, navigate to Stores → Add a new store → Directory of spatial files.

6.2. Directory of spatial files 139

GeoServer User Manual, Release 2.5.x

Figure 6.2: Adding a directory of spatial files as a store

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the layer

names created from shapefiles in the store.
Data
Source
Name

Name of the store as known to GeoServer.

Descrip-
tion

Description of the directory store.

Enabled Enables the store. If disabled, no data in any of the shapefiles will be served.
URL Location of the directory. Can be an absolute path (such as

file:C:\Data\shapefile_directory) or a path relative to the data directory (such
as file:data/shapefile_directory.

namespace Namespace to be associated with the store. This field is altered by changing the workspace
name.

When finished, click Save.

6.2.2 Configuring shapefiles

All of the shapefiles contained in the directory store will be loaded as part of the directory store, but they
will need to be individually configured as new layers they can be served by GeoServer. See the section on
Layers for how to add and edit new layers.

140 Chapter 6. Working with Vector Data

GeoServer User Manual, Release 2.5.x

6.3 Java Properties

The Properties data store provides access to one or more feature types (layers) stored in Java property
files; these are plain text files stored on the local filesystem. The Properties data store was never intended
to be shipped with GeoServer. It originated in a GeoTools tutorial, and later found widespread use by
developers in automated tests that required a convenient store for small snippets of data. It slipped into
GeoServer through the completeness of the packaging process, and was automatically detected and offered
to users via the web interface. The Property data store has proved useful in tutorials and examples.

• We do not recommend the use the Properties data store for large amounts of data, with either many
features or large geometries. Its performance will be terrible.

• For small data sets, such as collections of a few dozen points, you may find it to be satisfactory. For
example, if you have a few points you wish to add as an extra layer, and no convenient database in
which store them, the Properties data store provides a straightforward means of delivering them.

• Changes to a property file are immediately reflected in GeoServer responses. There is no need to
recreate the data store unless the first line of a property file is changed, or property files are added or
removed.

6.3.1 Adding a Properties data store

By default, Properties will be an option in the Vector Data Sources list when creating a new data store.

Figure 6.3: Properties in the list of vector data stores

6.3.2 Configuring a Properties data store

Option Description
Workspace Sets the namespace prefix of the feature types (layers) and their properties
Data Source
Name

Unique identifier to distinguish this data store

Description Optional text giving a verbose description of the data store
Enabled Features will be delivered only if this option is checked
directory Filesystem path to a directory containing one or more property files, for example

/usr/local/geoserver/data/ex

Every property file TYPENAME.properties in the designated directory is served as a feature type
TYPENAME (the name of the file without the .properties), in the namespace of the data store.

Before a feature type (layer) can be used, you must edit it to ensure that its bounding box and other metadata
is configured.

6.3.3 Property file format

The property file format is a subset of the Java properties format: a list of lines of the form KEY=VALUE.

This example stations.properties defines four features of the feature type (layer) stations:

6.3. Java Properties 141

GeoServer User Manual, Release 2.5.x

Figure 6.4: Configuring a Properties data store

_=id:Integer,code:String,name:String,location:Geometry:srid=4326
stations.27=27|ALIC|Alice Springs|POINT(133.8855 -23.6701)
stations.4=4|NORF|Norfolk Island|POINT(167.9388 -29.0434)
stations.12=12|COCO|Cocos|POINT(96.8339 -12.1883)
stations.31=31|ALBY|Albany|POINT(117.8102 -34.9502)

• Blank lines are not permitted anywhere in the file.

• The first line of the property file begins with _= and defines the type information required to interpret
the following lines.

– Comma separated values are of the form NAME:TYPE

– Names are the property name that are used to encode the property in WFS responses.

– Types include Integer, String, Float, and Geometry

– Geometry can have an extra suffix :srid=XXXX that defines the Spatial Reference System by its
numeric EPSG code. Note that geometries defined in this way are in longitude/latitude order.

• Subsequent lines define features, one per line.

– The key before the = is the feature ID (fid or gml:id in WFS responses). Each must be an
NCName.

– Feature data follows the = separated by vertical bars (|). The types of the data must match the
declaration on the first line.

– Leave a field empty if you want it to be null; in this case the property will be ignored.

Note that in this example srid=4326 sets the spatial reference system (SRS) to EPSG:4326, which is
by convention in longitude/latitude order when referred to in the short form. If you request these fea-
tures in GML 3 you will see that GeoServer correctly translates the geometry to the URN form SRS

142 Chapter 6. Working with Vector Data

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.5.x

urn:x-ogc:def:crs:EPSG:4326 in latitude/longitude form. See the WFS page for more on SRS axis
order options.

Other data sources are supplied as GeoServer extensions. Extensions are downloadable modules that add
functionality to GeoServer. Extensions are available at the GeoServer download page.

Warning: The extension version must match the version of the GeoServer instance.

6.4 GML

Note: GeoServer does not come built-in with support for GML; it must be installed through an extension.
Proceed to Installing the GML extension for installation details.

Warning: Currently the GML extension is unmaintained and carries unsupported status. While still
usable, do not expect the same reliability as with other extension.

Geographic Markup Language (GML) is a XML based format for representing vector based spatial data.

6.4.1 Supported versions

Currently GML version 2 is supported.

6.4.2 Installing the GML extension

1. Download the GML extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.4.3 Adding a GML data store

Once the extension is properly installed GML will be an option in the Vector Data Sources list when creating
a new data store.

Figure 6.5: GML in the list of vector data stores

6.4.4 Configuring a GML data store

6.5 VPF

6.4. GML 143

http://geoserver.org/display/GEOS/Download
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Figure 6.6: Configuring a GML data store

Note: GeoServer does not come built-in with support for VPF; it must be installed through an extension.
Proceed to Installing the VPF extension for installation details.

Vector Product Format (VPF) is a military standard for vector-based digital map products produced by the
U.S. Department of Defense. For more information visit The National Geospatial-Intelligence Agency.

6.5.1 Installing the VPF extension

1. Download the VPF extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.5.2 Adding a VPF file

Once the extension is properly installed Vector Product Format Library will be an option in the Vector Data
Sources list when creating a new data store.

Figure 6.7: VPF in the list of new data sources

144 Chapter 6. Working with Vector Data

http://www.nga.mil/portal/site/nga01/index.jsp?epi-content=GENERIC&itemID=a2986591e1b3af00VgnVCMServer23727a95RCRD&beanID=1629630080&viewID=Article
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Figure 6.8: Configuring a VPF data store

6.5.3 Configuring a VPF data store

6.6 Pregeneralized Features

Note: GeoServer does not come built-in with support for Pregeneralized Features; it must be installed
through an extension.

6.6.1 Installing the Pregeneralized Features extension

1. Download the Pregeneralized Features extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

6.6.2 Adding a Pregeneralized Features data store

If the extension is properly installed, Generalized Data Store will be listed as an option when creating a new
data store.

Figure 6.9: Generalized Data Store in the list of vector data stores

6.6. Pregeneralized Features 145

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

6.6.3 Configuring a Pregeneralized Features data store

Figure 6.10: Configuring a Pregeneralized Features data store

For a detailed description, look at the Tutorial

146 Chapter 6. Working with Vector Data

CHAPTER 7

Working with Raster Data

This section discusses the raster (coverage) data sources that GeoServer can access.

The standard GeoServer installation supports the loading and serving of the following data formats:

7.1 GeoTIFF

A GeoTIFF is a georeferenced TIFF (Tagged Image File Format) file.

7.1.1 Adding a GeoTIFF data store

By default, GeoTIFF will be an option in the Raster Data Sources list when creating a new data store.

Figure 7.1: GeoTIFF in the list of raster data stores

7.1.2 Configuring a GeoTIFF data store

Option Description
Workspace Name of the workspace to contain the GeoTIFF store. This will also be the prefix of the

raster layer created from the store.
Data
Source
Name

Name of the GeoTIFF as it will be known to GeoServer. This can be different from the
filename. The combination of the workspace name and this name will be the full layer
name (ex: world:landbase)

DescriptionA full free-form description of the GeoTIFF store.
Enabled If checked, it enables the store. If unchecked (disabled), no data in the GeoTIFF will be

served from GeoServer.
URL Location of the GeoTIFF file. This can be an absolute path (such as

file:C:\Data\landbase.tif) or a path relative to GeoServer’s data directory (such
as file:data/landbase.tif).

147

GeoServer User Manual, Release 2.5.x

Figure 7.2: Configuring a GeoTIFF data store

7.2 GTOPO30

GTOPO30 is a Digital Elevation Model (DEM) dataset with a horizontal grid spacing of 30 arc seconds.

Note: An example of a GTOPO30 can be found at http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

7.2.1 Adding a GTOPO30 data store

By default, GTOPO30 will be an option in the Raster Data Sources list when creating a new data store.

Figure 7.3: GTOPO30 in the list of raster data stores

7.2.2 Configuring a GTOPO30 data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

148 Chapter 7. Working with Raster Data

http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html

GeoServer User Manual, Release 2.5.x

Figure 7.4: Configuring a GTOPO30 data store

7.3 WorldImage

A world file is a plain text file used to georeference raster map images. This file (often with an extension
of .jgw or .tfw) accompanies an associated image file (.jpg or .tif). Together, the world file and the
corresponding image file is known as a WorldImage in GeoServer.

7.3.1 Adding a WorldImage data store

By default, WorldImage will be an option in the Raster Data Sources list when creating a new data store.

Figure 7.5: WorldImage in the list of raster data stores

7.3.2 Configuring a WorldImage data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

7.3. WorldImage 149

GeoServer User Manual, Release 2.5.x

Figure 7.6: Configuring a WorldImage data store

7.4 ImageMosaic

The ImageMosaic data store allows the creation of a mosaic from a number of georeferenced rasters. The
plugin can be used with GeoTIFFs, as well as rasters accompanied by a world file (.pgw for PNG files,
.jgw for JPG files, etc.).

The “Mosaic” operation creates a mosaic of two or more source images. This operation could be used for
example to assemble a set of overlapping geospatially rectified images into a contiguous image. It could
also be used to create a montage of photographs such as a panorama.

The best current source of information on configuring an ImageMosiac is the tutorial: Using the ImageMosaic
plugin.

7.4.1 Adding an ImageMosaic data store

By default, ImageMosaic will be an option in the Raster Data Sources list when creating a new data store.

Figure 7.7: ImageMosaic in the list of raster data stores

150 Chapter 7. Working with Raster Data

GeoServer User Manual, Release 2.5.x

Figure 7.8: Configuring an ImageMosaic data store

7.4.2 Configuring an ImageMosaic data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

Other data sources are supplied as GeoServer extensions. Extensions are downloadable modules that add
functionality to GeoServer. Extensions are available at the GeoServer download page.

Warning: The extension version must match the version of the GeoServer instance.

7.5 ArcGrid

ArcGrid is a coverage file format created by ESRI.

7.5.1 Adding an ArcGrid data store

By default, ArcGrid will be an option in the Raster Data Sources list when creating a new data store.

Figure 7.9: ArcGrid in the list of raster data stores

7.5. ArcGrid 151

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

7.5.2 Configuring a ArcGrid data store

Figure 7.10: Configuring an ArcGrid data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

7.6 GDAL Image Formats

GeoServer can leverage the ImageI/O-Ext GDAL libraries to read selected coverage formats. GDAL is able
to read many formats, but for the moment GeoServer supports only a few general interest formats and
those that can be legally redistributed and operated in an open source server.

The following image formats can be read by GeoServer using GDAL:

• DTED, Military Elevation Data (.dt0, .dt1, .dt2): http://www.gdal.org/frmt_dted.html

• EHdr, ESRI .hdr Labelled: <http://www.gdal.org/frmt_various.html#EHdr>

• ENVI, ENVI .hdr Labelled Raster: <http://www.gdal.org/frmt_various.html#ENVI>

• HFA, Erdas Imagine (.img): <http://www.gdal.org/frmt_hfa.html>

• JP2MrSID, JPEG2000 (.jp2, .j2k): <http://www.gdal.org/frmt_jp2mrsid.html>

• MrSID, Multi-resolution Seamless Image Database: <http://www.gdal.org/frmt_mrsid.html>

• NITF: <http://www.gdal.org/frmt_nitf.html>

• ECW, ERDAS Compressed Wavelets (.ecw): <http://www.gdal.org/frmt_ecw.html>

152 Chapter 7. Working with Raster Data

http://java.net/projects/imageio-ext/
http://www.gdal.org
http://www.gdal.org/frmt_dted.html
http://www.gdal.org/frmt_various.html#EHdr
http://www.gdal.org/frmt_various.html#ENVI
http://www.gdal.org/frmt_hfa.html
http://www.gdal.org/frmt_jp2mrsid.html
http://www.gdal.org/frmt_mrsid.html
http://www.gdal.org/frmt_nitf.html
http://www.gdal.org/frmt_ecw.html

GeoServer User Manual, Release 2.5.x

• JP2ECW, JPEG2000 (.jp2, .j2k): http://www.gdal.org/frmt_jp2ecw.html

• AIG, Arc/Info Binary Grid: <http://www.gdal.org/frmt_various.html#AIG>

• JP2KAK, JPEG2000 (.jp2, .j2k): <http://www.gdal.org/frmt_jp2kak.html>

7.6.1 Installing GDAL extension

From GeoServer version 2.2.x, GDAL must be installed as an extension. To install it:

1. Navigate to the GeoServer download page

2. Find the page that matches the version of the running GeoServer.

Warning: Be sure to match the version of the extension with that of GeoServer, otherwise errors
will occur.

3. Download the GDAL extension. The download link for GDAL will be in the Extensions section under
Coverage Store.

4. Extract the files in this archive to the WEB-INF/lib directory of your GeoServer installation.

Moreover, in order for GeoServer to leverage these libraries, the GDAL (binary) libraries must be installed
through your host system’s OS. Once they are installed, GeoServer will be able to recognize GDAL data
types. See bloe for more information.

Installing GDAL native libraries

The ImageIO-Ext GDAL plugin for geoserver master uses ImageIO-Ext 1.1.7 whose artifacts can be down-
loaded from here.

Browse to the native and then gdal directory for the link. Now you should see a list of artifacts that can be
downloaded. We need to download two things now:

1. The CRS definitions

2. The native libraries matching the target operating system

Let’s now install the CRS definitions.

• Click on the “gdal_data.zip” to download the CRS definitions archive.

• Extract this archive on disk and place it in a proper directory on your system.

• Create a GDAL_DATA environment variable to the folder where you have extracted this file. Make
also sure that this directory is reachable and readable by the application server process’s user.

We now have to install the native libraries.

• Assuming you are on a 64 bits Ubuntu 11 Linux Operating System (as an instance), click on the
linux folder and then on “gdal192-Ubuntu11-gcc4.5.2-x86_64.tar.gz” to download the native libraries
archive (Before doing this, make sure to read and agree with the ECWEULA if you intend to use
ECW).

• Extract the archive on disk and place it in a proper directory on your system.

Warning: If you are on Windows, make sure that the GDAL DLL files are on your
PATH. If you are on Linux, be sure to set the LD_LIBRARY_PATH environment variable
to refer to the folder where the SOs are extracted.

7.6. GDAL Image Formats 153

http://www.gdal.org/frmt_jp2ecw.html
http://www.gdal.org/frmt_various.html#AIG
http://www.gdal.org/frmt_jp2kak.html
http://geoserver.org/display/GEOS/Download
http://demo.geo-solutions.it/share/github/imageio-ext/releases/1.1.X/1.1.7/
http://demo.geo-solutions.it/share/github/imageio-ext/releases/1.1.X/1.1.7/

GeoServer User Manual, Release 2.5.x

Note: The native libraries contains the GDAL gdalinfo utility which can be used to test
whether or not the libs are corrupted. This can be done by browsing to the directory where
the libs have been extracted and performing a gdalinfo command with the formats options
that shows all the formats supported. Moreover the package contains also a Java versions
of the gdalinfo utility to check also the Java bindings correct functioning (you can see a .bat
script for Windows and .sh for Linux).

Once these steps have been completed, restart GeoServer. If all the steps have been performed correctly,
new data formats will be in the Raster Data Sources list when creating a new data store as shown here below.

Figure 7.11: GDAL image formats in the list of raster data stores

If instead now new formats appear in the GUI and in the logs the following messages is shown:

it.geosolutions.imageio.gdalframework.GDALUtilities loadGDAL WARNING: Native library load
failed.java.lang.UnsatisfiedLinkError: no gdaljni in java.library.path

that means that the installations failed for some reason.

7.6.2 Extra Steps for Windows Platforms

There are a few things to be careful with as well as some extra steps if you are deploying on Windows.

First of all, you’ll notice that we have multiple versions like MSVC2005, MSVC2008 and so on macthing
the Microsoft Visual C++ Redistributables. Depending on the version of the underlying operating system
you’ll have to pick up the right one. You can google around for the one you need.

That said, we have DLLs for both 32 bits as well as 64 bits Operating Systems. Again, pick the one that
matches your infrastructure.

Note on running GeoServer as a Service on Windows

Simply deploying the GDAL ImageI/O-Ext native libraries in a location referred by the PATH environment
variable (like, as an instance, the JDK/bin folder) doesn’t allow GeoServer to leverage on GDAL, when run
as a service. As a result, during the service startup, GeoServer log reports this worrysome message:

it.geosolutions.imageio.gdalframework.GDALUtilities loadGDAL WARNING: Native library load
failed.java.lang.UnsatisfiedLinkError: no gdaljni in java.library.path

Taking a look at the wrapper.conf configuration file available inside the GeoServer installation (at
bin/wrapper/wrapper.conf), there is this useful entry:

Java Library Path (location of Wrapper.DLL or libwrapper.so) wrap-
per.java.library.path.1=bin/wrapper/lib

154 Chapter 7. Working with Raster Data

GeoServer User Manual, Release 2.5.x

To allow the GDAL native DLLs getting loaded, you have 2 possible ways:

1. Move the native DLLs on the referred path (bin/wrapper/lib)

2. Add a wrapper.java.library.path.2=path/where/you/deployed/nativelibs entry just after the wrap-
per.java.library.path1=bin/wrapper/lib line.

Adding support for ECW and MrSID on Windows

If you are on Windows and you want to add support for ECW and MrSID there is an extra step to perform.

In the Windows packaging ECW and MrSID are built as plugins hence they are not loaded by default but we
need to place their DLLs in a location that is pointed by the GDAL_DRIVER_PATH environmental variable.
GDAL uses internally this env variable to look up additional drivers (notice that there are a few default
places where GDAL will look anyway). For additional information, please, check this link.

7.6.3 Configuring a DTED data store

Figure 7.12: Configuring a DTED data store

7.6. GDAL Image Formats 155

http://trac.osgeo.org/gdal/wiki/ConfigOptions#GDAL_DRIVER_PATH

GeoServer User Manual, Release 2.5.x

Figure 7.13: Configuring a EHdr data store

Figure 7.14: Configuring a ERDASImg data store

156 Chapter 7. Working with Raster Data

GeoServer User Manual, Release 2.5.x

Figure 7.15: Configuring a JP2MrSID data store

Figure 7.16: Configuring a NITF data store

7.6. GDAL Image Formats 157

GeoServer User Manual, Release 2.5.x

7.6.4 Configuring a EHdr data store

7.6.5 Configuring a ERDASImg data store

7.6.6 Configuring a JP2MrSID data store

7.6.7 Configuring a NITF data store

7.7 Oracle Georaster

Note: GeoServer does not come built-in with support for Oracle Georaster; it must be installed through
an extension. Proceed to Image Mosaic JDBC for installation details. This extension includes the support for
Oracle Georaster.

7.7.1 Adding an Oracle Georaster data store

Read the geotools documentation for Oracle Georaster Support: http://docs.geotools.org/latest/userguide/library/coverage/oracle.html.
After creating the xml config file proceed to the section Configuring GeoServer in the Image Mosaic JDBC
Tutorial

7.8 Postgis Raster

Note: GeoServer does not come built-in with support for Postgis raster columns, it must be installed
through an extension. Proceed to Image Mosaic JDBC for installation details. This extension includes the
support for Postgis raster.

7.8.1 Adding an Postgis raster data store

Read the geotools documentation for Postgis raster Support: http://docs.geotools.org/latest/userguide/library/coverage/pgraster.html.
After creating the xml config file proceed to the section Configuring GeoServer in the Image Mosaic JDBC
Tutorial

7.9 ImagePyramid

Note: GeoServer does not come built-in with support for Image Pyramid; it must be installed through an
extension. Proceed to Installing the ImagePyramid extension for installation details.

An image pyramid is several layers of an image rendered at various image sizes, to be shown at different
zoom levels.

7.9.1 Installing the ImagePyramid extension

1. Download the ImagePyramid extension from the GeoServer download page.

158 Chapter 7. Working with Raster Data

http://docs.geotools.org/latest/userguide/library/coverage/oracle.html
http://docs.geotools.org/latest/userguide/library/coverage/pgraster.html
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

7.9.2 Adding an ImagePyramid data store

Once the extension is properly installed ImagePyramid will be an option in the Raster Data Sources list when
creating a new data store.

Figure 7.17: ImagePyramid in the list of raster data stores

7.9.3 Configuring an ImagePyramid data store

Figure 7.18: Configuring an ImagePyramid data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

7.9. ImagePyramid 159

GeoServer User Manual, Release 2.5.x

7.10 Image Mosaic JDBC

Note: GeoServer does not come built-in with support for Image Mosaic JDBC; it must be installed through
an extension. Proceed to Installing the JDBC Image Mosaic extension for installation details.

7.10.1 Installing the JDBC Image Mosaic extension

1. Download the JDBC Image Mosaic extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

7.10.2 Adding an Image Mosaic JDBC data store

Once the extension is properly installed Image Mosaic JDBC will be an option in the Raster Data Sources list
when creating a new data store.

Figure 7.19: Image Mosaic JDBC in the list of vector data stores

7.10.3 Configuring an Image Mosaic JDBC data store

For a detailed description, look at the Tutorial

7.11 Custom JDBC Access for image data

Note: GeoServer does not come built-in with support for Custom JDBC Access; it must be installed through
an extension. Proceed to Image Mosaic JDBC for installation details. This extension includes the support for
Custom JDBC Access.

7.11.1 Adding a coverage based on Custom JDBC Access

This extension is targeted to users having a special database layout for storing their image data or use a
special data base extension concerning raster data.

Read the geotools documentation for Custom JDBC Access: http://docs.geotools.org/latest/userguide/library/coverage/jdbc/customized.html.

After developing the custom plugin, package the classes into a jar file and copy it into the WEB-INF/lib
directory of the geoserver installation.

Create the xml config file and proceed to the section Configuring GeoServer in the Image Mosaic JDBC Tutorial

160 Chapter 7. Working with Raster Data

http://geoserver.org/display/GEOS/Download
http://docs.geotools.org/latest/userguide/library/coverage/jdbc/customized.html

GeoServer User Manual, Release 2.5.x

Figure 7.20: Configuring an Image Mosaic JDBC data store

7.11. Custom JDBC Access for image data 161

GeoServer User Manual, Release 2.5.x

162 Chapter 7. Working with Raster Data

CHAPTER 8

Working with Databases

This section discusses the database data sources that GeoServer can access.

The standard GeoServer installation supports accessing the following databases:

8.1 PostGIS

PostGIS is an open source spatial database based on PostgreSQL, and is currently one of the most popular
open source spatial databases today.

8.1.1 Adding a PostGIS database

As with all formats, adding a shapefile to GeoServer involves adding a new store to the existing Stores
through the Web Administration Interface.

Using default connection

To begin, navigate to Stores → Add a new store → PostGIS NG.

163

http://postgis.org
http://postgresql.com/

GeoServer User Manual, Release 2.5.x

Figure 8.1: Adding a PostGIS database

164 Chapter 8. Working with Databases

GeoServer User Manual, Release 2.5.x

Option Description
Workspace Name of the workspace to contain the database. This will also be the prefix of any layer

names created from tables in the database.
Data Source
Name

Name of the database. This can be different from the name as known to
PostgreSQL/PostGIS.

Description Description of the database/store.
Enabled Enables the store. If disabled, no data in the database will be served.
dbtype Type of database. Leave this value as the default.
host Host name where the database exists.
port Port number to connect to the above host.
database Name of the database as known on the host.
schema Schema in the above database.
user User name to connect to the database.
passwd Password associated with the above user.
namespace Namespace to be associated with the database. This field is altered by changing the

workspace name.
max
connections

Maximum amount of open connections to the database.

min
connections

Minimum number of pooled connections.

fetch size Number of records read with each interaction with the database.
Connection
timeout

Time (in seconds) the connection pool will wait before timing out.

validate
connections

Checks the connection is alive before using it.

Loose bbox Performs only the primary filter on the bounding box. See the section on Using loose
bounding box for details.

prepared-
Statements

Enables prepared statements.

When finished, click Save.

Using JNDI

GeoServer can also connect to a PostGIS database using JNDI (Java Naming and Directory Interface).

To begin, navigate to Stores → Add a new store → PostGIS NG (JNDI).

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the

layer names created from the store.
Data Source
Name

Name of the database. This can be different from the name as known to
PostgreSQL/PostGIS.

Description Description of the database/store.
Enabled Enables the store. If disabled, no data in the database will be served.
dbtype Type of database. Leave this value as the default.
jndiReference-
Name

JNDI path to the database.

schema Schema for the above database.
namespace Namespace to be associated with the database. This field is altered by changing the

workspace name.

When finished, click Save.

8.1. PostGIS 165

http://java.sun.com/products/jndi/

GeoServer User Manual, Release 2.5.x

Figure 8.2: Adding a PostGIS database (using JNDI)

166 Chapter 8. Working with Databases

GeoServer User Manual, Release 2.5.x

8.1.2 Configuring PostGIS layers

When properly loaded, all tables in the database will be visible to GeoServer, but they will need to be
individually configured before being served by GeoServer. See the section on Layers for how to add and
edit new layers.

8.1.3 Using loose bounding box

When the option loose bbox is enabled, only the bounding box of a geometry is used. This can result in
a significant performance gain, but at the expense of total accuracy; some geometries may be considered
inside of a bounding box when they are technically not.

If primarily connecting to this data via WMS, this flag can be set safely since a loss of some accuracy is
usually acceptable. However, if using WFS and especially if making use of BBOX filtering capabilities, this
flag should not be set.

8.1.4 Publishing a PostGIS view

Publishing a view follows the same process as publishing a table. The only additional step is to manually
ensure that the view has an entry in the geometry_columns table.

For example consider a table with the schema:

my_table(id int PRIMARY KEY, name VARCHAR, the_geom GEOMETRY)

Consider also the following view:

CREATE VIEW my_view as SELECT id, the_geom FROM my_table;

Before this view can be served by GeoServer, the following step is necessary to manually create the
geometry_columns entry:

INSERT INTO geometry_columns VALUES (’’,’public’,’my_view’,’my_geom’, 2, 4326, ’POINT’);

8.1.5 Performance considerations

GEOS

GEOS (Geometry Engine, Open Source) is an optional component of a PostGIS installation. It is recom-
mended that GEOS be installed with any PostGIS instance used by GeoServer, as this allows GeoServer to
make use of its functionality when doing spatial operations. When GEOS is not available, these operations
are performed internally which can result in degraded performance.

Spatial indexing

It is strongly recommended to create a spatial index on tables with a spatial component (i.e. containing a
geometry column). Any table of which does not have a spatial index will likely respond slowly to queries.

8.1. PostGIS 167

http://trac.osgeo.org/geos/

GeoServer User Manual, Release 2.5.x

8.1.6 Common problems

Primary keys

In order to enable transactional extensions on a table (for transactional WFS), the table must have a primary
key. A table without a primary key is considered read only to GeoServer.

8.2 H2

Note: GeoServer does not come built-in with support for H2; it must be installed through an extension.
Proceed to Installing the H2 extension for installation details.

8.2.1 Installing the H2 extension

1. Download the H2 extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

8.2.2 Adding an H2 data store

Once the extension is properly installed H2 will be an option in the Vector Data Sources list when creating a
new data store.

Figure 8.3: H2 in the list of vector data stores

8.2.3 Configuring an H2 data store

8.2.4 Configuring an H2 data store with JNDI

Other data sources are supplied as GeoServer extensions. Extensions are downloadable modules that add
functionality to GeoServer. Extensions are available at the GeoServer download page.

Warning: The extension version must match the version of the GeoServer instance.

168 Chapter 8. Working with Databases

http://geoserver.org/display/GEOS/Download
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Figure 8.4: Configuring an H2 data store

8.2. H2 169

GeoServer User Manual, Release 2.5.x

8.3 ArcSDE

Note: ArcSDE support is not enabled by default and requires the ArcSDE extension to be installed prior to
use. Please see the section on Installing the ArcSDE extension for details.

ESRI’s ArcSDE is a spatial engine that runs on top of a relational database such as Oracle or SQL Server.
GeoServer with the ArcSDE extension supports ArcSDE versions 9.2 and 9.3. It has been tested with Oracle
10g and Microsoft SQL Server 2000 Developer Edition. The ArcSDE extension is based on the GeoTools
ArcSDE driver and uses the ESRI Java API libraries. See the GeoTools ArcSDE page for more technical
details.

There are two types of ArcSDE data that can be added to GeoServer: vector and raster.

8.3.1 Vector support

ArcSDE provides efficient access to vector layers, (“featureclasses” in ArcSDE jargon), over a number of
relational databases. GeoServer can set up featuretypes for registered ArcSDE featureclasses and spatial
views. For versioned ArcSDE featureclasses, GeoServer will work on the default database version, for both
read and write access.

Transactional support is enabled for featureclasses with a properly set primary key, regardless if the fea-
tureclass is managed by a user or by ArcSDE. If a featureclass has no primary key set, it will be available as
read-only.

8.3.2 Raster support

ArcSDE provides efficient access to multi-band rasters by storing the raw raster data as database blobs,
dividing it into tiles and creating a pyramid. It also allows a compression method to be set for the tiled blob
data and an interpolation method for the pyramid resampling.

All the bands comprising a single ArcSDE raster layer must have the same pixel depth, which can be one
of 1, 4, 8, 16, and 32 bits per sample for integral data types. For 8, 16 and 32 bit bands, they may be signed
or unsigned. 32 and 64 bit floating point sample types are also supported.

ArcSDE rasters may also be color mapped, as long as the raster has a single band of data typed 8 or 16 bit
unsigned.

Finally, ArcSDE supports raster catalogs. A raster catalog is a mosaic of rasters with the same spectral
properties but instead of the mosaic being precomputed, the rasters comprising the catalog are independent
and the mosaic work performed by the application at runtime.

Technical Detail Status
Compression methods LZW, JPEG
Number of bands Any number of bands except for 1 and 4 bit rasters (supported for

single-band only).
Bit depth for color-mapped
rasters

8 bit and 16 bit

Raster Catalogs Any pixel storage type

170 Chapter 8. Working with Databases

http://www.esri.com/software/arcgis/arcsde/
http://docs.geotools.org/latest/userguide/library/data/arcsde.html

GeoServer User Manual, Release 2.5.x

8.3.3 Installing the ArcSDE extension

Warning: Due to licensing requirements, not all files are included with the extension. To install ArcSDE
support, it is necessary to download additional files. Just installing the ArcSDE extension will have
no effect.

GeoServer files

1. Download the ArcSDE extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Required external files

There are two files that are required but are not packaged with the GeoServer extension:

File Notes
jsde_sdk.jarAlso known as jsde##_sdk.jar where ## is the version number, such as 92 for

ArcSDE version 9.2
jpe_sdk.jar Also known as jpe##_sdk.jar where ## is the version number, such as 92 for

ArcSDE version 9.2

You should always make sure the jsde_sdk.jar and jpe_sdk.jar versions match your ArcSDE server
version, including service pack, although client jar versions higher than the ArcSDE Server version usually
work just fine.

These two files are available on your installation of the ArcSDE Java SDK from the ArcSDE insatallation me-
dia (usually C:\Program Files\ArcGIS\ArcSDE\lib). They may also be available on ESRI’s website
if there’s a service pack containing them, but this is not guaranteed. To download these files from ESRI’s
website:

1. Navigate to http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.listPatches&PID=66

2. Find the link to the latest service pack for your version of ArcSDE

3. Scroll down to Installing this Service Pack → ArcSDE SDK → UNIX (regardless of your target OS)

4. Download any of the target files (but be sure to match 32/64 bit to your OS)

5. Open the archive, and extract the appropriate JARs.

Note: The JAR files may be in a nested archive inside this archive.

Note: The icu4j##.jar may also be on your ArcSDE Java SDK installation folder, but it is already
included as part of the the GeoServer ArcSDE extension and is not necessary to install separately.

1. When downloaded, copy the two files to the WEB-INF/lib directory of the GeoServer installation.

After all GeoServer files and external files have been downloaded and copied, restart GeoServer.

8.3. ArcSDE 171

http://geoserver.org/display/GEOS/Download
http://support.esri.com/index.cfm?fa=downloads.patchesServicePacks.listPatches&PID=66

GeoServer User Manual, Release 2.5.x

8.3.4 Adding an ArcSDE vector data store

In order to serve vector data layers, it is first necessary to register the ArcSDE instance as a data store in
GeoServer. Navigate to the New data source page, accessed from the Stores page in the Web Administration
Interface. and an option for ArcSDE will be in the list of Vector Data Stores.

Note: If ArcSDE is not an option in the Feature Data Set Description drop down box, the extension is not
properly installed. Please see the section on Installing the ArcSDE extension.

Figure 8.5: ArcSDE in the list of data sources

8.3.5 Configuring an ArcSDE vector data store

The next page contains configuration options for the ArcSDE vector data store. Fill out the form, then click
Save.

Option Re-
quired?

Description

Feature Data
Set ID

N/A The name of the data store as set on the previous page.

Enabled N/A When this box is checked the data store will be available to GeoServer
Namespace Yes The namespace associated with the data store.
Description No A description of the data store.
server Yes The URL of the ArcSDE instance.
port Yes The port that the ArcSDE instance is set to listen to. Default is 5151.
instance No The name of the specific ArcSDE instance, where applicable, depending

on the underlying database.
user Yes The username to authenticate with the ArcSDE instance.
password No The password associated with the above username for authentication

with the ArcSDE instance.
pool.minConnectionsNo Connection pool configuration parameters. See the Database Connection

Pooling section for details.
pool.maxConnectionsNo Connection pool configuration parameters. See the Database Connection

Pooling section for details.
pool.timeOut No Connection pool configuration parameters. See the Database Connection

Pooling section for details.

You may now add featuretypes as you would normally do, by navigating to the New Layer page, accessed
from the Layers page in the Web Administration Interface.

8.3.6 Configuring an ArcSDE vector data store with Direct Connect

ESRI Direct Connect[ESRI DC] allows clients to directly connect to an SDE GEODB 9.2+ without a need of
an SDE server instance, and is recommended for high availability environments, as it removes the ArcSDE
gateway server as a single point of failure. ESRI DC needs additional platform dependent binary drivers
and a working Oracle Client ENVIRONMENT (if connecting to an ORACLE DB). See Properties of a direct
connection to an ArcSDE geodatabase in the ESRI ArcSDE documentation for more information on Direct

172 Chapter 8. Working with Databases

http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/setting1995868008.htm
http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/setting1995868008.htm

GeoServer User Manual, Release 2.5.x

Figure 8.6: Configuring a new ArcSDE data store

8.3. ArcSDE 173

GeoServer User Manual, Release 2.5.x

Connect, and Setting up clients for a direct connection for information about connecting to the different
databases supported by ArcSDE.

The GeoServer configuration parameters are the same as in the Configuring an ArcSDE vector data store
section above, with a couple differences in how to format the parameters:

• server: In ESRI Direct Connect Mode a value must be given or the Direct Connect Driver will throw
an error, so just put a ‘none’ there - any String will work!

• port: In ESRI Direct Connect Mode the port has a String representation: sde:oracle10g,
sde:oracle11g:/:test, etc. For further information check ArcSDE connection syntax at the official ArcSDE
documentation from ESRI.

• instance: In ESRI Direct Connect Mode a value must be given or the Direct Connect Driver will throw
an error, so just put a ‘none’ there - any String will work!

• user: The username to authenticate with the geo database.

• password: The password associated with the above username for authentication with the geo
database.

Note: Be sure to assemble the password like: password@<Oracle Net Service name> for Oracle

You may now add featuretypes as you would normally do, by navigating to the New Layer page, accessed
from the Layers page in the Web Administration Interface.

8.3.7 Adding an ArcSDE vector data store with JNDI

8.3.8 Configuring an ArcSDE vector data store with JNDI

8.3.9 Adding an ArcSDE raster coveragestore

In order to serve raster layers (or coverages), it is first necessary to register the ArcSDE instance as a store
in GeoServer. Navigate to the Add new store page, accessed from the Stores page in the Web Administration
Interface and an option for ArcSDE Raster Format will be in list.

Note: If ArcSDE Raster Format is not an option in the Coverage Data Set Description drop down box,
the extension is not properly installed. Please see the section on Installing the ArcSDE extension.

Figure 8.7: ArcSDE Raster in the list of data sources

8.3.10 Configuring an ArcSDE raster coveragestore

The next page contains configuration options for the ArcSDE instance. Fill out the form, then click Save.

174 Chapter 8. Working with Databases

http://webhelp.esri.com/arcgisserver/9.3/java/index.htm#geodatabases/setting1995868008.htm
http://webhelp.esri.com/arcgisserver/9.3/java/geodatabases/arcsde-2034353163.htm

GeoServer User Manual, Release 2.5.x

Figure 8.8: Configuring a new ArcSDE coveragestore

8.3. ArcSDE 175

GeoServer User Manual, Release 2.5.x

Option Re-
quired?

Description

Coverage Data
Set ID

N/A The name of the coveragestore as set on the previous page.

Enabled N/A When this box is checked the coveragestore will be available to
GeoServer.

Namespace Yes The namespace associated with the coveragestore.
Type No The type of coveragestore. Leave this to say ArcSDE Raster.
URL Yes The URL of the raster, of the form

sde://<user>:<pwd>@<server>/#<tableName>.
Description No A description of the coveragestore.

You may now add coverages as you would normally do, by navigating to the Add new layer page, accessed
from the Layers page in the Web Administration Interface.

8.4 DB2

Note: GeoServer does not come built-in with support for DB2; it must be installed through an extension.
Proceed to Installing the DB2 extension for installation details.

The IBM DB2 UDB database is a commercial relational database implementing ISO SQL standards and is
similar in functionality to Oracle, SQL Server, MySQL, and PostgreSQL. The DB2 Spatial Extender is a no-
charge licensed feature of DB2 UDB which implements the OGC specification “Simple Features for SQL
using types and functions” and the ISO “SQL/MM Part 3 Spatial” standard.

A trial copy of DB2 UDB and Spatial Extender can be downloaded from: http://www-
306.ibm.com/software/data/db2/udb/edition-pde.html . There is also an “Express-C” version of DB2,
that is free, comes with spatial support, and has no limits on size. It can be found at: http://www-
306.ibm.com/software/data/db2/express/download.html

8.4.1 Installing the DB2 extension

Warning: Due to licensing requirements, not all files are included with the extension. To install DB2
support, it is necessary to download additional files. Just installing the DB2 extension will have no
effect.

GeoServer files

1. Download the DB2 extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Required external files

There are two files that are required but are not packaged with the GeoServer extension: db2jcc.jar
and db2jcc_license_cu.jar. These files should be available in the java subdirectory of your DB2

176 Chapter 8. Working with Databases

http://www-306.ibm.com/software/data/db2/udb/edition-pde.html
http://www-306.ibm.com/software/data/db2/udb/edition-pde.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://www-306.ibm.com/software/data/db2/express/download.html
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

installation directory. Copy these files to the WEB-INF/lib directory of the GeoServer installation.

After all GeoServer files and external files have been downloaded and copied, restart GeoServer.

8.4.2 Adding a DB2 data store

When properly installed, DB2 will be an option in the Vector Data Sources list when creating a new data
store.

Figure 8.9: DB2 in the list of raster data stores

8.4.3 Configuring a DB2 data store

8.4.4 Configuring a DB2 data store with JNDI

8.4.5 Notes on usage

DB2 schema, table, and column names are all case-sensitive when working with GeoTools/GeoServer.
When working with DB2 scripts and the DB2 command window, the default is to treat these names as
upper-case unless enclosed in double-quote characters.

8.5 MySQL

Note: GeoServer does not come built-in with support for MySQL; it must be installed through an extension.
Proceed to Installing the MySQL extension for installation details.

Warning: Currently the MySQL extension is unmaintained and carries unsupported status. While still
usable, do not expect the same reliability as with other extensions.

MySQL is an open source relational database with some limited spatial functionality.

8.5.1 Installing the MySQL extension

1. Download the MySQL extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

8.5. MySQL 177

http://www.mysql.com
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Figure 8.10: Configuring a DB2 data store

Figure 8.11: MySQL in the list of data sources

178 Chapter 8. Working with Databases

GeoServer User Manual, Release 2.5.x

8.5.2 Adding a MySQL database

Once the extension is properly installed MySQL will show up as an option when creating a new data store.

8.5.3 Configuring a MySQL data store

Figure 8.12: Configuring a MySQL data store

8.5. MySQL 179

GeoServer User Manual, Release 2.5.x

host The mysql server host name or ip address.
port The port on which the mysql server is accepting

connections.
database The name of the database to connect to.
user The name of the user to connect to the mysql database as.
password The password to use when connecting to the database.

Left blank for no password.
max connections
min connections
validate connections

Connection pool configuration parameters. See the
Database Connection Pooling section for details.

8.6 Oracle

Note: GeoServer does not come built-in with support for Oracle; it must be installed through an extension.
Proceed to Installing the Oracle extension for installation details.

Oracle Spatial and Locator are the spatial components of Oracle. Locator is provided with all Oracle ver-
sions, but has limited spatial functions. Spatial is Oracle’s full-featured spatial offering, but requires a
specific license to use.

8.6.1 Installing the Oracle extension

1. Download the Oracle extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

8.6.2 Consider replacing the Oracle JDBC driver

The Oracle data store zip file comes with ojdbc4.jar, an old, Oracle 10 compatible JDBC driver that nor-
mally works fine with 11g as well. However, minor glitches have been observed with 11g (issues computing
layer bounds when session initiation scripts are in use) and the driver has not been tested with 12i.

If you encounter functionality or performance issues it is advices to remote this driver and download the
latest version from the Oracle web site.

8.6.3 Adding an Oracle datastore

Once the extension is properly installed Oracle appears as an option in the Vector Data Sources list when
creating a new data store.

Figure 8.13: Oracle in the list of data sources

180 Chapter 8. Working with Databases

http://www.oracle.com/technology/products/spatial/index.html
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

8.6.4 Configuring an Oracle datastore

Figure 8.14: Configuring an Oracle datastore

Option Description
host The Oracle server host name or IP address.
port The port on which the Oracle server is accepting

connections (often this is port 1521).
database The name of the database to connect to. By default this is

interpreted as a SID name. To connect to a Service, prefix
the name with a /.

schema The database schema to access tables from. Setting this
value greatly increases the speed at which the data store
displays its publishable tables and views, so it is advisable
to set this.

user The name of the user to use when connecting to the
database.

password The password to use when connecting to the database.
Leave blank for no password.

max connections min connections
fetch size Connection timeout
validate connections

Connection pool configuration parameters. See Database
Connection Pooling for details.

Loose bbox Controls how bounding box comparisons are made against
geometries in the database. See the Using loose bounding
box section below.

8.6. Oracle 181

GeoServer User Manual, Release 2.5.x

8.6.5 Connecting to an Oracle cluster

In order to connect to an Oracle RAC one can use an almost full JDBC url as the database, provided it
starts with (it will be used verbatim and options “host” and “port” will be ignored. Here is an example
“database” value used to connect to an Oracle RAC:

(DESCRIPTION=(LOAD_BALANCE=on)(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521))(ADDRESS=(PROTOCOL=TCP)(HOST=host2) (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=service)))

More information about this syntax can be found in the Oracle documentation.

Connecting to a SID or a Service

Recent versions of Oracle support connecting to a database via either a SID name or a Service name. A SID
connection descriptor has the form: host:port:database, while a Service connection descriptor has the
format host:port/database. GeoServer uses the SID form by default. To connect via a Service, prefix
the database name configuration entry with a /.

Connecting to database through LDAP

For instance if you want to establish a connection with the jdbc thin driver
through LDAP, you can use following connect string for the input field database
ldap://[host]:[Port]/[db],cn=OracleContext,dc=[oracle_ldap_context].

If you are using referrals, enable it by placing a jndi.properties file in geoserver’s CLASSPATH, which is in
geoserver/WEB-INF/classes. This property file contains:

java.naming.referral=follow

Using loose bounding box

When the Loose bbox option is set, only the bounding box of database geometries is used in spatial
queries. This results in a significant performance gain. The downside is that some geometries may be
reported as intersecting a BBOX when they actually do not.

If the primary use of the database is through the Web Map Service this flag can be set safely, since querying
more geometries does not have any visible effect. However, if using the Web Feature Service and making use
of BBOX filtering capabilities, this flag should not be set.

Using the geometry metadata table

The Oracle data store by default looks at the MDSYS.USER_SDO* and MDSYS.ALL_SDO* views to deter-
mine the geometry type and native SRID of each geometry column. Those views are automatically pop-
ulated with information about the geometry columns stored in tables that the current user owns (for the
MDSYS.USER_SDO* views) or can otherwise access (for the MDSYS.ALL_SDO* views).

There are a few issues with this strategy:

• if the connection pool user cannot access the tables (because impersonation is used) the MDSYS views
will be empty, making it impossible to determine both the geometry type and the native SRID

• the geometry type can be specified only while building the spatial indexes, as an index constraint.
However such information is often not included when creating the indexes

• the views are populated dynamically based on the current user. If the database has thousands of
tables and users the views can become very slow

182 Chapter 8. Working with Databases

http://docs.oracle.com/cd/B28359_01/java.111/e10788/rac.htm#CHDCDFAC

GeoServer User Manual, Release 2.5.x

Starting with GeoServer 2.1.4 the administrator can address the above issues by manually creating a ge-
ometry metadata table describing each geometry column. Its presence is indicated via the Oracle datastore
connection parameter named Geometry metadata table (which may be a simple table name or a schema-
qualified one). The table has the following structure (the table name is flexible, just specify the one chosen
in the data store connection parameter):

CREATE TABLE GEOMETRY_COLUMNS(
F_TABLE_SCHEMA VARCHAR(30) NOT NULL,
F_TABLE_NAME VARCHAR(30) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(30) NOT NULL,
COORD_DIMENSION INTEGER,
SRID INTEGER NOT NULL,
TYPE VARCHAR(30) NOT NULL,
UNIQUE(F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN),
CHECK(TYPE IN (’POINT’,’LINE’, ’POLYGON’, ’COLLECTION’, ’MULTIPOINT’, ’MULTILINE’, ’MULTIPOLYGON’, ’GEOMETRY’)));

When the table is present the store first searches it for information about each geometry column to be
classified, and falls back on the MDSYS views only if the table does not contain any information.

8.6.6 Configuring an Oracle database with JNDI

See Setting up a JNDI connection pool with Tomcat for a guide on setting up an Oracle connection using JNDI.

8.7 Microsoft SQL Server and SQL Azure

Note: GeoServer does not come built-in with support for SQL Server; it must be installed through an
extension. Proceed to Installing the SQL Server extension for installation details.

Microsoft’s SQL Server is a relational database with spatial functionality. SQL Azure is the database option
provided in the Azure cloud solution which is in many respects similar to SQL Server 2008.

8.7.1 Supported versions

The extension supports SQL Server 2008 and SQL Azure.

8.7.2 Installing the SQL Server extension

Warning: Due to licensing requirements, not all files are included with the extension. To install SQL
Server support, it is necessary to download additional files.

GeoServer files

1. Download the SQL Server extension from the GeoServer download page.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

8.7. Microsoft SQL Server and SQL Azure 183

http://www.microsoft.com/sqlserver/2008
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Microsoft files

1. Navigate to Microsoft’s JDBC driver for SQL Server and SQL Azure download page.

2. Extract the contents of the archive

3. If you are running Java 6 or above, copy the file sqljdbc4.jar to the WEB-INF/lib directory of
the GeoServer installation. If you are running Java 5 instead (supported up to GeoServer 2.1.x) copy
the file sqljdbc.jar to the WEB-INF/lib directory

4. For GeoServer installed on Windows, copy \x86\sqljdbc_auth.dll and
\x86\sqljdbc_xa.dll to C:\Windows\System32

8.7.3 Adding a SQL Server database

Once the extension is properly installed SQL Server will show up as an option when creating a new data
store.

Figure 8.15: SQL Server in the list of vector data sources

8.7.4 Configuring a SQL Server data store

host The sql server instance host name or ip address, only. Note that
server\instance notation is not accepted - specify the port below, instead,
if you have a non-default instance.

port The port on which the SQL server instance is accepting connections. See the
note below.

database The name of the database to connect to. Might be left blank if the user
connecting to SQL Server has a “default database” set in the user configuration

schema The database schema to access tables from (optional).
user The name of the user to connect to the oracle database as.
password The password to use when connecting to the database. Leave blank for no

password.
max connections
min connections

Connection pool configuration parameters. See the Database Connection Pooling
section for details. If you are connecting to SQL Azure make sure to set the
validate connections flag as SQL Azure closes inactive connections after
a very short delay.

Determining the port used by the SQL Server instance

You can determine the port in use by connecting to your SQL server instance using some other software,
and then using netstat to display details on network connections. In the following example on a Windows
PC, the port is 2646

C:\>netstat -a | find "sql1"
TCP DPI908194:1918 maittestsql1.dpi.nsw.gov.au:2646 ESTABLISHED

184 Chapter 8. Working with Databases

http://www.microsoft.com/download/en/details.aspx?id=19847

GeoServer User Manual, Release 2.5.x

Figure 8.16: Configuring a SQL Server data store

8.7. Microsoft SQL Server and SQL Azure 185

GeoServer User Manual, Release 2.5.x

Using the geometry metadata table

The SQL server data store can determine the geometry type and native SRID of a particular column only
by data inspection, by looking at the first row in the table. Of course this is error prone, and works only if
there is data in the table. The administrator can address the above issue by manually creating a geometry
metadata table describing each geometry column. Its presence is indicated via the SQL Server datastore
connection parameter named Geometry metadata table (which may be a simple table name or a schema-
qualified one). The table has the following structure (the table name is flexible, just specify the one chosen
in the data store connection parameter):

CREATE TABLE GEOMETRY_COLUMNS(
F_TABLE_SCHEMA VARCHAR(30) NOT NULL,
F_TABLE_NAME VARCHAR(30) NOT NULL,
F_GEOMETRY_COLUMN VARCHAR(30) NOT NULL,
COORD_DIMENSION INTEGER,
SRID INTEGER NOT NULL,
TYPE VARCHAR(30) NOT NULL,
UNIQUE(F_TABLE_SCHEMA, F_TABLE_NAME, F_GEOMETRY_COLUMN),
CHECK(TYPE IN (’POINT’,’LINE’, ’POLYGON’, ’COLLECTION’, ’MULTIPOINT’, ’MULTILINE’, ’MULTIPOLYGON’, ’GEOMETRY’)));

When the table is present the store first searches it for information about each geometry column to be
classified, and falls back on data inspection only if the table does not contain any information.

8.8 Teradata

Note: Teradata database support is not enabled by default and requires the Teradata extension to be
installed prior to use. Please see the section on Installing the Teradata extension for details.

The Teradata Database is a commercial relational database (RDBMS) that specializes in parallel processing
and scalability. From version 12.0, Teradata has added geospatial support, closely following the SQL/MM
standard (SQL Multimedia and Applications Packages). Geospatial support was available through an add-
on in version 12.0 and became standard in version 13.0.

GeoServer connects to a Teradata database via JDBC.

For more information on Teradata and the Teradata Database system, please go to
http://www.teradata.com.

8.8.1 Compatibility

The GeoServer Teradata extension is compatible with GeoServer 2.1.1 and higher. GeoServer can connect
to Teradata databases version 12.0 or higher. Version 12.0 of the Teradata Database requires the optional
geospatial extension to be installed.

8.8.2 Read/write access

The Teradata datastore in GeoServer supports full transactional capabilities, including feature creation,
editing, and deleting.

To support editing, a table must have one of the following:

• a primary key

• a unique primary index

186 Chapter 8. Working with Databases

http://www.teradata.com

GeoServer User Manual, Release 2.5.x

• an identity (sequential) column

Note: It is not recommended to solely use an identity column, as spatial index triggers are not supported
when referencing an identity column. See the section on Spatial Indexes for more details.

8.8.3 Query Banding

The GeoServer Teradata extension supports Query Banding. Query Banding is a feature which allows any
application to associate context information with each query it issues to the database. In practice this can
be used for purposes of workload management (i.e. request prioritization), debugging, and logging.

GeoServer sends the following information as part of a standard request:

• Name of application (i.e. GeoServer)

• Authenticated username (if set up)

• Hostname (if available)

• Type of statement (i.e. “SELECT”, “INSERT”, “DELETE”)

It is not possible to modify this information from within GeoServer.

8.8.4 Spatial indexes

GeoServer will read from a spatial index if its exists. The convention for a spatial index table name is:

[TABLENAME]_[GEOMETRYCOLUMN]_idx

So for a layer called “STATES” with a geometry column called “GEOM”, the index table should be called
STATES_GEOM_idx.

Warning: Make sure to match the case of all tables and columns. If the geometry column is called
“GEOM” (upper case) and the index created is called STATES_geom_idx (lower case), the index will not
be properly linked to the table.

This index table should contain two columns:

• A column that maps to the primary key of the spatial data table

• The tessellation cell ID (cellid)

The tessellation cell ID is the ID of the cell where that feature is contained.

8.8.5 Geometry column

As per the SQL/MM standard, in order to make a Teradata table spatially enabled, an entry needs to be
created for that table in the geometry_columns table. This table is stored, like all other spatially-related
tables, in the SYSSPATIAL database.

8.8.6 Tessellation

Tessellation is the name of Teradata’s spatial index. In order to activate tessellation for a given layer, an
entry (row) needs to be placed in the SYSSPATIAL.tessellation table. This table should have the
following schema:

8.8. Teradata 187

GeoServer User Manual, Release 2.5.x

Table name Type Description
F_TABLE_SCHEMA varchar Name of the spatial database/schema containing the table
F_TABLE_NAME varchar Name of the spatial table
F_GEOMETRY_COLUMN varchar Column that contains the spatial data
U_XMIN float Minimum X value for the tessellation universe
U_YMIN float Minimum Y value for the tessellation universe
U_XMAX float Maximum X value for the tessellation universe
U_YMAX float Maximum Y value for the tessellation universe
G_NX integer Number of X grids
G_NY integer Number of Y grids
LEVELS integer Number of levels in the grid
SCALE float Scale value for the grid
SHIFT float Shift value for the grid

Warning: The tessellation table values are case sensitive and so must match the case of the tables and
columns.

8.8.7 Installing the Teradata extension

Teradata database support is not enabled by default and requires the GeoServer Teradata extension to be
installed prior to use. In addition to this extension, an additional artifact will need to be downloaded from
the Teradata website.

GeoServer artifacts

1. Download the Teradata extension from the download page that matches your version of GeoServer.
The extension is listed at the bottom of the download page under Extensions.

Warning: Make sure to match the version of the extension to the version of GeoServer!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

Teradata artifacts

In addition to the GeoServer artifacts, it is also necessary to download the Teradata JDBC driver. This file
cannot be redistributed and so must be downloaded directly from the Teradata website.

1. Download the Teradata JDBC driver at https://downloads.teradata.com/download/connectivity/jdbc-
driver.

Note: You will need to log in to Teradata’s site in order to download this artifact.

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

When all files have been downloaded and extracted, restart GeoServer. To verify that the installation was
successful, see the section on Adding a Teradata datastore.

Note: The full list of files required are:

• gt-jdbc-teradata-<version>.jar

• tdgssconfig.jar

188 Chapter 8. Working with Databases

http://geoserver.org/display/GEOS/Stable
https://downloads.teradata.com/download/connectivity/jdbc-driver
https://downloads.teradata.com/download/connectivity/jdbc-driver

GeoServer User Manual, Release 2.5.x

• terajdbc4.jar

8.8.8 Adding a Teradata datastore

Once the extension has been added, it will now be possible to load an existing Teradata database as a store
in GeoServer. In the Web Administration Interface, click on Stores then go to Add a new Store. You will see a
option, under Vector Data Stores, for Teradata. Select this option.

Figure 8.17: Teradata in the list of readable stores

Note: If you don’t Teradata in this list, the extension has not been installed properly. Please ensure that the
steps in the Installing the Teradata extension have been followed correctly.

On the next screen, enter in the details on how to connect to the Teradata database. You will need to include
the following information:

8.8. Teradata 189

GeoServer User Manual, Release 2.5.x

Option Description
Workspace Name of the workspace to contain the database. This will also be the prefix of any

layers server from tables in the database.
Data Source Name Name of the database in GeoServer. This can be different from the name of the

Teradata database, if desired.
Description Description of the database/store.
Enabled Enables the store. If disabled, no layers from the database will be served.
host Host name where the database exists. Can be a URL or IP address.
port Port number on which to connect to the above host.
database Name of the Teradata database.
user User name to connect to use to connect to the database.
passwd Password associated with the above user.
namespace Namespace to be associated with the database. This field is altered automatically

by the above Workspace field.
Expose primary
keys

Exposes primary key as a standard attribute.

max connections Maximum amount of open/pooled connections to the database.
min connections Minimum number of open/pooled connections.
fetch size Number of records read with each interaction with the database.
Connection timeout Time (in seconds) the connection pool will wait before timing out.
validate connections Checks the connection is alive before using it.
Primary key
metadata table

Name of primary key metadata table to use if unable to determine the primary
key of a table.

Loose bbox If checked, performs only the primary filter on the bounding box.
tessellationTable The name of the database table that contains the tessellations
estimatedBounds Enables using the geometry_columns/tessellation table bounds as an estimation

instead of manual calculation.
Max open prepared
statements

The maximum number of prepared statements.

When finished, click Save.

Using JNDI

GeoServer can also connect to a Teradata database using JNDI (Java Naming and Directory Interface).

To begin, in the Web Administration Interface, click on Stores then go to Add a new Store. You will see a option,
under Vector Data Stores, for Teradata (JNDI). Select this option.

On the next screen, enter in the details on how to connect to the Teradata database. You will need to include
the following information:

190 Chapter 8. Working with Databases

http://www.oracle.com/technetwork/java/jndi/index.html

GeoServer User Manual, Release 2.5.x

Figure 8.18: Adding a Teradata store

Figure 8.19: Teradata (JNDI) in the list of readable stores

8.8. Teradata 191

GeoServer User Manual, Release 2.5.x

Option Description
Workspace Name of the workspace to contain the database. This will also be the prefix of any

layers server from tables in the database.
Data Source
Name

Name of the database in GeoServer. This can be different from the name of the
Teradata database, if desired.

Description Description of the database/store.
Enabled Enables the store. If disabled, no layers from the database will be served.
jndiReference-
Name

JNDI path to the database.

schema Schema for the above database.
namespace Namespace to be associated with the database. This field is altered by changing the

workspace name.
Expose primary
keys

Exposes primary key as a standard attribute.

Primary key
metadata table

Name of primary key metadata table to use if unable to determine the primary key
of a table.

Loose bbox If checked, performs only the primary filter on the bounding box.

When finished, click Save.

Figure 8.20: Adding a Teradata store with JNDI

192 Chapter 8. Working with Databases

GeoServer User Manual, Release 2.5.x

8.8.9 Adding layers

One the store has been loaded into GeoServer, the process for loading data layers from database tables is
the same as any other database source. Please see the Layers section for more information.

Note: Only those database tables that have spatial information and an entry in the
SYSSPATIAL.geometry_columns table can be served through GeoServer.

GeoServer provides extensive facilities for controlling how databases are accessed. These are covered in the
following sections.

8.9 Database Connection Pooling

When serving data from a spatial database connection pooling is an important aspect of achieving good per-
formance. When GeoServer serves a request that involves loading data from a database table, a connection
must first be established with the database. This connection comes with a cost as it takes time to set up such
a connection.

The purpose served by a connection pool is to maintain connection to an underlying database between
requests. The benefit of which is that connection setup only need to occur once on the first request. Subse-
quent requests use existing connections and achieve a performance benefit as a result.

Whenever a data store backed by a database is added to GeoServer an internal connection pool is created.
This connection pool is configurable.

8.9.1 Connection pool options

max
connections

The maximum number of connections the pool can hold. When the maximum number of
connections is exceeded, additional requests that require a database connection will be
halted until a connection from the pool becomes available. The maximum number of
connections limits the number of concurrent requests that can be made against the
database.

min
connections

The minimum number of connections the pool will hold. This number of connections is
held even when there are no active requests. When this number of connections is
exceeded due to serving requests additional connections are opened until the pool
reaches its maximum size (described above).

validate
connections

Flag indicating whether connections from the pool should be validated before they are
used. A connection in the pool can become invalid for a number of reasons including
network breakdown, database server timeout, etc.. The benefit of setting this flag is that
an invalid connection will never be used which can prevent client errors. The downside
of setting the flag is that a performance penalty is paid in order to validate connections.

fetch size The number of records read from the database in each network exchange. If set too low
(<50) network latency will affect negatively performance, if set too high it might
consume a significant portion of GeoServer memory and push it towards an Out Of
Memory error. Defaults to 1000.

connection
timeout

Time, in seconds, the connection pool will wait before giving up its attempt to get a new
connection from the database. Defaults to 20 seconds.

8.9. Database Connection Pooling 193

GeoServer User Manual, Release 2.5.x

8.10 JNDI

Many data stores and connections in GeoServer have the option of utilizing Java Naming and Directory
Interface on JNDI. JNDI allows for components in a Java system to look up other objects and data by a
predefined name.

A common use of JNDI is to store a JDBC data source globally in a container. This has a few benefits.
First, it can lead to a much more efficient use of database resources. Database connections in Java are
very resource-intensive objects, so usually they are pooled. If each component that requires a database
connection is responsible for creating their own connection pool, resources will stack up fast. In addition,
often those resources are under-utilized and a component may not size its connection pool accordingly. A
more efficient method is to set up a global pool at the servlet container level, and have every component
that requires a database connection use that.

Furthermore, JNDI consolidates database connection configuration, as not every component that requires a
database connection needs to know any more details than the JNDI name. This is very useful for adminis-
trators who may have to change database parameters in a running system, as it allows the change to occur
in a single place.

8.11 SQL Views

The traditional way to access database data is is to configure layers against either tables or database views.
Starting with GeoServer 2.1.0, layers can also be defined as SQL Views. SQL Views allow executing a
custom SQL query on each request to the layer. This avoids the need to create a database view for complex
queries.

Even more usefully, SQL View queries can be parameterized via string substitution. Parameter values can
be supplied in both WMS and WFS requests. Default values can be supplied for parameters, and input
values can be validated by Regular Expressions to eliminate the risk of SQL injection attacks.

SQL Views are read-only, and thus cannot be updated by WFS-T transactions.

8.11.1 Creating a SQL View

In order to create a SQL View the administrator invokes the Create new layer page. When a database store
is selected, the usual list of tables and views available for publication appears, A link Configure new SQL
view... also appears:

Selecting the Configure new SQL view... link opens a new page where the SQL view query can be specified:

Note: The query can be any SQL statement that is valid as a subquery in a FROM clause (that is, select
* from (<the sql view>) [as] vtable). This is the case for most SQL statements, but in some
databases special syntax may be needed to call stored procedures. Also, all the columns returned by the
SQL statement must have names. In some databases alias names are required for function calls.

When a valid SQL query has been entered, press the Refresh link in the Attributes table to get the list of the
attribute columns determined from the query:

GeoServer attempts to determine the geometry column type and the native SRID, but these should be
verified and corrected if necessary.

Note: Having a correct SRID (spatial reference id) is essential for spatial queries to work. In many spatial
databases the SRID is equal to the EPSG code for the specific spatial reference system, but this is not always
the case (for instance, Oracle has a number of non-EPSG SRID codes).

194 Chapter 8. Working with Databases

http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface
http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface

GeoServer User Manual, Release 2.5.x

8.11. SQL Views 195

GeoServer User Manual, Release 2.5.x

If stable feature ids are desired for the view’s features, one or more columns providing a unique id for the
features should be checked in the Identifier column. Always ensure these attributes generate a unique key,
or filtering and WFS requests will not work correctly.

Once the query and the attribute details are defined, press Save. The usual New Layer configuration page
will appear. If further changes to the view are required, the page has a link to the SQL View editor at the
bottom of the Data tab:

Once created, the SQL view layer is used in the same way as a conventional table-backed layer, with the
one limitation of being read-only.

8.11.2 Parameterizing SQL Views

A parametric SQL view is based on a SQL query containing named parameters. The values for the param-
eters can be provided dynamically in WMS and WFS requests using the viewparams request parameter.
Parameters can have default values specified, to handle the situation where they are not supplied in a re-
quest. Validation of supplied parameter values is supported by specifying validation regular expressions.
Parameter values are only accepted if they match the regular expression defined for them. Appropriate
parameter validation should always be used to avoid the risk of SQL injection attacks.

Warning: SQL View parameter substitution should be used with caution, since improperly validated
parameters open the risk of SQL injection attack. Where possible, consider using safer methods such as
dynamic filtering in the request, or Variable substitution in SLD.

Defining parameters

Within the SQL View query, parameter names are delimited by leading and trailing % signs. The parameters
can occur anywhere within the query text, including such uses as within SQL string constants, in place of
SQL keywords, or representing entire SQL clauses.

Here is an example of a SQL View query for a layer called popstateswith two parameters, low and high:

196 Chapter 8. Working with Databases

http://en.wikipedia.org/wiki/SQL_injection

GeoServer User Manual, Release 2.5.x

Each parameter needs to be defined with its name, an optional default value, and a validation expression.
The Guess parameters from SQL link can be clicked to infer the query parameters automatically, or they can
be entered manually. The result is a table filled with the parameter names, default values and validation
expressions:

In this case the default values should be specified, since the query cannot be executed without values for the
parameters (because the expanded query select gid, state_name, the_geom from pgstates
where persons between and is invalid SQL). Since the use of the parameters in the SQL query re-
quires their values to be positive integer numbers, the validation regular expressions are specified to allow
only numeric input (i.e. ^[\d]+$):

Once the parameters have been defined, the Attributes Refresh link is clicked to parse the query and re-
trieve the attribute columns. The computed geometry type and column identifier details can be corrected if
required. From this point on the workflow is the same as for a non-parameterized query.

Using a parametric SQL View

The SQL view parameters are specified by adding the viewparams parameter to the WMS GetMap or
the WFS GetFeature request. The viewparams argument is a list of key:value pairs, separated by
semicolons:

viewparams=p1:v1;p2:v2;...

If the values contain semicolons or commas these must be escaped with a backslash (e.g. \, and \;).

For example, the popstates SQL View layer can be displayed by invoking the Layer Preview. Initially no
parameter values are supplied, so the defaults are used and all the states are displayed,

To display all states having more than 20 million inhabitants the following parameter is added to the
GetMap request: &viewparams=low:20000000

To display all states having between 2 and 5 millions inhabitants the view parameters are:
&viewparams=low:2000000;high:5000000

Parameters can be provided for multiple layers by separating each parameter map with a comma:

&viewparams=l1p1:v1;l1p2:v2,l2p1:v1;l2p2:v2,...

The number of parameter maps must match the number of layers (featuretypes) included in the request.

8.11. SQL Views 197

GeoServer User Manual, Release 2.5.x

Parameters and validation

The value of a SQL View parameter can be an arbitrary string of text. The only constraint is that the attribute
names and types returned by the view query must never change. This makes it possible to create views
containing parameters representing complex SQL fragments. For example, using the view query select

* from pgstates %where% allows specifying the WHERE clause of the query dynamically. However,
this would likely require an empty validation expression. which presents a serious risk of SQL injection
attacks. This technique should only be used if access to the server is restricted to trusted clients.

In general, SQL parameters must be used with care. They should always include validation regular ex-
pressions that accept only the intended parameter values. Note that while validation expressions should
be constructed to prevent illegal values, they do not necessarily have to ensure the values are syntactically
correct, since this will be checked by the database SQL parser. For example:

• ^[\d\.\+-eE]+$ checks that a parameter value contains valid characters for floating-point numbers
(including scientific notation), but does not check that the value is actually a valid number

• [^;’]+ checks that a parameter value does not contain quotes or semicolons. This prevents common
SQL injection attacks, but otherwise does not impose much limitation on the actual value

Resources for Validation Regular expressions

Defining effective validation regular expressions is important for security. Regular expressions are a com-
plex topic that cannot be fully addressed here. The following are some resources for constructing regular
expressions:

• GeoServer uses the standard Java regular expression engine. The Pattern class Javadocs contain the

198 Chapter 8. Working with Databases

http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/SQL_injection
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

GeoServer User Manual, Release 2.5.x

full specification of the allowed syntax.

• http://www.regular-expressions.info has many tutorials and examples of regular expressions.

• The myregexp applet can be used to test regular expressions online.

8.12 Controlling feature ID generation in spatial databases

8.12.1 Introduction

All spatial database data stores (PostGIS, Oracle, MySQL and so on) normally derive the feature ID the
table primary key and assume certain conventions on how to locate the next value for the key in case a new
feature needs to be generated (WFS insert operation).

Common conventions rely on finding auto-increment columns (PostGIS) or finding a sequence that is
named after a specific convention such as <table>_<column>_SEQUENCE (Oracle case).

In case none of the above is found normally the store will fall back on generating random feature IDs at
each new request, making the table unsuitable for feature ID based searches and transactions.

8.12.2 Metadata table description

These defaults can be overridden manually by creating a primary key metadata table that specifies which
columns to use and what strategy to use to generate new primary key values. The table can be created with
this SQL statement (this one is valid for PostGIS and ORACLE, adapt it to your specific database, you may
remove the check at the end if you want to):

--PostGIS DDL

CREATE TABLE gt_pk_metadata_table (
table_schema VARCHAR(32) NOT NULL,
table_name VARCHAR(32) NOT NULL,
pk_column VARCHAR(32) NOT NULL,
pk_column_idx INTEGER,
pk_policy VARCHAR(32),
pk_sequence VARCHAR(64),
unique (table_schema, table_name, pk_column),
check (pk_policy in (’sequence’, ’assigned’, ’autoincrement’))

)

--ORACLE DDL

CREATE TABLE gt_pk_metadata_table (
table_schema VARCHAR2(32) NOT NULL,
table_name VARCHAR2(32) NOT NULL,
pk_column VARCHAR2(32) NOT NULL,
pk_column_idx NUMBER(38),
pk_policy VARCHAR2(32),
pk_sequence VARCHAR2(64),
constraint chk_pk_policy check (pk_policy in (’sequence’, ’assigned’, ’autoincrement’)));

CREATE UNIQUE INDEX gt_pk_metadata_table_idx01 ON gt_pk_metadata_table (table_schema, table_name, pk_column);

The table can be given a different name, in that case the name (eventually schema qualified) of the table
must be specified in the primary key metadata table configuration parameter of the store.

8.12. Controlling feature ID generation in spatial databases 199

http://www.regular-expressions.info
http://myregexp.com/

GeoServer User Manual, Release 2.5.x

The following table describes the meaning of each column in the metadata table.

Column Description
ta-
ble_schema

Name of the database schema in which the table is located.

ta-
ble_name

Name of the table to be published

pk_column Name of a column used to form the feature IDs
pk_column_idxIndex of the column in a multi-column key. In case multi column keys are needed multiple

records with the same table schema and table name will be used.
pk_policy The new value generation policy, used in case a new feature needs to be added in the table

(following a WFS-T insert operation).
pk_sequenceThe name of the database sequence to be used when generating a new value for the

pk_column.

The possible values are:

• assigned. The value of the attribute in the newly inserted feature will be used (this assumes the “expose
primary keys” flag has been enabled)

• sequence. The value of the attribute will be generated from the next value of a sequence indicated in
the “pk_sequence” column.

• autogenerated. The column is an auto-increment one, the next value in the auto-increment will be used.

8.12.3 Using the metadata table with views

GeoServer can publish spatial views without issues, but normally results in two side effects:

• the view is treated as read only

• the feauture IDs are randomly generated

The metadata table can also refer to views, just use the view name in the table_name column: this will
result in stable ids, and in databases supporting updatable views, it will also make the code treat the view
as writable (thus, enabling usage of WFS-T on it).

8.13 Custom SQL session start/stop scripts

Starting with version 2.1.4 GeoServer support custom SQL scripts that can be run every time GeoServer
grabs a connection from the connection pool, and every time the sesion is returned to the pool.

These scripts can be parametrized with the expansion of environment variables, which can be in turn set
into the OGC request parameters with the same mechanism as Variable substitution in SLD.

In addition to the parameters provided via the request the GSUSER variable is guaranteed to contain the
current GeoServer user, or be null if no authentication is available. This is useful if the SQL sessions scripts
are used to provide tight control over database access

The SQL script can expand environment variables using the ${variableName, defaultValue} syntax,
for example the following alters the current database user to be the same as the GeoServer current user, or
geoserver in case no user was authenticated

SET SESSION AUTHORIZATION ${GSUSER,geoserver}

200 Chapter 8. Working with Databases

GeoServer User Manual, Release 2.5.x

8.14 Using SQL session scripts to control authorizations at the
database level

GeoServer connects to a database via a connection pool, using the same rights as the user that is specified in
the connection pool setup. In a setup that provides a variety of services and tables the connection pool user
must have a rather large set of rights, such as table selection (WMS), table insert/update/delete (WFS-T)
and even table creation (data upload via RESTConfig, WPS Import process and eventual new processes
leveraging direct database connections).

What a user can do can be controlled by means of the GeoServer security subsystem, but in high security
setups this might not be considered enough, and a database level access control be preferred instead. In
these setups normally the connection pool user has limited access, such as simple read only access, while
specific users are allowed to perform more operations.

When setting up such a solution remember the following guidelines:

• The connection pool user must be able to access all table metadata regardless of whether it is able
to actually perform a select on the tables (dictionary tables/describe functionality must be always
accessible)

• The connection pool must see each and every column of tables and views, in other words, the structure
of the tables must not change as the current user changes

• the database users and the GeoServer user must be kept in synch with some external tools, GeoServer
provides no out of the box facilities

• during the GeoServer startup the code will access the database to perform some sanity checks, in that
moment there is no user authenticated in GeoServer so the code will run under whatever user was
specified as the “default value” for the GSUSER variable.

• The user that administers GeoServer (normally admin, but it can be renamed, and other users given
the administration roles too) must also be a database user, all administrative access on the GeoServer
GUI will have that specific user controlling the session

Typical use cases:

• Give insert/update/delete rights only to users that must use WFS-T

• Only allow the administrator to create new tables

• Limit what rows of a table a user can see by using dynamic SQL views taking into account the current
user to decide what rows to return

To make a point in case, if we want the PostgreSQL session to run with the current GeoServer user creden-
tials the following scripts will be used:

The first command makes the database session use either the current GeoServer user, or the geoserver
user if no authentication was available (anonymous user, or startup situation). The second command resets
the session to the rights of the connection pool user.

8.14. Using SQL session scripts to control authorizations at the database level 201

GeoServer User Manual, Release 2.5.x

Figure 8.21: Setting up session authorization for PostgreSQL

202 Chapter 8. Working with Databases

CHAPTER 9

Working with Application Schemas

The application schema support (app-schema) extension provides support for Complex Features in
GeoServer WFS.

Note: You must install the app-schema plugin to use Application Schema Support.

GeoServer provides support for a broad selection of simple feature data stores, including property files,
shapefiles, and JDBC data stores such as PostGIS and Oracle Spatial. The app-schema module takes one or
more of these simple feature data stores and applies a mapping to convert the simple feature types into one
or more complex feature types conforming to a GML application schema.

Figure 9.1: Three tables in a database are accessed using GeoServer simple feature support and converted into two
complex feature types.

The app-schema module looks to GeoServer just like any other data store and so can be loaded and used to
service WFS requests. In effect, the app-schema data store is a wrapper or adapter that converts a simple
feature data store into complex features for delivery via WFS. The mapping works both ways, so queries
against properties of complex features are supported.

9.1 Complex Features

To understand complex features, and why you would want use them, you first need to know a little about
simple features.

203

GeoServer User Manual, Release 2.5.x

9.1.1 Simple features

A common use of GeoServer WFS is to connect to a data source such as a database and access one or more
tables, where each table is treated as a WFS simple feature type. Simple features contain a list of properties
that each have one piece of simple information such as a string or number. (Special provision is made for
geometry objects, which are treated like single items of simple data.) The Open Geospatial Consortium
(OGC) defines three Simple Feature profiles; SF-0, SF-1, and SF-2. GeoServer simple features are close to
OGC SF-0, the simplest OGC profile.

GeoServer WFS simple features provide a straightforward mapping from a database table or similar struc-
ture to a “flat” XML representation, where every column of the table maps to an XML element that usually
contains no further structure. One reason why GeoServer WFS is so easy to use with simple features is that
the conversion from columns in a database table to XML elements is automatic. The name of each element
is the name of the column, in the namespace of the data store. The name of the feature type defaults to the
name of the table. GeoServer WFS can manufacture an XSD type definition for every simple feature type it
serves. Submit a DescribeFeatureType request to see it.

Benefits of simple features

• Easy to implement

• Fast

• Support queries on properies, including spatial queries on geometries

Drawbacks of simple features

• When GeoServer automatically generates an XSD, the XML format is tied to the database schema.

• To share data with GeoServer simple features, participants must either use the same database schema
or translate between different schemas.

• Even if a community could agree on a single database schema, as more data owners with different
data are added to a community, the number of columns in the table becomes unmanageable.

• Interoperability is difficult because simple features do not allow modification of only part of the
schema.

Simple feature example

For example, if we had a database table stations containing information about GPS stations:

| id | code | name | location |
+----+------+----------------+--------------------------+
| 27 | ALIC | Alice Springs | POINT(133.8855 -23.6701) |
| 4 | NORF | Norfolk Island | POINT(167.9388 -29.0434) |
| 12 | COCO | Cocos | POINT(96.8339 -12.1883) |
| 31 | ALBY | Albany | POINT(117.8102 -34.9502) |

GeoServer would then be able to create the following simple feature WFS response fragment:

<gps:stations gml:id="stations.27">
<gps:code>ALIC</gps:code>
<gps:name>Alice Springs</gps:name>
<gps:location>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">

204 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<gml:pos>-23.6701 133.8855</gml:pos>
</gml:Point>

</gps:location>
</gps:stations>

• Every row in the table is converted into a feature.

• Every column in the table is converted into an element, which contains the value for that row.

• Every element is in the namespace of the data store.

• Automatic conversions are applied to some special types like geometries, which have internal struc-
ture, and include elements defined in GML.

9.1.2 Complex features

Complex features contain properties that can contain further nested properties to arbitrary depth. In par-
ticular, complex features can contain properties that are other complex features. Complex features can be
used to represent information not as an XML view of a single table, but as a collection of related objects of
different types.

Simple feature Complex feature
Properties are single data item, e.g. text, number,
geometry

Properties can be complex, including complex
features

XML view of a single table Collection of related identifiable objects
Schema automatically generated based on database Schema agreed by community
One large type Multiple different types
Straightforward Richly featured data standards
Interoperability relies on simplicity and
customisation

Interoperability through standardisation

Benefits of complex features

• Can define information model as an object-oriented structure, an application schema.

• Information is modelled not as a single table but as a collection of related objects whose associations
and types may vary from feature to feature (polymorphism), permitting rich expression of content.

• By breaking the schema into a collection of independent types, communities need only extend those
types they need to modify. This simplifies governance and permits interoperability between related
communities who can agree on common base types but need not agree on application-specific sub-
types..

Drawbacks of complex features

• More complex to implement

• Complex responses might slower if more database queries are required for each feature.

• Information modelling is required to standardise an application schema. While this is beneficial, it
requires effort from the user community.

9.1. Complex Features 205

GeoServer User Manual, Release 2.5.x

Complex feature example

Let us return to our stations table and supplement it with a foreign key gu_id that describes the rela-
tionship between the GPS station and the geologic unit to which it is physically attached:

| id | code | name | location | gu_id |
+----+------+----------------+--------------------------+-------+
| 27 | ALIC | Alice Springs | POINT(133.8855 -23.6701) | 32785 |
| 4 | NORF | Norfolk Island | POINT(167.9388 -29.0434) | 10237 |
| 12 | COCO | Cocos | POINT(96.8339 -12.1883) | 19286 |
| 31 | ALBY | Albany | POINT(117.8102 -34.9502) | 92774 |

The geologic unit is is stored in the table geologicunit:

| gu_id | urn | text |
+-------+---------------------------------------+---------------------+
| 32785 | urn:x-demo:feature:GeologicUnit:32785 | Metamorphic bedrock |
...

The simple features approach would be to join the stations table with the geologicunit table into one
view and then deliver “flat” XML that contained all the properties of both. The complex feature approach
is to deliver the two tables as separate feature types. This allows the relationship between the entities to be
represented while preserving their individual identity.

For example, we could map the GPS station to a sa:SamplingPoint with a gsml:GeologicUnit. The
these types are defined in the following application schemas respectively:

• http://schemas.opengis.net/sampling/1.0.0/sampling.xsd

– Documentation: OGC 07-002r3: http://portal.opengeospatial.org/files/?artifact_id=22467

• http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd

– Documentation: http://www.geosciml.org/geosciml/2.0/doc/

The complex feature WFS response fragment could then be encoded as:

<sa:SamplingPoint gml:id="stations.27>
<gml:name codeSpace="urn:x-demo:SimpleName">Alice Springs</gml:name>
<gml:name codeSpace="urn:x-demo:IGS:ID">ALIC</gml:name>
<sa:sampledFeature>

<gsml:GeologicUnit gml:id="geologicunit.32785">
<gml:description>Metamorphic bedrock</gml:description>
<gml:name codeSpace="urn:x-demo:Feature">urn:x-demo:feature:GeologicUnit:32785</gml:name>

</gsml:GeologicUnit>
</sa:sampledFeature>
<sa:relatedObservation xlink:href="urn:x-demo:feature:GeologicUnit:32785" />
<sa:position>

<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>-23.6701 133.8855</gml:pos>

</gml:Point>
</sa:position>

</sa:SamplingPoint>

• The property sa:sampledFeature can reference any other feature type, inline (included in the re-
sponse) or by reference (an xlink:href URL or URN). This is an example of the use of polymor-
phism.

• The property sa:relatedObservation refers to the same GeologicUnit as sa:sampledFeature,
but by reference.

206 Chapter 9. Working with Application Schemas

http://schemas.opengis.net/sampling/1.0.0/sampling.xsd
http://portal.opengeospatial.org/files/?artifact_id=22467
http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd
http://www.geosciml.org/geosciml/2.0/doc/

GeoServer User Manual, Release 2.5.x

• Derivation of new types provides an extension point, allowing information models to be reused and
extended in a way that supports backwards compatibility.

• Multiple sampling points can share a single GeologicUnit. Application schemas can also define mul-
tivalued properties to support many-to-one or many-to-many associations.

• Each GeologicUnit could have further properties describing in detail the properties of the rock, such
as colour, weathering, lithology, or relevant geologic events.

• The GeologicUnit feature type can be served separately, and could be uniquely identified through its
properties as the same instance seen in the SamplingPoint.

Portrayal complex features (SF0)

Portrayal schemas are standardised schemas with flat attributes, also known as simple feature level 0 (SF0).
Because a community schema is still required (e.g. GeoSciML-Portrayal), app-schema plugin is still used to
map the database columns to the attributes.

• WFS CSV output format is supported for complex features with portrayal schemas. At the moment,
propertyName selection is not yet supported with csv outputFormat, so it always returns the full set
of attributes.

• Complex features with nesting and multi-valued properties are not supported with WFS CSV output
format.

9.2 Installation

Application schema support is a GeoServer extension and is downloaded separately.

• Download the app-schema plugin zip file for the same version of GeoServer.

• Unzip the app-schema plugin zip file to obtain the jar files inside. Do not unzip the jar files.

• Place the jar files in the WEB-INF/lib directory of your GeoServer installation.

• Restart GeoServer to load the extension (although you might want to configure it first [see below]).

9.3 WFS Service Settings

There are two GeoServer WFS service settings that are strongly recommended for interoperable complex
feature services. These can be enabled through the Services → WFS page on the GeoServer web interface or
by manually editing the wfs.xml file in the data directory,

9.3.1 Canonical schema location

The default GeoServer behaviour is to encode WFS responses that include a schemaLocation for the WFS
schema that is located on the GeoServer instance. A client will not know without retrieving the schema
whether it is identical to the official schema hosted at schemas.opengis.net. The solution is to encode
the schemaLocation for the WFS schema as the canonical location at schemas.opengis.net.

To enable this option, choose one of these:

1. Either: On the Service → WFS page under Conformance check Encode canonical WFS schema location.

2. Or: Insert the following line before the closing tag in wfs.xml:

9.2. Installation 207

GeoServer User Manual, Release 2.5.x

<canonicalSchemaLocation>true</canonicalSchemaLocation>

9.3.2 Encode using featureMember

By default GeoServer will encode WFS 1.1 responses with multiple features in a single
gml:featureMembers element. This will cause invalid output if a response includes a feature at
the top level that has already been encoded as a nested property of an earlier feature, because there is no
single element that can be used to encode this feature by reference. The solution is to encode responses
using gml:featureMember.

To enable this option, choose one of these:

1. Either: On the Service → WFS page under Encode response with select Multiple “featureMember” elements.

2. Or: Insert the following line before the closing tag in wfs.xml:

<encodeFeatureMember>true</encodeFeatureMember>

9.4 Configuration

Configuration of an app-schema complex feature type requires manual construction of a GeoServer data
directory that contains an XML mapping file and a datastore.xml that points at this mapping file. The
data directory also requires all the other ancillary configuration files used by GeoServer for simple features.
GeoServer can serve simple and complex features at the same time.

9.4.1 Workspace layout

The GeoServer data directory contains a folder called workspaces with the following structure:

workspaces
- gsml

- SomeDataStore
- SomeFeatureType

- featuretype.xml
- datastore.xml
- SomeFeatureType-mapping-file.xml

Note: The folder inside workspaces must have a name (the workspace name) that is the same as the
namespace prefix (gsml in this example).

9.4.2 Datastore

Each data store folder contains a file datastore.xml that contains the configuration parameters of
the data store. To create an app-schema feature type, the data store must be configured to load
the app-schema service module and process the mapping file. These options are contained in the
connectionParameters:

• namespace defines the XML namespace of the complex feature type.

• url is a file: URL that gives the location of the app-schema mapping file relative to the root of the
GeoServer data directory.

208 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

• dbtype must be app-schema to trigger the creation of an app-schema feature type.

9.5 Mapping File

An app-schema feature type is configured using a mapping file that defines the data source for the feature
and the mappings from the source data to XPaths in the output XML.

9.5.1 Outline

Here is an outline of a mapping file:

<?xml version="1.0" encoding="UTF-8"?>
<as:AppSchemaDataAccess xmlns:as="http://www.geotools.org/app-schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.geotools.org/app-schema AppSchemaDataAccess.xsd">
<namespaces>...</namespaces>
<includedTypes>...</includedTypes>
<sourceDataStores>...</sourceDataStores>
<catalog>...</catalog>
<targetTypes...</targetTypes>
<typeMappings>...</typeMappings>

</as:AppSchemaDataAccess>

• namespaces defines all the namespace prefixes used in the mapping file.

• includedTypes (optional) defines all the included non-feature type mapping file locations that are
referred in the mapping file.

• sourceDataStores provides the configuration information for the source data stores.

• catalog is the location of the OASIS Catalog used to resolve XML Schema locations.

• targetTypes is the location of the XML Schema that defines the feature type.

• typeMappings give the relationships between the fields of the source data store and the elements of
the output complex feature.

Mapping file schema

• AppSchemaDataAccess.xsd is optional because it is not used by GeoServer. The presence of
AppSchemaDataAccess.xsd in the same folder as the mapping file enables XML editors to observe
its grammar and provide contextual help.

9.5.2 Settings

namespaces

The namespaces section defines all the XML namespaces used in the mapping file:

<Namespace>
<prefix>gsml</prefix>
<uri>urn:cgi:xmlns:CGI:GeoSciML:2.0</uri>

</Namespace>
<Namespace>

9.5. Mapping File 209

GeoServer User Manual, Release 2.5.x

<prefix>gml</prefix>
<uri>http://www.opengis.net/gml</uri>

</Namespace>
<Namespace>

<prefix>xlink</prefix>
<uri>http://www.w3.org/1999/xlink</uri>

</Namespace>

includedTypes (optional)

Non-feature types (eg. gsml:CompositionPart is a data type that is nested in gsml:GeologicUnit) may be
mapped separately for its reusability, but we don’t want to configure it as a feature type as we don’t want
to individually access it. Related feature types don’t need to be explicitly included here as it would have its
own workspace configuration for GeoServer to find it. The location path in Include tag is relative to the
mapping file. For an example, if gsml:CompositionPart configuration file is located in the same directory
as the gsml:GeologicUnit configuration:

<includedTypes>
<Include>gsml_CompositionPart.xml</Include>

</includedTypes>

sourceDataStores

Every mapping file requires at least one data store to provide data for features. app-schema reuses
GeoServer data stores, so there are many available types. See Data Stores for details of data store con-
figuration. For example:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

...
</parameters>

</DataStore>
...

</sourceDataStores>

If you have more than one DataStore in a mapping file, be sure to give them each a distinct id.

catalog (optional)

The location of an OASIS XML Catalog configuration file, given as a path relative to the mapping file. See
Application Schema Resolution for more information. For example:

<catalog>../../../schemas/catalog.xml</catalog>

targetTypes

The targetTypes section lists all the application schemas required to define the mapping. Typically only
one is required. For example:

210 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<targetTypes>
<FeatureType>

<schemaUri>http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd</schemaUri>
</FeatureType>

</targetTypes>

9.5.3 Mappings

typeMappings and FeatureTypeMapping

The typeMappings section is the heart of the app-schema module. It defines the mapping from
simple features to the the nested structure of one or more simple features. It consists of a list of
FeatureTypeMapping elements, which each define one output feature type. For example:

<typeMappings>
<FeatureTypeMapping>

<mappingName>mappedfeature1</mappingName>
<sourceDataStore>datastore</sourceDataStore>
<sourceType>mappedfeature</sourceType>
<targetElement>gsml:MappedFeature</targetElement>
<isDenormalised>true</isDenormalised>
<attributeMappings>

<AttributeMapping>
...

• mappingName is an optional tag, to identify the mapping in Feature Chaining when there are multiple
FeatureTypeMapping instances for the same type. This is solely for feature chaining purposes, and
would not work for identifying top level features.

• sourceDataStore must be an identifier you provided when you defined a source data store the
sourceDataStores section.

• sourceType is the simple feature type name. For example:

– a table or view name, lowercase for PostGIS, uppercase for Oracle.

– a property file name (without the .properties suffix)

• targetElement is the the element name in the target application schema. This is the same as the
WFS feature type name.

• isDenormalised is an optional tag (default true) to indicate whether this type contains denor-
malised data or not. If data is not denormalised, then the global feature limit can be safely applied
when querying the database. When combined with a low global feature limit (via Services –> WFS),
setting this option to false can prevent unnecessary processing and database lookups from taking
place.

attributeMappings and AttributeMapping

attributeMappings comprises a list of AttributeMapping elements:

<AttributeMapping>
<targetAttribute>...</targetAttribute>
<idExpression>...</idExpression>
<sourceExpression>...</sourceExpression>
<targetAttributeNode>...</targetAttributeNode>
<isMultiple>...</isMultiple>

9.5. Mapping File 211

GeoServer User Manual, Release 2.5.x

<ClientProperty>...</ClientProperty>
</AttributeMapping>

targetAttribute

targetAttribute is the XPath to the output element, in the context of the target element. For example,
if the containing mapping is for a feature, you should be able to map a gml:name property by setting the
target attribute:

<targetAttribute>gml:name</targetAttribute>

Multivalued attributes resulting from Denormalised sources are automatically encoded. If you wish to encode
multivalued attributes from different input columns as a specific instance of an attribute, you can use a
(one-based) index. For example, you can set the third gml:name with:

<targetAttribute>gml:name[3]</targetAttribute>

The reserved name FEATURE_LINK is used to map data that is not encoded in XML but is required for use
in Feature Chaining.

idExpression (optional)

A CQL expression that is used to set the custom gml:id of the output feature type. This should be the name
of a database column on its own. Using functions would cause an exception because it is not supported
with the default joining implementation.

Note: Every feature must have a gml:id. This requirement is an implementation limitation (strictly,
gml:id is optional in GML).

• If idExpression is unspecified, gml:id will be <the table name>.<primary key>, e.g.
MAPPEDFEATURE.1.

• In the absence of primary keys, this will be <the table name>.<generated gml id>, e.g.
MAPPEDFEATURE.fid--46fd41b8_1407138b56f_-7fe0.

• If using property files instead of database tables, the default gml:id will be the row key found before
the equals (“=”) in the property file, e.g. the feature with row “mf1=Mudstone|POINT(1 2)|...” will
have gml:id mf1.

Note: gml:id must be an NCName.

sourceExpression (optional)

Use a sourceExpression tag to set the element content from source data. For example, to set the element
content from a column called DESCRIPTION:

<sourceExpression><OCQL>DESCRIPTION</OCQL></sourceExpression>

If sourceExpression is not present, the generated element is empty (unless set by another mapping).

You can use CQL expressions to calculate the content of the element. This example concatenated strings
from two columns and a literal:

212 Chapter 9. Working with Application Schemas

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.5.x

<sourceExpression>
<OCQL>strConCat(FIRST , strConCat(’ followed by ’, SECOND))</OCQL>

</sourceExpression>

You can also use CQL functions for vocabulary translations.

Warning: Avoid use of CQL expressions for properties that users will want to query, because the current
implementation cannot reverse these expressions to generate efficient SQL, and will instead read all
features to calculate the property to find the features that match the filter query. Falling back to brute
force search makes queries on CQL-calculated expressions very slow. If you must concatenate strings to
generate content, you may find that doing this in your database is much faster.

linkElement and linkField (optional)

The presence of linkElement and linkField change the meaning of sourceExpression to a Feature
Chaining mapping, in which the source of the mapping is the feature of type linkElement with property
linkField matching the expression. For example, the following sourceExpression uses as the result
of the mapping the (possibly multivalued) gsml:MappedFeature for which gml:name[2] is equal to
the value of URN for the source feature. This is in effect a foreign key relation:

<sourceExpression>
<OCQL>URN</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>

The feature type gsml:MappedFeature might be defined in another mapping file. The linkField can
be FEATURE_LINK if you wish to relate the features by a property not exposed in XML. See Feature Chaining
for a comprehensive discussion.

For special cases, linkElement could be an OCQL function, and linkField could be omitted. See Poly-
morphism for further information.

targetAttributeNode (optional)

targetAttributeNode is required wherever a property type contains an abstract element and app-
schema cannot determine the type of the enclosed attribute.

In this example, om:result is of xs:anyType, which is abstract. We can use targetAttributeNode to
set the type of the property type to a type that encloses a non-abstract element:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<targetAttributeNode>gml:MeasureType<targetAttributeNode>
<sourceExpression>

<OCQL>TOPAGE</OCQL>
</sourceExpression>
<ClientProperty>

<name>xsi:type</name>
<value>’gml:MeasureType’</value>

</ClientProperty>
<ClientProperty>

<name>uom</name>
<value>’http://www.opengis.net/def/uom/UCUM/0/Ma’</value>

9.5. Mapping File 213

GeoServer User Manual, Release 2.5.x

</ClientProperty>
</AttributeMapping>

If the casting type is complex, the specific type is implicitly determined by the XPath in targetAttribute
and targetAttributeNode is not required. E.g., in this example om:result is automatically specialised as a
MappedFeatureType:

<AttributeMapping>
<targetAttribute>om:result/gsml:MappedFeature/gml:name</targetAttribute>
<sourceExpression>

<OCQL>NAME</OCQL>
</sourceExpression>

</AttributeMapping>

Although it is not required, we may still specify targetAttributeNode for the root node, and map the chil-
dren attributes as per normal. This mapping must come before the mapping for the enclosed elements. By
doing this, app-schema will report an exception if a mapping is specified for any of the children attributes
that violates the type in targetAttributeNode. E.g.:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<targetAttributeNode>gsml:MappedFeatureType<targetAttributeNode>

</AttributeMapping>
<AttributeMapping>

<targetAttribute>om:result/gsml:MappedFeature/gml:name</targetAttribute>
<sourceExpression>

<OCQL>NAME</OCQL>
</sourceExpression>

</AttributeMapping>

Note that the GML encoding rules require that complex types are never the direct property of another com-
plex type; they are always contained in a property type to ensure that their type is encoded in a surrounding
element. Encoded GML is always type/property/type/property. This is also known as the GML “strip-
ing” rule. The consequence of this for app-schema mapping files is that targetAttributeNode must be
applied to the property and the type must be set to the XSD property type, not to the type of the contained
attribute (gsml:CGI_TermValuePropertyType not gsml:CGI_TermValueType). Because the XPath
refers to a property type not the encoded content, targetAttributeNode appears in a mapping with
targetAttribute and no other elements when using with complex types.

encodeIfEmpty (optional)

The encodeIfEmpty element will determine if an attribute will be encoded if it contains a null or empty
value. By default encodeIfEmpty is set to false therefore any attribute that does not contain a value will
be skipped:

<encodeIfEmpty>true</encodeIfEmpty>

encodeIfEmpty can be used to bring up attributes that only contain client properties such as
xlink:title.

isMultiple (optional)

The isMultiple element states whether there might be multiple values for this attribute, coming from
denormalised rows. Because the default value is false and it is omitted in this case, it is most usually seen
as:

214 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<isMultiple>true</isMultiple>

For example, the table below is denormalised with NAME column having multiple values:

ID NAME DESCRIPTION
gu.25678 Yaugher Volcanic Group 1 Olivine basalt, tuff, microgabbro
gu.25678 Yaugher Volcanic Group 2 Olivine basalt, tuff, microgabbro

The configuration file specifies isMultiple for gml:name attribute that is mapped to the NAME column:

<AttributeMapping>
<targetAttribute>gml:name</targetAttribute>
<sourceExpression>

<OCQL>NAME</OCQL>
</sourceExpression>
<isMultiple>true</isMultiple>
<ClientProperty>

<name>codeSpace</name>
<value>’urn:ietf:rfc:2141’</value>

</ClientProperty>
</AttributeMapping>

The output produces multiple gml:name attributes for each feature grouped by the id:

<gsml:GeologicUnit gml:id="gu.25678">
<gml:description>Olivine basalt, tuff, microgabbro</gml:description>
<gml:name codeSpace="urn:ietf:rfc:2141">Yaugher Volcanic Group 1</gml:name>
<gml:name codeSpace="urn:ietf:rfc:2141">Yaugher Volcanic Group 2</gml:name>

...

isList (optional)

The isList element states whether there might be multiple values for this attribute, concatenated as a list.
The usage is similar with isMultiple, except the values appear concatenated inside a single node instead
of each value encoded in a separate node. Because the default value is false and it is omitted in this case,
it is most usually seen as:

<isList>true</isList>

For example, the table below has multiple POSITION for each feature:

ID POSITION
ID1.2 1948-05
ID1.2 1948-06
ID1.2 1948-07
ID1.2 1948-08
ID1.2 1948-09

The configuration file uses isList on timePositionList attribute mapped to POSITION column:

<AttributeMapping>
<targetAttribute>csml:timePositionList</targetAttribute>
<sourceExpression>

<OCQL>POSITION</OCQL>
</sourceExpression>
<isList>true</isList>

</AttributeMapping>

9.5. Mapping File 215

GeoServer User Manual, Release 2.5.x

The output produced:

<csml:pointSeriesDomain>
<csml:TimeSeries gml:id="ID1.2">

<csml:timePositionList>1949-05 1949-06 1949-07 1949-08 1949-09</csml:timePositionList>
</csml:TimeSeries>

</csml:pointSeriesDomain>

ClientProperty (optional, multivalued)

A mapping can have one or more ClientProperty elements which set XML attributes on the mapping
target. Each ClientProperty has a name and a value that is an arbitrary CQL expression. No OCQL
element is used inside value.

This example of a ClientProperty element sets the codeSpace XML attribute to the literal string
urn:ietf:rfc:2141. Note the use of single quotes around the literal string. This could be applied to
any target attribute of GML CodeType:

<ClientProperty>
<name>codeSpace</name>
<value>’urn:ietf:rfc:2141’</value>

</ClientProperty>

When the GML association pattern is used to encode a property by reference, the xlink:href attribute is
set and the element is empty. This ClientProperty element sets the xlink:href XML attribute to to the
value of the RELATED_FEATURE_URN field in the data source (for example, a column in an Oracle database
table). This mapping could be applied to any property type, such a gml:FeaturePropertyType, or other
type modelled on the GML association pattern:

<ClientProperty>
<name>xlink:href</name>
<value>RELATED_FEATURE_URN</value>

</ClientProperty>

See the discussion in Feature Chaining for the special case in which xlink:href is created for multivalued
properties by reference.

9.5.4 CQL

CQL functions enable data conversion and conditional behaviour to be specified in mapping files.

• See CQL functions for information on additional functions provided by the app-schema plugin.

• The uDig manual includes a list of CQL functions:

– http://udig.refractions.net/confluence/display/EN/Constraint+Query+Language

• CQL string literals are enclosed in single quotes, for example ’urn:ogc:def:nil:OGC:missing’.

9.5.5 Database identifiers

When referring to database table/view names or column names, use:

• lowercase for PostGIS

• UPPERCASE for Oracle Spatial and ArcSDE

216 Chapter 9. Working with Application Schemas

http://udig.refractions.net/confluence/display/EN/Constraint+Query+Language

GeoServer User Manual, Release 2.5.x

9.5.6 Denormalised sources

Multivalued properties from denormalised sources (the same source feature ID appears more than once)
are automatically encoded. For example, a view might have a repeated id column with varying name so
that an arbitrarily large number of gml:name properties can be encoded for the output feature.

Warning: Denormalised sources must grouped so that features with duplicate IDs are provided without
any intervening features. This can be achieved by ensuring that denormalised source features are sorted
by ID. Failure to observe this restriction will result in data corruption. This restriction is however not
necessary when using Joining Support For Performance because then ordering will happen automatically.

9.6 Application Schema Resolution

To be able to encode XML responses conforming to a GML application schema, the app-schema plugin
must be able to locate the application schema files (XSDs) that define the schema. This page describes the
schema resolution process.

9.6.1 Schema downloading is now automatic for most users

GeoServer will automatically download and cache (see Cache below) all the schemas it needs the first time
it starts if:

1. All the application schemas you use are accessed via http/https URLs, and

2. Your GeoServer instance is deployed on a network that permits it to download them.

Note: This is the recommended way of using GeoServer app-schema for most users.

If cached downloading is used, no manual handling of schemas will be required. The rest of this page is for
those with more complicated arrangements, or who wish to clear the cache.

9.6.2 Resolution order

The order of sources used to resolve application schemas is:

1. OASIS Catalog

2. Classpath

3. Cache

Every attempt to load a schema works down this list, so imports can be resolved from sources other than
that used for the originating document. For example, an application schema in the cache that references a
schema found in the catalog will use the version in the catalog, rather than caching it. This allows users to
supply unpublished or modified schemas sourced from, for example, the catalog, at the cost of interoper-
ability (how do WFS clients get them?).

9.6.3 OASIS Catalog

An OASIS XML Catalog is a standard configuration file format that instructs an XML processing system
how to process entity references. The GeoServer app-schema resolver uses catalog URI semantics to locate

9.6. Application Schema Resolution 217

http://www.oasis-open.org/committees/entity/spec-2001-08-06.html

GeoServer User Manual, Release 2.5.x

application schemas, so uri or rewriteURI entries should be present in your catalog. The optional map-
ping file catalog element provides the location of the OASIS XML Catalog configuration file, given as a
path relative to the mapping file, for example:

<catalog>../../../schemas/catalog.xml</catalog>

Earlier versions of the app-schema plugin required all schemas to be present in the catalog. This is no
longer the case. Because the catalog is searched first, existing catalog-based deployments will continue to
work as before.

To migrate an existing GeoServer app-schema deployment that uses an OASIS Catalog to instead use
cached downloads (see Cache below), remove all catalog elements from your mapping files and restart
GeoServer.

9.6.4 Classpath

Java applications such as GeoServer can load resources from the Java classpath. GeoServer app-schema uses
a simple mapping from an http or https URL to a classpath resource location. For example, an application
schema published at http://schemas.example.org/exampleml/exml.xsd would be found on the
classpath if it was stored either:

• at /org/example/schemas/exampleml/exml.xsd in a JAR file on the classpath (for example, a
JAR file in WEB-INF/lib) or,

• on the local filesystem at WEB-INF/classes/org/example/schemas/exampleml/exml.xsd .

The ability to load schemas from the classpath is intended to support testing, but may be useful to users
whose communities supply JAR files containing their application schemas.

9.6.5 Cache

If an application schema cannot be found in the catalog or on the classpath, it is downloaded from the
network and stored in a subdirectory app-schema-cache of the GeoServer data directory.

• Once schemas are downloaded into the cache, they persist indefinitely, including over GeoServer
restarts.

• No attempt will be made to retrieve new versions of cached schemas.

• To clear the cache, remove the subdirectory app-schema-cache of the GeoServer data directory and
restart GeoServer.

GeoServer app-schema uses a simple mapping from an http or https URL
to local filesystem path. For example, an application schema published at
http://schemas.example.org/exampleml/exml.xsd would be downloaded and stored as
app-schema-cache/org/example/schemas/exampleml/exml.xsd . Note that:

• Only http and https URLs are supported.

• Port numbers, queries, and fragments are ignored.

If your GeoServer instance is deployed on a network whose firewall rules prevent outgoing TCP connec-
tions on port 80 (http) or 443 (https), schema downloading will not work. (For security reasons, some
service networks [”demilitarised zones”] prohibit such outgoing connections.) If schema downloading is
not permitted on your network, there are three solutions:

218 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

1. Either: Install and configure GeoServer on another network that can make outgoing TCP connections,
start GeoServer to trigger schema download, and then manually copy the app-schema-cache direc-
tory to the production server. This is the easiest option because GeoServer automatically downloads
all the schemas it needs, including dependencies.

2. Or: Deploy JAR files containing all required schema files on the classpath (see Classpath above).

3. Or: Use a catalog (see OASIS Catalog above).

9.7 Supported GML Versions

9.7.1 GML 3.1.1

• GML 3.1.1 application schemas are supported for WFS 1.1.0.

• Clients must specify WFS 1.1.0 in requests because the GeoServer default is WFS 2.0.0.

• GET URLs must contain version=1.1.0 to set the WFS version to 1.1.0.

9.7.2 GML 3.2.1

• GML 3.2.1 application schemas are supported for WFS 1.1.0 and (incomplete) WFS 2.0.0.

• WFS 2.0.0 features not in WFS 1.1.0 such as paging (STARTINDEX) are not yet supported.

• Clients using WFS 1.1.0 must specify WFS 1.1.0 in requests and select the gml32 output format for
GML 3.2.1.

• To use WFS 1.1.0 for GML 3.2.1, GET URLs must contain version=1.1.0 to set the WFS version to
1.1.0 and outputFormat=gml32 to set the output format to GML 3.2.1.

• The default WFS version is 2.0.0, for which the default output format is GML 3.2.1.

• All GML 3.2.1 responses are contained in a WFS 2.0.0 FeatureCollection element, even for WFS
1.1.0 requests, because a WFS 1.1.0 FeatureCollection cannot contain GML 3.2.1 features.

Secondary namespace for GML 3.2.1 required

GML 3.2.1 WFS responses are delivered in a WFS 2.0.0 FeatureCollection. Unlike WFS 1.1.0, WFS 2.0.0
does not depend explicitly on any GML version. As a consequence, the GML namespace is secondary and
must be defined explicitly as a secondary namespace. See Secondary Namespaces for details.

For example, to use the prefix gml for GML 3.2, create workspaces/gml/namespace.xml containing:

<namespace>
<id>gml_namespace</id>
<prefix>gml</prefix>
<uri>http://www.opengis.net/gml/3.2</uri>

</namespace>

and workspaces/gml/workspace.xml containing:

<workspace>
<id>gml_workspace</id>
<name>gml</name>

</workspace>

9.7. Supported GML Versions 219

GeoServer User Manual, Release 2.5.x

Failure to define the gml namespace prefix with a secondary namespace will result in errors like:

java.io.IOException: The prefix "null" for element "null:name" is not bound.

while encoding a response (in this case one containing gml:name), even if the namespace prefix is defined
in the mapping file.

GML 3.2.1 geometries require gml:id

GML 3.2.1 requires that all geometries have a gml:id. While GeoServer will happily encode WFS re-
sponses without gml:id on geometries, these will be schema-invalid. Encoding a gml:id on a geometry
can be achieved by setting an idExpression in the mapping for the geometry property. For example,
gsml:shape is a geometry property and its gml:id might be generated with:

<AttributeMapping>
<targetAttribute>gsml:shape</targetAttribute>
<idExpression>

<OCQL>strConcat(’shape.’, getId())</OCQL>
</idExpression>
<sourceExpression>

<OCQL>SHAPE</OCQL>
</sourceExpression>

</AttributeMapping>

In this example, getId() returns the gml:id of the containing feature, so each geometry will have a
unique gml:id formed by appending the gml:id of the containing feature to the string "shape.".

If a multigeometry (such as a MultiPoint or MultiSurface) is assigned a gml:id of (for example)
parentid, to permit GML 3.2.1 schema-validity, each geometry that the multigeometry contains will be
automatically assigned a gml:id of the form parentid.1, parentid.2, ... in order.

9.7.3 GML 3.3

The proposed GML 3.3 is itself a GML 3.2.1 application schema; preliminary testing with drafts of GML 3.3
indicates that it works with app-schema as expected.

9.8 Secondary Namespaces

9.8.1 What is a secondary namespace?

A secondary namespace is one that is referenced indirectly by the main schema, that is, one schema imports
another one as shown below:

a.xsd imports b.xsd
b.xsd imports c.xsd

(using a, b and c as the respective namespace prefixes for a.xsd, b.xsd and c.xsd):

a.xsd declares b:prefix
b.xsd declares c:prefix

The GeoTools encoder does not honour these namespaces and writes out:

220 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

"a:" , "b:" but NOT "c:"

The result is c’s element being encoded as:

<null:cElement/>

9.8.2 When to configure for secondary namespaces

If your application spans several namespaces which may be very common in application schemas.

A sure sign that calls for secondary namespace configuration is when prefixes for namespaces are printed
out as the literal string “null” or error messages like:

java.io.IOException: The prefix "null" for element "null:something" is not bound.

Note: When using secondary namespaces, requests involving complex featuretypes must be made to the
global OWS service only, not to Virtual OWS Services. This is because virtual services are restricted to a
single namespace, and thus are not able to access secondary namespaces.

In order to allow GeoServer App-Schema to support secondary namespaces, please follow the steps out-
lined below:

Using the sampling namespace as an example.

9.8.3 Step 1:Create the Secondary Namespace folder

Create a folder to represent the secondary namespace in the data/workspaces directory, in our example
that will be the “sa” folder.

9.8.4 Step 2:Create files

Create two files below in the “sa” folder:

1. namespace.xml

2. workspace.xml

9.8.5 Step 3:Edit content of files

Contents of these files are as follows:

namespace.xml(uri is a valid uri for the secondary namespace, in this case the sampling namespace uri):

<namespace>
<id>sa_workspace</id>
<prefix>sa</prefix>
<uri>http://www.opengis.net/sampling/1.0</uri>

</namespace>

workspace.xml:

<workspace>
<id>sa_workspace</id>
<name>sa</name>

</workspace>

9.8. Secondary Namespaces 221

GeoServer User Manual, Release 2.5.x

That’s it.

Your workspace is now configured to use a Secondary Namespace.

9.9 CQL functions

CQL functions enable data conversion and conditional behaviour to be specified in mapping files. Some of
these functions are provided by the app-schema plugin specifically for this purpose.

• The uDig manual includes a list of CQL functions:

– http://udig.refractions.net/confluence/display/EN/Constraint+Query+Language

• CQL string literals are enclosed in single quotes, for example ’urn:ogc:def:nil:OGC:missing’.

• Single quotes are represented in CQL string literals as two single quotes, just as in SQL. For example,
’yyyy-MM-dd’’T’’HH:mm:ss’’Z’’’ for the string yyyy-MM-dd’T’HH:mm:ss’Z’.

9.9.1 Vocabulary translation

This section describes how to serve vocabulary translations using some function expressions in application
schema mapping file. If you’re not familiar with application schema mapping file, read Mapping File.

Recode

This is similar to if_then_else function, except that there is no default clause. You have to specify a translation
value for every vocabulary key.

Syntax:

Recode(COLUMN_NAME, key1, value1, key2, value2,...)

• COLUMN_NAME: column name to get values from

Example:

<AttributeMapping>
<targetAttribute>gml:name</targetAttribute>
<sourceExpression>

<OCQL>Recode(ABBREVIATION, ’1GRAV’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:gravel’,
’1TILL’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:diamictite’,
’6ALLU’, ’urn:cgi:classifier:CGI:SimpleLithology:2008:sediment’)

</OCQL>
</sourceExpression>

</AttributeMapping>

The above example will map gml:name value to urn:cgi:classifier:CGI:SimpleLithology:2008:gravel if the AB-
BREVIATION column value is 1GRAV.

Categorize

This is more suitable for numeric keys, where the translation value is determined by the key’s position
within the thresholds.

Syntax:

222 Chapter 9. Working with Application Schemas

http://udig.refractions.net/confluence/display/EN/Constraint+Query+Language

GeoServer User Manual, Release 2.5.x

Categorize(COLUMN_NAME, default_value, threshold 1, value 1, threshold 2, value 2, ..., [preceding/succeeding])

• COLUMN_NAME: data source column name

• default_value: default value to be mapped if COLUMN_NAME value is not within the threshold

• threshold(n): threshold value

• value(n): value to be mapped if the threshold is met

• preceding/succeeding:

– optional, succeeding is used by default if not specified.

– not case sensitive.

– preceding: value is within threshold if COLUMN_NAME value > threshold

– succeeding: value is within threshold if COLUMN_NAME value >= threshold

Example:

<AttributeMapping>
<targetAttribute>gml:description</targetAttribute>
<sourceExpression>

<OCQL>Categorize(CGI_LOWER_RANGE, ’missing_value’, 1000, ’minor’, 5000, ’significant’)</OCQL>
</sourceExpression>

</AttributeMapping>

The above example means gml:description value would be significant if CGI_LOWER_RANGE column
value is >= 5000.

Vocab

This function is more useful for bigger vocabulary pairs. Instead of writing a long key-to-value pairs in the
function, you can keep them in a separate properties file. The properties file serves as a lookup table to the
function. It has no header, and only contains the pairs in ‘’<key>=<value>” format.

Syntax:

Vocab(COLUMN_NAME, properties file URI)

• COLUMN_NAME: column name to get values from

• properties file URI: absolute path of the properties file or relative to the mapping file location

Example:

Properties file:

1GRAV=urn:cgi:classifier:CGI:SimpleLithology:2008:gravel
1TILL=urn:cgi:classifier:CGI:SimpleLithology:2008:diamictite
6ALLU=urn:cgi:classifier:CGI:SimpleLithology:2008:sediment

Mapping file:

<AttributeMapping>
<targetAttribute>gml:name</targetAttribute>
<sourceExpression>

<OCQL>Vocab(ABBREVIATION, ’/test-data/mapping.properties’)</OCQL>
</sourceExpression>

</AttributeMapping>

9.9. CQL functions 223

GeoServer User Manual, Release 2.5.x

The above example will map gml:name to urn:cgi:classifier:CGI:SimpleLithology:2008:gravel if ABBREVIA-
TION value is 1GRAV.

9.9.2 Geometry creation

toDirectPosition

This function converts double values to DirectPosition geometry type. This is needed when the data
store doesn’t have geometry type columns. This function expects:

Literal ’SRS_NAME’ (optional)

Expression expression of SRS name if ’SRS_NAME’ is present as the first argument

Expression name of column pointing to first double value

Expression name of column pointing to second double value (optional, only for 2D)

ToEnvelope

ToEnvelope function can take in the following set of parameters and return as either Envelope or
ReferencedEnvelope type:

Option 1 (1D Envelope):

ToEnvelope(minx,maxx)

Option 2 (1D Envelope with crsname):

ToEnvelope(minx,maxx,crsname)

Option 3 (2D Envelope):

ToEnvelope(minx,maxx,miny,maxy)

Option 4 (2D Envelope with crsname):

ToEnvelope(minx,maxx,miny,maxy,crsname)

toPoint

This function converts double values to a 2D Point geometry type. This is needed when the data store
doesn’t have geometry type columns. This function expects:

Literal ’SRS_NAME’ (optional)

Expression expression of SRS name if ’SRS_NAME’ is present as the first argument

Expression name of column pointing to first double value

Expression name of column pointing to second double value

Expression expression of gml:id (optional)

224 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

toLineString

This function converts double values to 1D LineString geometry type. This is needed to express 1D borehole
intervals with custom (non EPSG) CRS.

Literal ’SRS_NAME’ (EPSG code or custom SRS)

Expression name of column pointing to first double value

Expression name of column pointing to second double value

9.9.3 Reference

toXlinkHref

This function redirects an attribute to be encoded as xlink:href, instead of being encoded as a full attribute.
This is useful in polymorphism, where static client property cannot be used when the encoding is condi-
tional. This function expects:

Expression REFERENCE_VALUE (could be another function or literal)

9.9.4 Date/time formatting

FormatDateTimezone

A function to format a date/time using a SimpleDateFormat pattern in a time zone supported by Java. This
function improves on dateFormat, which formats date/time in the server time zone and can produce
unintended results. Note that the term “date” is derived from a Java class name; this class represents a
date/time, not just a single day.

Syntax:

FormatDateTimezone(pattern, date, timezone)

pattern formatting pattern supported by SimpleDateFormat, for example ’yyyy-MM-dd’. Use
two single quotes to include a literal single quote in a CQL string literal, for example
’yyyy-MM-dd’’T’’HH:mm:ss’’Z’’’.

date the date/time to be formatted or its string representation, for example ’1948-01-01T00:00:00Z’.
An exception will be returned if the date is invalid. Database types with time zone information are
recommended.

timezone the name of a time zone supported by Java, for example ’UTC’ or ’Canada/Mountain’. Note
that unrecognised timezones will silently be converted to UTC.

This example formats date/times from a column POSITION in UTC for inclusion in a csml:TimeSeries:

<AttributeMapping>
<targetAttribute>csml:timePositionList</targetAttribute>
<sourceExpression>

<OCQL>FormatDateTimezone(’yyyy-MM-dd’’T’’HH:mm:ss’’Z’’’, POSITION, ’UTC’)</OCQL>
</sourceExpression>
<isList>true</isList>

</AttributeMapping>

Note that any of the arguments could be sourced from a database column.

9.9. CQL functions 225

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://joda-time.sourceforge.net/timezones.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

GeoServer User Manual, Release 2.5.x

9.10 Property Interpolation

Interpolation in this context means the substitution of variables into strings. GeoServer app-schema sup-
ports the interpolation of properties (the Java equivalent of environment variables) into app-schema map-
ping files. This can be used, for example, to simplify the management of database connection parameters
that would otherwise be hardcoded in a particular mapping file. This enables data directories to be given to
third parties without inapplicable authentication or system configuration information. Externalising these
parameters make management easier.

9.10.1 Defining properties

• If the system property app-schema.properties is not set, properties are
loaded from WEB-INF/classes/app-schema.properties (or another resource
/app-schema.properties on the classpath).

• If the system property app-schema.properties is set, properties are loaded from the file named
as the value of the property. This is principally intended for debugging, and is designed to be used in
an Eclipse launch configuration.

– For example, if the JVM is started with -Dapp-schema.properties=/path/to/some/local.properties,
properties are loaded from /path/to/some/local.properties.

• System properties override properties defined in a configuration file, so if you define
-Dsome.property at the java command line, it will override a value specified in the
app-schema.properties file. This is intended for debugging, so you can set a property file in
an Eclipse launch configuration, but override some of the properties contained in the file by setting
them explicitly as system properties.

• All system properties are available for interpolation in mapping files.

9.10.2 Using properties

• Using ${some.property} anywhere in the mapping file will cause it to be replaced by the value of
the property some.property.

• It is an error for a property that has not been set to be used for interpolation.

• Interpolation is performed repeatedly, so values can contain new interpolations. Use this behaviour
with caution because it may cause an infinite loop.

• Interpolation is performed before XML parsing, so can be used to include arbitrary chunks of XML.

9.10.3 Example of property interpolation

This example defines an Oracle data store, where the connection parameter are interpolated from proper-
ties:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

</Parameter>

226 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<Parameter>
<name>host</name>
<value>${example.host}</value>

</Parameter>
<Parameter>

<name>port</name>
<value>1521</value>

</Parameter>
<Parameter>

<name>database</name>
<value>${example.database}</value>

</Parameter>
<Parameter>

<name>user</name>
<value>${example.user}</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>${example.passwd}</value>

</Parameter>
</parameters>

</DataStore>
</sourceDataStores>

9.10.4 Example property file

This sample property file gives the property values that are interpolated into the mapping file fragment
above. These properties can be installed in WEB-INF/classes/app-schema.properties in your
GeoServer installation:

example.host = database.example.com
example.database = example
example.user = dbuser
example.passwd = s3cr3t

9.11 Data Stores

The app-schema Mapping File requires you to specify your data sources in the sourceDataStores section.
For GeoServer simple features, these are configured using the web interface, but because app-schema lacks
a web configuration interface, data stores must be configured by editing the mapping file.

Many configuration options may be externalised through the use of Property Interpolation.

9.11.1 The DataStore element

A DataStore configuration consists of

• an id, which is an opaque identifier used to refer to the data store elsewhere in a mapping file, and

• one or more Parameter elements, which each contain the name and value of one parameter, and
are used to configure the data store.

An outline of the DataStore element:

9.11. Data Stores 227

GeoServer User Manual, Release 2.5.x

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>...</name>
<value>...</value>

</Parameter>
...

</parameters>
</DataStore>

Parameter order is not significant.

9.11.2 Database options

Databases such as PostGIS, Oracle, and ArcSDE share some common or similar configuration options.

name Meaning value examples
dbtype Database type postgisng, Oracle, arcsde
host Host name or IP address of

database server
database.example.org, 192.168.3.12

port TCP port on database server Default if omitted: 1521 (Oracle), 5432
(PostGIS), 5151 (ArcSDE)

database PostGIS/Oracle database
instance ArcSDE instance
schema The database schema
user The user name used to login to

the database server
passwd The password used to login to the

database server
Expose
primary keys

Columns with primary keys
available for mapping

Default is false, set to true to use primary
key columns in mapping

9.11.3 PostGIS

Set the parameter dbtype to postgisng to use the PostGIS NG (New Generation) driver bundled with
GeoServer 2.0 and later.

Example:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>postgisng</value>

</Parameter>
<Parameter>

<name>host</name>
<value>postgresql.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>5432</value>

</Parameter>

228 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<Parameter>
<name>database</name>
<value>test</value>

</Parameter>
<Parameter>

<name>user</name>
<value>test</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>test</value>

</Parameter>
</parameters>

</DataStore>

Note: PostGIS support is included in the main GeoServer bundle, so a separate plugin is not required.

9.11.4 Oracle

Set the parameter dbtype to Oracle to use the Oracle Spatial NG (New Generation) driver compatible
with GeoServer 2.0 and later.

Example:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

</Parameter>
<Parameter>

<name>host</name>
<value>oracle.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>1521</value>

</Parameter>
<Parameter>

<name>database</name>
<value>demodb</value>

</Parameter>
<Parameter>

<name>user</name>
<value>orauser</value>

</Parameter>
<Parameter>

<name>passwd</name>
<value>s3cr3t</value>

</Parameter>
</parameters>

</DataStore>

Note: You must install the Oracle plugin to connect to Oracle Spatial databases.

9.11. Data Stores 229

GeoServer User Manual, Release 2.5.x

9.11.5 ArcSDE

This example connects to an ArcSDE database:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>arcsde</value>

</Parameter>
<Parameter>

<name>server</name>
<value>arcsde.example.org</value>

</Parameter>
<Parameter>

<name>port</name>
<value>5151</value>

</Parameter>
<Parameter>

<name>instance</name>
<value>sde</value>

</Parameter>
<Parameter>

<name>user</name>
<value>demo</value>

</Parameter>
<Parameter>

<name>password</name>
<value>s3cr3t</value>

</Parameter>
<Parameter>

<name>datastore.allowNonSpatialTables</name>
<value>true</value>

</Parameter>
</parameters>

</DataStore>

The use of non-spatial tables aids delivery of application schemas that use non-spatial properties.

Note: You must install the ArcSDE plugin to connect to ArcSDE databases.

9.11.6 Shapefile

Shapefile data sources are identified by the presence of a parameter url, whose value should be the file
URL for the .shp file.

In this example, only the url parameter is required. The others are optional:

<DataStore>
<id>shapefile</id>
<parameters>

<Parameter>
<name>url</name>
<value>file:/D:/Workspace/shapefiles/VerdeRiverBuffer.shp</value>

</Parameter>
<Parameter>

230 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<name>memory mapped buffer</name>
<value>false</value>

</Parameter>
<Parameter>

<name>create spatial index</name>
<value>true</value>

</Parameter>
<Parameter>

<name>charset</name>
<value>ISO-8859-1</value>

</Parameter>
</parameters>

</DataStore>

Note: The url in this case is an example of a Windows filesystem path translated to URL notation.

Note: Shapefile support is included in the main GeoServer bundle, so a separate plugin is not required.

9.11.7 Property file

Property files are configured by specifying a directory that is a file: URI.

• If the directory starts with file:./ it is relative to the mapping file directory. (This is an invalid URI,
but it works.)

For example, the following data store is used to access property files in the same directory as the mapping
file:

<DataStore>
<id>propertyfile</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

</Parameter>
</parameters>

</DataStore>

A property file data store contains all the feature types stored in .properties files in the directory. For
example, if the directory contained River.properties and station.properties, the data store would be able
to serve them as the feature types River and station. Other file extensions are ignored.

Note: Property file support is included in the main GeoServer bundle, so a separate plugin is not required.

9.11.8 JNDI

Defining a JDBC data store with a jndiReferenceName allows you to use a connection pool provided
by your servlet container. This allows detailed configuration of connection pool parameters and sharing of
connections between data sources, and even between servlets.

To use a JNDI connection provider:

1. Specify a dbtype parameter to to indicate the database type. These values are the same as for the
non-JNDI examples above.

9.11. Data Stores 231

GeoServer User Manual, Release 2.5.x

2. Give the jndiReferenceName you set in your servlet container. Both the abbreviated form
jdbc/oracle form, as in Tomcat, and the canonical form java:comp/env/jdbc/oracle are sup-
ported.

This example uses JNDI to obtain Oracle connections:

<DataStore>
<id>datastore</id>
<parameters>

<Parameter>
<name>dbtype</name>
<value>Oracle</value>

</Parameter>
<Parameter>

<name>jndiReferenceName</name>
<value>jdbc/oracle</value>

</Parameter>
</parameters>

</DataStore>

Your servlet container my require you to add a resource-ref section at the end of your
geoserver/WEB-INF/web.xml. (Tomcat requires this, Jetty does not.) For example:

<resource-ref>
<description>Oracle Spatial Datasource</description>
<res-ref-name>jdbc/oracle</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Here is an example of a Tomcat 6 context in /etc/tomcat6/server.xml that includes an Oracle connec-
tion pool:

<Context
path="/geoserver"
docBase="/usr/local/geoserver"
crossContext="false"
reloadable="false">
<Resource

name="jdbc/oracle"
auth="Container"
type="javax.sql.DataSource"
url="jdbc:oracle:thin:@YOUR_DATABASE_HOSTNAME:1521:YOUR_DATABASE_NAME"
driverClassName="oracle.jdbc.driver.OracleDriver"
username="YOUR_DATABASE_USERNAME"
password="YOUR_DATABASE_PASSWORD"
maxActive="20"
maxIdle="10"
minIdle="0"
maxWait="10000"
minEvictableIdleTimeMillis="300000"
timeBetweenEvictionRunsMillis="300000"
numTestsPerEvictionRun="20"
poolPreparedStatements="true"
maxOpenPreparedStatements="100"
testOnBorrow="true"
validationQuery="SELECT SYSDATE FROM DUAL" />

</Context>

Firewall timeouts can silently sever idle connections to the database and cause GeoServer to hang. If there is

232 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

a firewall between GeoServer and the database, a connection pool configured to shut down idle connections
before the firewall can drop them will prevent GeoServer from hanging. This JNDI connection pool is
configured to shut down idle connections after 5 to 10 minutes.

See also Setting up a JNDI connection pool with Tomcat.

9.11.9 Expose primary keys

By default, GeoServer conceals the existence of database columns with a primary key. To make such
columns available for use in app-schema mapping files, set the data store parameter Expose primary
keys to true:

<Parameter>
<name>Expose primary keys</name>

<value>true</value>
</Parameter>

This is known to work with PostGIS, Oracle, and JNDI data stores.

9.12 Feature Chaining

9.12.1 Scope

This page describes the use of “Feature Chaining” to compose complex features from simpler components,
and in particular to address some requirements that have proven significant in practice.

• Handling multiple cases of multi-valued properties within a single Feature Type

• Handing nesting of multi-valued properties within other multi-valued properties

• Linking related (through association) Feature Types, and in particular allowing re-use of the related
features types (for example the O&M pattern has relatedObservation from a samplingFeature, but
Observation may be useful in its own right)

• Encoding the same referenced property object as links when it appears in multiple containing features

• Eliminating the need for large denormalized data store views of top level features and their related
features. Denormalized views would still be needed for special cases, such as many-to-many relation-
ships, but won’t be as large.

For non-application schema configurations, please refer to Data Access Integration.

9.12.2 Mapping steps

Create a mapping file for every complex type

We need one mapping file per complex type that is going to be nested, including non features, e.g.
gsml:CompositionPart.

Non-feature types that cannot be individually accessed (eg. CompositionPart as a Data Type) can still be
mapped separately for its reusability. For this case, the containing feature type has to include these types in
its mapping file. The include tag should contain the nested mapping file path relative to the location of the
containing type mapping file. In GeologicUnit_MappingFile.xml:

9.12. Feature Chaining 233

GeoServer User Manual, Release 2.5.x

<includedTypes>
<Include>CGITermValue_MappingFile.xml</Include>
<Include>CompositionPart_MappingFile.xml</Include>

</includedTypes>

Feature types that can be individually accessed don’t need to be explicitly included in the mapping file, as
they would be configured for GeoServer to find. Such types would have their mapping file associated with
a corresponding datastore.xml file, which means that it can be found from the data store registry. In other
words, if the type is associated with a datastore.xml file, it doesn’t need to be explicitly included if referred
from another mapping file.

Example:

For this output: MappedFeature_Output.xml, here are the mapping files:

• MappedFeature_MappingFile.xml

• GeologicUnit_MappingFile.xml

• CompositionPart_MappingFile.xml

• GeologicEvent_MappingFile.xml

• CGITermValue_MappingFile.xml

GeologicUnit type

You can see within GeologicUnit features, both gml:composition (CompositionPart type) and
gsml:geologicHistory (GeologicEvent type) are multi-valued properties. It shows how multiple cases of
multi-valued properties can be configured within a single Feature Type. This also proves that you can
“chain” non-feature type, as CompositionPart is a Data Type.

GeologicEvent type

Both gsml:eventEnvironment (CGI_TermValue type) and gsml:eventProcess (also of CGI_TermValue type)
are multi-valued properties. This also shows that “chaining” can be done on many levels, as GeologicEvent
is nested inside GeologicUnit. Note that gsml:eventAge properties are configured as inline attributes, as
there can only be one event age per geologic event, thus eliminating the need for feature chaining.

Configure nesting on the nested feature type

In the nested feature type, make sure we have a field that can be referenced by the parent feature. If there
isn’t any existing field that can be referred to, the system field FEATURE_LINK can be mapped to hold the
foreign key value. This is a multi-valued field, so more than one instances can be mapped in the same
feature type, for features that can be nested by different parent types. Since this field doesn’t exist in the
schema, it wouldn’t appear in the output document.

In the source expression tag:

• OCQL: the value of this should correspond to the OCQL part of the parent feature

Example One: Using FEATURE_LINK in CGI TermValue type, which is referred by GeologicEvent as
gsml:eventProcess and gsml:eventEnvironment.

In GeologicEvent (the container feature) mapping:

<AttributeMapping>
<targetAttribute>gsml:eventEnvironment</targetAttribute>
<sourceExpression>

<OCQL>id</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>

234 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<linkField>FEATURE_LINK[1]</linkField>
</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>
<AttributeMapping>

<targetAttribute>gsml:eventProcess</targetAttribute>
<sourceExpression>

<OCQL>id</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>
<linkField>FEATURE_LINK[2]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

In CGI_TermValue (the nested feature) mapping:

<AttributeMapping>
<!-- FEATURE_LINK[1] is referred by geologic event as environment -->
<targetAttribute>FEATURE_LINK[1]</targetAttribute>
<sourceExpression>

<OCQL>ENVIRONMENT_OWNER</OCQL>
</sourceExpression>

</AttributeMapping>
<AttributeMapping>

<!-- FEATURE_LINK[2] is referred by geologic event as process -->
<targetAttribute>FEATURE_LINK[2]</targetAttribute>
<sourceExpression><

<OCQL>PROCESS_OWNER</OCQL>
</sourceExpression>

</AttributeMapping>

The ENVIRONMENT_OWNER column in CGI_TermValue view corresponds to the ID column in Geolog-
icEvent view.

Geologic Event property file:

id GEO-
LOGIC_UNIT_ID:String

ghmi-
nage:String

ghmax-
age:String

ghage_cdspace:String

ge.26931120gu.25699 Oligocene Paleocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26930473gu.25678 Holocene Pleistocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26930960gu.25678 Pliocene Miocene urn:cgi:classifierScheme:ICS:StratChart:2008
ge.26932959gu.25678 LowerOr-

dovician
LowerOr-
dovician

urn:cgi:classifierScheme:ICS:StratChart:2008

CGI Term Value property file:

id VALUE:String PROCESS_OWNER:String ENVIRONMENT_OWNER:String
3 fluvial NULL ge.26931120
4 swamp/marsh/bog NULL ge.26930473
5 marine NULL ge.26930960
6 submarine fan NULL ge.26932959
7 hemipelagic NULL ge.26932959
8 detrital deposition still water ge.26930473 NULL
9 water [process] ge.26932959 NULL
10 channelled stream flow ge.26931120 NULL
11 turbidity current ge.26932959 NULL

The system field FEATURE_LINK doesn’t get encoded in the output:

9.12. Feature Chaining 235

GeoServer User Manual, Release 2.5.x

<gsml:GeologicEvent>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitId">gu.25699</gml:name>
<gsml:eventAge>
<gsml:CGI_TermRange>

<gsml:lower>
<gsml:CGI_TermValue>
<gsml:value codeSpace="urn:cgi:classifierScheme:ICS:StratChart:2008">Oligocene</gsml:value>

</gsml:CGI_TermValue>
</gsml:lower>
<gsml:upper>

<gsml:CGI_TermValue>
<gsml:value codeSpace="urn:cgi:classifierScheme:ICS:StratChart:2008">Paleocene</gsml:value>

</gsml:CGI_TermValue>
</gsml:upper>

</gsml:CGI_TermRange>
</gsml:eventAge>
<gsml:eventEnvironment>
<gsml:CGI_TermValue>

<gsml:value>fluvial</gsml:value>
</gsml:CGI_TermValue>

</gsml:eventEnvironment>
<gsml:eventProcess>
<gsml:CGI_TermValue>

<gsml:value>channelled stream flow</gsml:value>
</gsml:CGI_TermValue>

</gsml:eventProcess>

Example Two: Using existing field (gml:name) to hold the foreign key, see
MappedFeature_MappingFile.xml:

gsml:specification links to gml:name in GeologicUnit:

<AttributeMapping>
<targetAttribute>gsml:specification</targetAttribute>
<sourceExpression>
<OCQL>GEOLOGIC_UNIT_ID</OCQL>
<linkElement>gsml:GeologicUnit</linkElement>
<linkField>gml:name[3]</linkField>

</sourceExpression>
</AttributeMapping>

In GeologicUnit_MappingFile.xml:

GeologicUnit has 3 gml:name properties in the mapping file, so each has a code space to clarify them:

<AttributeMapping>
<targetAttribute>gml:name[1]</targetAttribute>
<sourceExpression>
<OCQL>ABBREVIATION</OCQL>

</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:GeologicalUnitCode’</value>

</ClientProperty>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>gml:name[2]</targetAttribute>
<sourceExpression>
<OCQL>NAME</OCQL>

236 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:GeologicalUnitName’</value>

</ClientProperty>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>gml:name[3]</targetAttribute>
<sourceExpression>
<OCQL>id</OCQL>

</sourceExpression>
<ClientProperty>
<name>codeSpace</name>
<value>’urn:cgi:classifierScheme:GSV:MappedFeatureReference’</value>

</ClientProperty>
</AttributeMapping>

The output with multiple gml:name properties and their code spaces:

<gsml:specification>
<gsml:GeologicUnit gml:id="gu.25678">

<gml:description>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</gml:description>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitCode">-Py</gml:name>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:GeologicalUnitName">Yaugher Volcanic Group</gml:name>
<gml:name codeSpace="urn:cgi:classifierScheme:GSV:MappedFeatureReference">gu.25678</gml:name>

If this is the “one” side of a one-to-many or many-to-one database relationship, we can use the feature id as
the source expression field, as you can see in above examples. See one_to_many_relationship.JPG as
an illustration.

If we have a many-to-many relationship, we have to use one denormalized view for either side of the
nesting. This means we can either use the feature id as the referenced field, or assign a column to serve this
purpose. See many_to_many_relationship.JPG as an illustration.

Note:

• For many-to-many relationships, we can’t use the same denormalized view for both sides of the nest-
ing.

Test this configuration by running a getFeature request for the nested feature type on its own.

Configure nesting on the “containing” feature type

When nesting another complex type, you need to specify in your source expression:

• OCQL: OGC’s Common Query Language expression of the data store column

• linkElement:

– the nested element name, which is normally the targetElement or mappingName of the cor-
responding type.

– on some cases, it has to be an OCQL function (see Polymorphism)

• linkField: the indexed XPath attribute on the nested element that OCQL corresponds to

Example: Nesting composition part in geologic unit feature.

In Geologic Unit mapping file:

9.12. Feature Chaining 237

GeoServer User Manual, Release 2.5.x

<AttributeMapping>
<targetAttribute>gsml:composition</targetAttribute>
<sourceExpression>

<OCQL>id</OCQL>
<linkElement>gsml:CompositionPart</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

• OCQL: id is the geologic unit id

• linkElement: links to gsml:CompositionPart type

• linkField: FEATURE_LINK, the linking field mapped in gsml:CompositionPart type that also stores
the geologic unit id. If there are more than one of these attributes in the nested feature type, make
sure the index is included, e.g. FEATURE_LINK[2].

Geologic Unit property file:

id ABBREVI-
ATAION:String

NAME:String TEXTDESCRIPTION:String

gu.25699 -Py Yaugher Volcanic
Group

Olivine basalt, tuff, microgabbro, minor
sedimentary rocks

gu.25678 -Py Yaugher Volcanic
Group

Olivine basalt, tuff, microgabbro, minor
sedimentary rocks

Composition Part property file:

id COMPO-
NENT_ROLE:String

PROPOR-
TION:String

GEO-
LOGIC_UNIT_ID:String

cp.167775491936278812interbedded component significant gu.25699
cp.167775491936278856interbedded component minor gu.25678
cp.167775491936278844sole component major gu.25678

Run the getFeature request to test this configuration. Check that the nested features returned in Step 2 are
appropriately lined inside the containing features. If they are not there, or exceptions are thrown, scroll
down and read the “Trouble Shooting” section.

9.12.3 Multiple mappings of the same type

At times, you may find the need to have different FeatureTypeMapping instances for the same
type. You may have two different attributes of the same type that need to be nested. For exam-
ple, in gsml:GeologicUnit, you have gsml:exposureColor and gsml:outcropCharacter that are both of
gsml:CGI_TermValue type.

This is when the optional mappingName tag mentioned in Mapping File comes in. Instead of passing in
the nested feature type’s targetElement in the containing type’s linkElement, specify the corresponding
mappingName.

Note:

• The mappingName is namespace aware and case sensitive.

• When the referred mappingName contains special characters such as ‘-‘, it must be enclosed with
single quotes in the linkElement. E.g. <linkElement>’observation-method’</linkElement>.

• Each mappingName must be unique against other mappingName and targetElement tags across the
application.

238 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

• The mappingName is only to be used to identify the chained type from the nesting type. It is not a
solution for multiple FeatureTypeMapping instances where > 1 of them can be queried as top level
features.

• When queried as a top level feature, the normal targetElement is to be used. Filters involving the
nested type should still use the targetElement in the PropertyName part of the query.

• You can’t have more than 1 FeatureTypeMapping of the same type in the same mapping file if one
of them is a top level feature. This is because featuretype.xml would look for the targetElement and
wouldn’t know which one to get.

The solution for the last point above is to break them up into separate files and locations with only 1
featuretype.xml in the intended top level feature location. E.g.

• You can have 2 FeatureTypeMapping instances in the same file for gsml:CGI_TermValue type since
it’s not a feature type.

• You can have 2 FeatureTypeMapping instances for gsml:MappedFeature, but they have to be broken
up into separate files. The one that can be queried as top level feature type would have feature-
type.xml in its location.

9.12.4 Nesting simple properties

You don’t need to chain multi-valued simple properties and map them separately. The original configura-
tion would still work.

9.12.5 Filtering nested attributes on chained features

Filters would work as usual. You can supply the full XPath of the attribute, and the code would handle
this. E.g. You can run the following filter on gsml:MappedFeatureUseCase2A:

<ogc:Filter>
<ogc:PropertyIsEqualTo>

<ogc:Function name="contains_text">
<ogc:PropertyName>gsml:specification/gsml:GeologicUnit/gml:description</ogc:PropertyName>
<ogc:Literal>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</ogc:Literal>

</ogc:Function>
<ogc:Literal>1</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

9.12.6 Multi-valued properties by reference (xlink:href)

You may want to use feature chaining to set multi-valued properties by reference. This is particularly handy
to avoid endless loop in circular relationships. For example, you may have a circular relationship between
gsml:MappedFeature and gsml:GeologicUnit. E.g.

• gsml:MappedFeature has gsml:GeologicUnit as gsml:specification

• gsml:GeologicUnit has gsml:MappedFeature as gsml:occurrence

Obviously you can only encode one side of the relationship, or you’ll end up with an endless loop. You
would need to pick one side to “chain” and use xlink:href for the other side of the relationship.

For this example, we are nesting gsml:GeologicUnit in gsml:MappedFeature as gsml:specification.

9.12. Feature Chaining 239

GeoServer User Manual, Release 2.5.x

• Set up nesting on the container feature type mapping as usual:

<AttributeMapping>
<targetAttribute>gsml:specification</targetAttribute>
<sourceExpression>

<OCQL>GEOLOGIC_UNIT_ID</OCQL>
<linkElement>gsml:GeologicUnit</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
</AttributeMapping>

• Set up xlink:href as client property on the other mapping file:

<AttributeMapping>
<targetAttribute>gsml:occurrence</targetAttribute>
<sourceExpression>

<OCQL>id</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gsml:specification</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>
<ClientProperty>

<name>xlink:href</name>
<value>strConcat(’urn:cgi:feature:MappedFeature:’, ID)</value>

</ClientProperty>
</AttributeMapping>

As we are getting the client property value from a nested feature, we have to set it as if we are chaining the
feature; but we also add the client property containing xlink:href in the attribute mapping. The code will
detect the xlink:href setting, and will not proceed to build the nested feature’s attributes, and we will end
up with empty attributes with xlink:href client properties.

This would be the encoded result for gsml:GeologicUnit:

<gsml:GeologicUnit gml:id="gu.25678">
<gsml:occurrence xlink:href="urn:cgi:feature:MappedFeature:mf2"/>
<gsml:occurrence xlink:href="urn:cgi:feature:MappedFeature:mf3"/>

Note:

• Don’t forget to add XLink in your mapping file namespaces section, or you could end up with a Stack-
OverflowException as the xlink:href client property won’t be recognized and the mappings would
chain endlessly.

• Resolving may be used to force app-schema to do full feature chaining up to a certain level, even if an
xlink reference is specified.

9.13 Polymorphism

Polymorphism in this context refers to the ability of an attribute to have different forms. Depending on the
source value, it could be encoded with a specific structure, type, as an xlink:href reference, or not encoded
at all. To achieve this, we reuse feature chaining syntax and allow OCQL functions in the linkElement tag.
Read more about Feature Chaining, if you’re not familiar with the syntax.

240 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

9.13.1 Data-type polymorphism

You can use normal feature chaining to get an attribute to be encoded as a certain type. For example:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>NumericType</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
</AttributeMapping>
<AttributeMapping>

<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>gsml:CGI_TermValue</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
</AttributeMapping>

Note: NumericType here is a mappingName, whereas gsml:CGI_TermValue is a targetElement.

In the above example, ex:someAttribute would be encoded with the configuration in NumericType if the
foreign key matches the linkField. Both instances would be encoded if the foreign key matches the candi-
date keys in both linked configurations. Therefore this would only work for 0 to many relationships.

Functions can be used for single attribute instances. See useful functions for a list of commonly used func-
tions. Specify the function in the linkElement, and it would map it to the first matching FeatureTypeMap-
ping. For example:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<OCQL>VALUE_ID</OCQL>
<linkElement>

Recode(CLASS_TEXT, ’numeric’, ’NumericType’, ’literal’, ’gsml:CGI_TermValue’)
</linkElement>
<linkField>FEATURE_LINK</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

The above example means, if the CLASS_TEXT value is ‘numeric’, it would link to ‘NumericType’ Fea-
tureTypeMapping, with VALUE_ID as foreign key to the linked type. It would require all the potential
matching types to have a common attribute that is specified in linkField. In this example, the linkField is
FEATURE_LINK, which is a fake attribute used only for feature chaining. You can omit the linkField and
OCQL if the FeatureTypeMapping being linked to has the same sourceType with the container type. This
would save us from unnecessary extra queries, which would affect performance. For example:

FeatureTypeMapping of the container type:

<FeatureTypeMapping>
<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>

FeatureTypeMapping of NumericType points to the same table:

<FeatureTypeMapping>
<mappingName>NumericType</mappingName>

9.13. Polymorphism 241

GeoServer User Manual, Release 2.5.x

<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>

FeatureTypeMapping of gsml:CGI_TermValue also points to the same table:

<FeatureTypeMapping>
<sourceDataStore>PropertyFiles</sourceDataStore>
<sourceType>PolymorphicFeature</sourceType>
<targetElement>gsml:CGI_TermValue</targetElement>

In this case, we can omit linkField in the polymorphic attribute mapping:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<linkElement>
Recode(CLASS_TEXT, ’numeric’, ’NumericType’, ’literal’, ’gsml:CGI_TermValue’)

</linkElement>
</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

9.13.2 Referential polymorphism

This is when an attribute is set to be encoded as an xlink:href reference on the top level. When the scenario
only has reference cases in it, setting a function in Client Property will do the job. E.g.:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<ClientProperty>

<name>xlink:href</name>
<value>if_then_else(isNull(NUMERIC_VALUE), ’urn:ogc:def:nil:OGC:1.0:missing’, strConcat(’#’, NUMERIC_VALUE))</value>

</ClientProperty>
</AttributeMapping>

The above example means, if NUMERIC_VALUE is null, the attribute should be encoded as:

<ex:someAttribute xlink:href="urn:ogc:def:nil:OGC:1.0:missing">

Otherwise, it would be encoded as:

<ex:someAttribute xlink:href="#123">
where NUMERIC_VALUE = ’123’

However, this is not possible when we have cases where a fully structured attribute is also a possibility.
The toxlinkhref function can be used for this scenario. E.g.:

<AttributeMapping>
<targetAttribute>ex:someAttribute</targetAttribute>
<sourceExpression>

<linkElement>
if_then_else(isNull(NUMERIC_VALUE), toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’),
if_then_else(lessEqualThan(NUMERIC_VALUE, 1000), ’numeric_value’, toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’)))

</linkElement>
</sourceExpression>

</AttributeMapping>

The above example means, if NUMERIC_VALUE is null, the output would be encoded as:

242 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<ex:someAttribute xlink:href="urn:ogc:def:nil:OGC:1.0:missing">

Otherwise, if NUMERIC_VALUE is less or equal than 1000, it would be encoded with attributes from
FeatureTypeMapping with ‘numeric_value’ mappingName. If NUMERIC_VALUE is greater than 1000,
it would be encoded as the first scenario.

9.13.3 Useful functions

if_then_else function

Syntax:

if_then_else(BOOLEAN_EXPRESSION, value, default value)

• BOOLEAN_EXPRESSION: could be a Boolean column value, or a Boolean function

• value: the value to map to, if BOOLEAN_EXPRESSION is true

• default value: the value to map to, if BOOLEAN_EXPRESSION is false

Recode function

Syntax:

Recode(EXPRESSION, key1, value1, key2, value2,...)

• EXPRESSION: column name to get values from, or another function

• key-n:

– key expression to map to value-n

– if the evaluated value of EXPRESSION doesn’t match any key, nothing would be encoded
for the attribute.

• value-n: value expression which translates to a mappingName or targetElement

lessEqualThan

Returns true if ATTRIBUTE_EXPRESSION evaluates to less or equal than LIMIT_EXPRESSION.

Syntax:

lessEqualThan(ATTRIBUTE_EXPRESSION, LIMIT_EXPRESSION)

• ATTRIBUTE_EXPRESSION: expression of the attribute being evaluated.

• LIMIT_EXPRESSION: expression of the numeric value to be compared against.

lessThan

Returns true if ATTRIBUTE_EXPRESSION evaluates to less than LIMIT_EXPRESSION.

Syntax:

lessThan(ATTRIBUTE_EXPRESSION, LIMIT_EXPRESSION)

• ATTRIBUTE_EXPRESSION: expression of the attribute being evaluated.

9.13. Polymorphism 243

GeoServer User Manual, Release 2.5.x

• LIMIT_EXPRESSION: expression of the numeric value to be compared against.

equalTo

Compares two expressions and returns true if they’re equal.

Syntax:

equalTo(LHS_EXPRESSION, RHS_EXPRESSION)

isNull

Returns a Boolean that is true if the expression evaluates to null.

Syntax:

isNull(EXPRESSION)

• EXPRESSION: expression to be evaluated.

toXlinkHref

Special function written for referential polymorphism and feature chaining, not to be used outside of
linkElement. It infers that the attribute should be encoded as xlink:href.

Syntax:

toXlinkHref(XLINK_HREF_EXPRESSION)

• XLINK_HREF_EXPRESSION:

– could be a function or a literal

– has to be wrapped in single quotes if it’s a literal

Note:

• To get toXlinkHref function working, you need to declare xlink URI in the namespaces.

Other functions

Please refer to Filter Function Reference.

Combinations

You can combine functions, but it might affect performance. E.g.:

if_then_else(isNull(NUMERIC_VALUE), toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’),
if_then_else(lessEqualThan(NUMERIC_VALUE, 1000), ’numeric_value’, toXlinkHref(’urn:ogc:def:nil:OGC:1.0:missing’)))

Note:

• When specifying a mappingName or targetElement as a value in functions, make sure they’re en-
closed in single quotes.

• Some functions have no null checking, and will fail when they encounter null.

244 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

• The workaround for this is to wrap the expression with isNull() function if null is known to exist in
the data set.

9.13.4 Null or missing value

To skip the attribute for a specific case, you can use Expression.NIL as a value in if_then_else or not include
the key in Recode function . E.g.:

if_then_else(isNull(VALUE), Expression.NIL, ’gsml:CGI_TermValue’)
means the attribute would not be encoded if VALUE is null.

Recode(VALUE, ’term_value’, ’gsml:CGI_TermValue’)
means the attribute would not be encoded if VALUE is anything but ’term_value’.

To encode an attribute as xlink:href that represents missing value on the top level, see Referential Polymor-
phism.

9.13.5 Any type

Having xs:anyType as the attribute type itself infers that it is polymorphic, since they can be encoded as
any type.

If the type is pre-determined and would always be the same, we might need to specify targetAttributeNode
(optional). E.g.:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<targetAttributeNode>gml:MeasureType<targetAttributeNode>
<sourceExpression>

<OCQL>TOPAGE</OCQL>
</sourceExpression>
<ClientProperty>

<name>xsi:type</name>
<value>’gml:MeasureType’</value>

</ClientProperty>
<ClientProperty>

<name>uom</name>
<value>’http://www.opengis.net/def/uom/UCUM/0/Ma’</value>

</ClientProperty>
</AttributeMapping>

If the casting type is complex, this is not a requirement as app-schema is able to automatically determine
the type from the XPath in targetAttribute. E.g., in this example om:result is automatically specialised as
a MappedFeatureType:

<AttributeMapping>
<targetAttribute>om:result/gsml:MappedFeature/gml:name</targetAttribute>
<sourceExpression>

<OCQL>NAME</OCQL>
</sourceExpression>

</AttributeMapping>

Alternatively, we can use feature chaining. For the same example above, the mapping would be:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>

9.13. Polymorphism 245

GeoServer User Manual, Release 2.5.x

<sourceExpression>
<OCQL>LEX_D</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name</linkField>

</sourceExpression>
</AttributeMapping>

If the type is conditional, the mapping style for such attributes is the same as any other polymorphic at-
tributes. E.g.:

<AttributeMapping>
<targetAttribute>om:result</targetAttribute>
<sourceExpression>

<linkElement>
Recode(NAME, Expression.Nil, toXlinkHref(’urn:ogc:def:nil:OGC::missing’),’numeric’,
toXlinkHref(strConcat(’urn:numeric-value::’, NUMERIC_VALUE)), ’literal’, ’TermValue2’)

</linkElement>
</sourceExpression>

</AttributeMapping>

9.13.6 Filters

Filters should work as usual, as long as the users know what they want to filter. For example, when an
attribute could be encoded as gsml:CGI_TermValue or gsml:CGI_NumericValue, users can run filters with
property names of:

• ex:someAttribute/gsml:CGI_TermValue/gsml:value to return matching attributes that are encoded
as gsml:CGI_TermValue and satisfy the filter.

• likewise, ex:someAttribute/gsml:CGI_NumericValue/gsml:principalValue should return matching
gsml:CGI_NumericValue attributes.

Another limitation is filtering attributes of an xlink:href attribute pointing to an instance outside of the
document.

9.14 Data Access Integration

This page assumes prior knowledge of Working with Application Schemas and Feature Chaining. To use feature
chaining, the nested features can come from any complex feature data access, as long as: * it has valid data
referred by the “container” feature type, * the data access is registered via DataAccessRegistry, * if FEA-
TURE_LINK is used as the link field, the feature types were created via ComplexFeatureTypeFactoryImpl

However, the “container” features must come from an application schema data access. The rest of this
article describes how we can create an application data access from an existing non-application schema
data access, in order to “chain” features. The input data access referred in this article is assumed to be the
non-application schema data access.

9.14.1 How to connect to the input data access

Configure the data store connection in “sourceDataStores” tag as usual, but also specify the additional “is-
DataAccess” tag. This flag marks that we want to get the registered complex feature source of the specified
“sourceType”, when processing the source data store. This assumes that the input data access is registered
in DataAccessRegistry upon creation, for the system to find it.

246 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

Example:

<sourceDataStores>
<DataStore>

<id>EarthResource</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

</Parameter>
</parameters>
<isDataAccess>true</isDataAccess>

</DataStore>
</sourceDataStores>
...
<typeMappings>

<FeatureTypeMapping>
<sourceDataStore>EarthResource</sourceDataStore>

<sourceType>EarthResource</sourceType>
...

9.14.2 How to configure the mapping

Use “inputAttribute” in place of “OCQL” tag inside “sourceExpression”, to specify the input XPath expres-
sions.

Example:

<AttributeMapping>
<targetAttribute>gsml:classifier/gsml:ControlledConcept/gsml:preferredName</targetAttribute>
<sourceExpression>

<inputAttribute>mo:classification/mo:MineralDepositModel/mo:mineralDepositGroup</inputAttribute>
</sourceExpression>

</AttributeMapping>

9.14.3 How to chain features

Feature chaining works both ways for the re-mapped complex features. You can chain other features inside
these features, and vice-versa. The only difference is to use “inputAttribute” for the input XPath expres-
sions, instead of “OCQL” as mentioned above.

Example:

<AttributeMapping>
<targetAttribute>gsml:occurence</targetAttribute>
<sourceExpression>

<inputAttribute>mo:commodityDescription</inputAttribute>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

9.14. Data Access Integration 247

GeoServer User Manual, Release 2.5.x

9.14.4 How to use filters

From the user point of view, filters are configured as per normal, using the mapped/output target attribute
XPath expressions. However, when one or more attributes in the expression is a multi-valued property,
we need to specify a function such as “contains_text” in the filter. This is because when multiple values
are returned, comparing them to a single value would only return true if there is only one value returned,
and it is the same value. Please note that the “contains_text” function used in the following example is not
available in Geoserver API, but defined in the database.

Example:

Composition is a multi-valued property:

<ogc:Filter>
<ogc:PropertyIsEqualTo>
<ogc:Function name="contains_text">

<ogc:PropertyName>gsml:composition/gsml:CompositionPart/gsml:proportion/gsml:CGI_TermValue/gsml:value</ogc:PropertyName>
<ogc:Literal>Olivine basalt, tuff, microgabbro, minor sedimentary rocks</ogc:Literal>

</ogc:Function>
<ogc:Literal>1</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>

9.15 WMS Support

App-schema supports WMS requests as well as WFS requests. This page provides some useful examples
for configuring the WMS service to work with complex features.

Note that the rendering performance of WMS can be significantly slower when using app-schema data
stores. We strongly recommend employing Joining Support For Performance when using WMS with feature
chaining, which can make response time for large data requests several orders of magnitude faster.

9.15.1 Configuration

For WMS to be applicable to complex feature data, it is necessary that the complex feature types are
recognised by GeoServer as layers. This must be configured by adding an extra configuration file named
‘layer.xml’ in the data directory of each feature type that we want to use as a WMS layer.

This will expand the structure of the workspaces folder in the GeoServer data directory as follows
(workspaces) (see Configuration):

workspaces
- gsml

- SomeDataStore
- SomeFeatureType

- featuretype.xml
- layer.xml

- datastore.xml
- SomeFeatureType-mapping-file.xml

The file layer.xml must have the following contents:

<layer>
<id>[mylayerid]</id>
<name>[mylayername]</name>
<path>/</path>

248 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<type>VECTOR</type>
<defaultStyle>

<name>[mydefaultstyle]</name>
</defaultStyle>
<resource class="featureType">

<id>[myfeaturetypeid]</id>
</resource>
<enabled>true</enabled>
<attribution>

<logoWidth>0</logoWidth>
<logoHeight>0</logoHeight>

</attribution>
</layer>

Replace the fields in between brackets with the following values:

• [mylayerid] must be a custom id for the layer.

• [mylayername] must be a custom name for the layer.

• [mydefaultstyle] the default style used for this layer (when a style is not specified in the wms request).
The style must exist in the GeoServer configuration.

• [myfeaturetypeid] is the id of the feature type. This must the same as the id specified in the file
featuretype.xml of the same directory.

9.15.2 GetMap

Read GetMap for general information on the GetMap request. Read Styling for general information on how
to style WMS maps with SLD files. When styling complex features, you can use XPaths to specify nested
properties in your filters, as explained in Filtering nested attributes on chained features. However, in WMS
styling filters X-paths do not support handling referenced features (see Multi-valued properties by reference
(xlink:href)) as if they were actual nested features (because the filters are applied after building the features
rather than before.) The prefix/namespace context that is used in the XPath expression is defined locally in
the XML tags of the style file. This is an example of a Style file for complex features:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <StyledLayerDescriptor version="1.0.0"
3 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
4 xmlns:ogc="http://www.opengis.net/ogc"
5 xmlns:xlink="http://www.w3.org/1999/xlink"
6 xmlns:gml="http://www.opengis.net/gml"
7 xmlns:gsml="urn:cgi:xmlns:CGI:GeoSciML:2.0"
8 xmlns:sld="http://www.opengis.net/sld"
9 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

10 <sld:NamedLayer>
11 <sld:Name>geology-lithology</sld:Name>
12 <sld:UserStyle>
13 <sld:Name>geology-lithology</sld:Name>
14 <sld:Title>Geological Unit Lithology Theme</sld:Title>
15 <sld:Abstract>The colour has been creatively adapted from Moyer,Hasting
16 and Raines, 2005 (http://pubs.usgs.gov/of/2005/1314/of2005-1314.pdf)
17 which provides xls spreadsheets for various color schemes.
18 plus some creative entries to fill missing entries.
19 </sld:Abstract>
20 <sld:IsDefault>1</sld:IsDefault>
21 <sld:FeatureTypeStyle>
22 <sld:Rule>

9.15. WMS Support 249

GeoServer User Manual, Release 2.5.x

23 <sld:Name>acidic igneous material</sld:Name>
24 <sld:Abstract>Igneous material with more than 63 percent SiO2.
25 (after LeMaitre et al. 2002)
26 </sld:Abstract>
27 <ogc:Filter>
28 <ogc:PropertyIsEqualTo>
29 <ogc:PropertyName>gsml:specification/gsml:GeologicUnit/gsml:composition/
30 gsml:CompositionPart/gsml:lithology/@xlink:href</ogc:PropertyName>
31 <ogc:Literal>urn:cgi:classifier:CGI:SimpleLithology:200811:
32 acidic_igneous_material</ogc:Literal>
33 </ogc:PropertyIsEqualTo>
34 </ogc:Filter>
35 <sld:PolygonSymbolizer>
36 <sld:Fill>
37 <sld:CssParameter name="fill">#FFCCB3</sld:CssParameter>
38 </sld:Fill>
39 </sld:PolygonSymbolizer>
40 </sld:Rule>
41 <sld:Rule>
42 <sld:Name>acidic igneous rock</sld:Name>
43 <sld:Abstract>Igneous rock with more than 63 percent SiO2.
44 (after LeMaitre et al. 2002)
45 </sld:Abstract>
46 <ogc:Filter>
47 <ogc:PropertyIsEqualTo>
48 <ogc:PropertyName>gsml:specification/gsml:GeologicUnit/gsml:composition/
49 gsml:CompositionPart/gsml:lithology/@xlink:href</ogc:PropertyName>
50 <ogc:Literal>urn:cgi:classifier:CGI:SimpleLithology:200811:
51 acidic_igneous_rock</ogc:Literal>
52 </ogc:PropertyIsEqualTo>
53 </ogc:Filter>
54 <sld:PolygonSymbolizer>
55 <sld:Fill>
56 <sld:CssParameter name="fill">#FECDB2</sld:CssParameter>
57 </sld:Fill>
58 </sld:PolygonSymbolizer>
59 </sld:Rule>
60 ...
61 </sld:FeatureTypeStyle>
62 </sld:UserStyle>
63 </sld:NamedLayer>
64 </sld:StyledLayerDescriptor>

9.15.3 GetFeatureInfo

Read GetFeatureInfo for general information on the GetFeatureInfo request. Read the tutorial on GetFea-
tureInfo Templates for information on how to template the html output. If you want to store a separate
standard template for complex feature collections, save it under the filename complex_content.ftl in
the template directory.

Read the tutorial on Freemarker Templates for more information on how to use the freemarker templates.
Freemarker templates support recursive calls, which can be useful for templating complex content. For
example, the following freemarker template creates a table of features with a column for each property, and
will create another table inside each cell that contains a feature as property:

250 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

<#--
Macro’s used for content
-->

<#macro property node>
<#if !node.isGeometry>

<#if node.isComplex>
<td> <@feature node=node.rawValue type=node.type /> </td>
<#else>
<td>${node.value?string}</td>
</#if>

</#if>
</#macro>

<#macro header typenode>
<caption class="featureInfo">${typenode.name}</caption>

<tr>
<th>fid</th>

<#list typenode.attributes as attribute>
<#if !attribute.isGeometry>
<#if attribute.prefix == "">

<th >${attribute.name}</th>
<#else>

<th >${attribute.prefix}:${attribute.name}</th>
</#if>

</#if>
</#list>

</tr>
</#macro>

<#macro feature node type>
<table class="featureInfo">

<@header typenode=type />
<tr>
<td>${node.fid}</td>
<#list node.attributes as attribute>

<@property node=attribute />
</#list>
</tr>

</table>
</#macro>

<#--
Body section of the GetFeatureInfo template, it’s provided with one feature collection, and
will be called multiple times if there are various feature collections
-->
<table class="featureInfo">

<@header typenode=type />

<#assign odd = false>
<#list features as feature>

<#if odd>
<tr class="odd">

<#else>
<tr>

</#if>
<#assign odd = !odd>

9.15. WMS Support 251

GeoServer User Manual, Release 2.5.x

<td>${feature.fid}</td>
<#list feature.attributes as attribute>
<@property node=attribute />

</#list>
</tr>

</#list>
</table>

9.16 WFS 2.0 Support

9.16.1 Resolving

Local resolve is supported in app-schema. This can be done by setting the ‘resolve’ parameter to either
‘local’ or ‘all’. (Remote Resolving is not supported.) The parameter ‘resolveDepth’ specifies how many
levels of references will be resolved. The parameter ‘resolveTimeOut’ may be used to specify, in seconds,
an upper limit to how long app-schema should search for the feature needed for resolving. If the time out
limit is reached, the feature is not resolved.

When resolving without Feature Chaining (see below), a GML ID is extracted from the x-link reference and
a brute force is done on all feature types to find a feature with this GML ID. The extraction of this GML ID
from the Xlink Reference is done using the following rules:

• In case of a URN: The GML ID comes after last colon in the URN. Make sure that the full GML ID is
included after the last colon (including a possible feature type prefix).

• In case of a URL: The GML ID comes after the # symbol.

Failing to respect one of these rules will result in failure of resolve.

Resolving and Feature Chaining By Reference

The ‘resolve’ and ‘resolveDepth’ parameters may also be used in the case of Multi-valued properties by ref-
erence (xlink:href). In this case, no brute force will take place, but resolving will instruct App-Schema to do
full feature chaining rather than inserting a reference. The URI will not be used to find the feature, but the
feature chaining parameters specified in the mapping, as with normal feature chaining. Because of this, the
parameter ‘resolveTimeOut’ will be ignored in this case.

However, be aware that every feature can only appear once in a response. If resolving would break this
rule, for example with circular references, the encoder will change the resolved feature back to an (internal)
x-link reference.

9.16.2 GetPropertyValue

The GetPropertyValue request is now fully supported. Resolving is also possible in this request, following
the same rules as described above.

9.16.3 Paging

Paging is currently not supported in App-Schema yet. The parameter count is however supported (iden-
tical to the WFS 1.0 and 1.1 maxFeatures parameter).

252 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

9.17 Joining Support For Performance

App-schema joining is a optional configuration parameter that tells app-schema to use a different imple-
mentation for Feature Chaining, which in many cases can improve performance considerably, by reducing
the amount of SQL queries sent to the DBMS.

9.17.1 Conditions

In order to use App-schema Joining, the following configuration conditions must be met:

• All feature mappings used must be mapped to JDBC datastores.

• All feature mappings that are chained to each other must map to the same physical database.

• In your mappings, there are restrictions on the CQL expressions specified in the <SourceExpression>
of both the referencing field in the parent feature as well as the referenced field in the nested feature
(like FEATURE_LINK). Any operators or functions used in this expression must be supported by
the filter capibilities, i.e. geotools must be able to translate them directly to SQL code. This can be
different for each DBMS, though as a general rule it can assumed that comparison operators, logical
operators and arithmetic operators are all supported but functions are not. Using simple field names
for feature chaining is guaranteed to always work.

Failing to comply with any of these three restrictions when turning on Joining will result in exceptions
thrown at run-time.

When using app-schema with Joining turned on, the following restrictions exist with respect to normal
behaviour:

• XPaths specified inside Filters do not support handling referenced features (see Multi-valued properties
by reference (xlink:href)) as if they were actual nested features, i.e. XPaths can only be evaluated when
they can be evaluated against the actual XML code produced by WFS according to the XPath standard.

9.17.2 Configuration

Joining is turned on by default. It is disabled by adding this simple line to your app-schema.properties file
(see Property Interpolation)

app-schema.joining = false

Or, alternatively, by setting the value of the Java System Property “app-schema.joining” to “false”, for
example

java -DGEOSERVER_DATA_DIR=... -Dapp-schema.joining=false Start

Not specifying “app-schema.joining” parameter will enable joining by default.

9.17.3 Database Design Guidelines

• Databases should be optimised for fast on-the-fly joining and ordering.

• Make sure to put indexes on all fields used as identifiers and for feature chaining, unique indexes
where possible. Lack of indices may result in data being encoded in the wrong order or corrupted
output when feature chaining is involved.

• Map your features preferably to normalised tables.

9.17. Joining Support For Performance 253

GeoServer User Manual, Release 2.5.x

• It is recommended to apply feature chaining to regular one-to-many relationships, i.e. there should
be a unique constraint defined on one of the fields used for the chaining, and if possible a foreign key
constraint defined on the other field.

9.17.4 Effects on Performance

Typical curves of response time for configurations with and without joining against the amount of features
produced will be shaped like this:

In the default implementation, response time increases rapidly with respect to the amount of produced
features. This is because feature chaining is implemented by sending multiple SQL requests to the DBMS
per feature, so the amount of requests increases with the amount of features produced. When Joining is
turned on, response time will be almost constant with respect to the number of features. This is because
in this implementation a small amount of larger queries is sent to the DBMS, independant of the amount
of features produced. In summary, difference in performance becomes greater as the amount of features
requested gets bigger. General performance of joining will be dependant on database and mapping design
(see above) and database size.

Using joining is strongly recommended when a large number of features need to be produced, for example
when producing maps with WMS (see WMS Support).

Optimising the performance of the database will maximise the benefit of using joining, including for small
queries.

9.18 Tutorial

This tutorial demonstrates how to configure two complex feature types using the app-schema plugin and
data from two property files.

9.18.1 GeoSciML

This example uses Geoscience Markup Language (GeoSciML) 2.0, a GML application schema:

“GeoSciML is an application schema that specifies a set of feature-types and supporting structures for
information used in the solid-earth geosciences.”

The tutorial defines two feature types:

1. gsml:GeologicUnit, which describes “a body of material in the Earth”.

2. gsml:MappedFeature, which describes the representation on a map of a feature, in this case
gsml:GeologicUnit.

254 Chapter 9. Working with Application Schemas

http://geosciml.org/geosciml/2.0/doc/

GeoServer User Manual, Release 2.5.x

Because a single gsml:GeologicUnit can be observed at several distinct locations on the Earth’s surface,
it can have a multivalued gsml:occurrence property, each being a gsml:MappedFeature.

9.18.2 Installation

• Install GeoServer as usual.

• Install the app-schema plugin geoserver-*-app-schema-plugin.zip:

– Place the jar files in WEB-INF/lib.

– The tutorial folder contains the GeoServer configuraration (data directory) used for this tuto-
rial.

* Either replace your existing data directory with the tutorial data directory,

* Or edit WEB-INF/web.xml to set GEOSERVER_DATA_DIR to point to the tutorial data di-
rectory. (Be sure to uncomment the section that sets GEOSERVER_DATA_DIR.)

• Perform any configuration required by your servlet container, and then start the servlet. For example,
if you are using Tomcat, configure a new context in server.xml and then restart Tomcat.

• The first time GeoServer starts with the tutorial configuration, it will download all the schema (XSD)
files it needs and store them in the app-schema-cache folder in the data directory. You must be
connected to the internet for this to work.

9.18.3 datastore.xml

Each data store configuration file datastore.xml specifies the location of a mapping file and triggers its
loading as an app-schema data source. This file should not be confused with the source data store, which
is specified inside the mapping file.

For gsml_GeologicUnit the file is workspaces/gsml/gsml_GeologicUnit/datastore.xml:

<dataStore>
<id>gsml_GeologicUnit_datastore</id>
<name>gsml_GeologicUnit</name>
<enabled>true</enabled>
<workspace>

<id>gsml_workspace</id>
</workspace>
<connectionParameters>

<entry key="namespace">urn:cgi:xmlns:CGI:GeoSciML:2.0</entry>
<entry key="url">file:workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.xml</entry>
<entry key="dbtype">app-schema</entry>

</connectionParameters>
</dataStore>

For gsml:MappedFeature the file is workspaces/gsml/gsml_MappedFeature/datastore.xml:

<dataStore>
<id>gsml_MappedFeature_datastore</id>
<name>gsml_MappedFeature</name>
<enabled>true</enabled>
<workspace>

<id>gsml_workspace</id>
</workspace>
<connectionParameters>

<entry key="namespace">urn:cgi:xmlns:CGI:GeoSciML:2.0</entry>

9.18. Tutorial 255

GeoServer User Manual, Release 2.5.x

<entry key="url">file:workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.xml</entry>
<entry key="dbtype">app-schema</entry>

</connectionParameters>
</dataStore>

Note: Ensure that there is no whitespace inside an entry element.

9.18.4 Mapping files

Configuration of app-schema feature types is performed in mapping files:

• workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.xml

• workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.xml

Namespaces

Each mapping file contains namespace prefix definitions:

<Namespace>
<prefix>gml</prefix>
<uri>http://www.opengis.net/gml</uri>

</Namespace>
<Namespace>

<prefix>gsml</prefix>
<uri>urn:cgi:xmlns:CGI:GeoSciML:2.0</uri>

</Namespace>
<Namespace>

<prefix>xlink</prefix>
<uri>http://www.w3.org/1999/xlink</uri>

</Namespace>

Only those namespace prefixes used in the mapping file need to be declared, so the mapping file for
gsml:GeologicUnit has less.

Source data store

The data for this tutorial is contained in two property files:

• workspaces/gsml/gsml_GeologicUnit/gsml_GeologicUnit.properties

• workspaces/gsml/gsml_MappedFeature/gsml_MappedFeature.properties

Java Properties describes the format of property files.

For this example, each feature type uses an identical source data store configuration. This directory
parameter indicates that the source data is contained in property files named by their feature type, in the
same directory as the corresponding mapping file:

<sourceDataStores>
<DataStore>

<id>datastore</id>
<parameters>

<Parameter>
<name>directory</name>
<value>file:./</value>

256 Chapter 9. Working with Application Schemas

GeoServer User Manual, Release 2.5.x

</Parameter>
</parameters>

</DataStore>
</sourceDataStores>

See Data Stores for a description of how to use other types of data stores such as databases.

Target types

Both feature types are defined by the same XML Schema, the top-level schema for GeoSciML 2.0. This is
specified in the targetTypes section. The type of the output feature is defined in targetElement in the
typeMapping section below:

<targetTypes>
<FeatureType>

<schemaUri>http://www.geosciml.org/geosciml/2.0/xsd/geosciml.xsd</schemaUri>
</FeatureType>

</targetTypes>

In this case the schema is published, but because the OASIS XML Catalog is used for schema resolution, a
private or modified schema in the catalog can be used if desired.

Mappings

The typeMappings element begins with configuration elements. From the mapping file for
gsml:GeologicUnit:

<typeMappings>
<FeatureTypeMapping>

<sourceDataStore>datastore</sourceDataStore>
<sourceType>gsml_GeologicUnit</sourceType>
<targetElement>gsml:GeologicUnit</targetElement>

• The mapping starts with sourceDataStore, which gives the arbitrary identifier used above to name
the source of the input data in the sourceDataStores section.

• sourceType gives the name of the source simple feature type. In this case it is the simple feature
type gsml_GeologicUnit, sourced from the rows of the file gsml_GeologicUnit.properties
in the same directory as the mapping file.

• When working with databases sourceType is the name of a table or view. Database identifiers must
be lowercase for PostGIS or uppercase for Oracle Spatial.

• targetElement is the name of the output complex feature type.

gml:id mapping

The first mapping sets the gml:id to be the feature id specified in the source property file:

<AttributeMapping>
<targetAttribute>

gsml:GeologicUnit
</targetAttribute>
<idExpression>

<OCQL>ID</OCQL>

9.18. Tutorial 257

GeoServer User Manual, Release 2.5.x

</idExpression>
</AttributeMapping>

• targetAttribute is the XPath to the element for which the mapping applies, in this case, the top-
level feature type.

• idExpression is a special form that can only be used to set the gml:id on a feature. Any field or
CQL expression can be used, if it evaluates to an NCName.

Ordinary mapping

Most mappings consist of a target and source. Here is one from gsml:GeologicUnit:

<AttributeMapping>
<targetAttribute>

gml:description
</targetAttribute>

<sourceExpression>
<OCQL>DESCRIPTION</OCQL>

</sourceExpression>
</AttributeMapping>

• In this case, the value of gml:description is just the value of the DESCRIPTION field in the prop-
erty file.

• For a database, the field name is the name of the column (the table/view is set in sourceType above).
Database identifiers must be lowercase for PostGIS or uppercase for Oracle Spatial.

• CQL expressions can be used to calculate content. Use caution because queries on CQL-calculated
values prevent the construction of efficient SQL queries.

• Source expressions can be CQL literals, which are single-quoted.

Client properties

In addition to the element content, a mapping can set one or more “client properties” (XML attributes).
Here is one from gsml:MappedFeature:

<AttributeMapping>
<targetAttribute>

gsml:specification
</targetAttribute>
<ClientProperty>

<name>xlink:href</name>
<value>GU_URN</value>

</ClientProperty>
</AttributeMapping>

• This mapping leaves the content of the gsml:specification element empty but sets an
xlink:href attribute to the value of the GU_URN field.

• Multiple ClientProperty mappings can be set.

In this example from the mapping for gsml:GeologicUnit both element content and an XML attribute
are provided:

258 Chapter 9. Working with Application Schemas

http://www.w3.org/TR/1999/REC-xml-names-19990114/#NT-NCName

GeoServer User Manual, Release 2.5.x

<AttributeMapping>
<targetAttribute>

gml:name[1]
</targetAttribute>

<sourceExpression>
<OCQL>NAME</OCQL>

</sourceExpression>
<ClientProperty>

<name>codeSpace</name>
<value>’urn:x-test:classifierScheme:TestAuthority:GeologicUnitName’</value>

</ClientProperty>
</AttributeMapping>

• The codespace XML attribute is set to a fixed value by providing a CQL literal.

• There are multiple mappings for gml:name, and the index [1] means that this mapping targets the
first.

targetAttributeNode

If the type of a property is abstract, a targetAttributeNode mapping must be used to specify a concrete
type. This mapping must occur before the mapping for the content of the property.

Here is an example from the mapping file for gsml:MappedFeature:

<AttributeMapping>
<targetAttribute>gsml:positionalAccuracy</targetAttribute>
<targetAttributeNode>gsml:CGI_TermValuePropertyType</targetAttributeNode>

</AttributeMapping>
<AttributeMapping>

<targetAttribute>gsml:positionalAccuracy/gsml:CGI_TermValue/gsml:value</targetAttribute>
<sourceExpression>

<OCQL>’urn:ogc:def:nil:OGC:missing’</OCQL>
</sourceExpression>
<ClientProperty>

<name>codeSpace</name>
<value>’urn:ietf:rfc:2141’</value>

</ClientProperty>
</AttributeMapping>

• gsml:positionalAccuracy is of type gsml:CGI_TermValuePropertyType, which is ab-
stract, so must be mapped to its concrete subtype gsml:CGI_TermValuePropertyType with a
targetAttributeNode mapping before its contents can be mapped.

• This example also demonstrates that mapping can be applied to nested properties to arbitrary depth.
This becomes unmanageable for deep nesting, where feature chaining is preferred.

Feature chaining

In feature chaining, one feature type is used as a property of an enclosing feature type, by value or by
reference:

<AttributeMapping>
<targetAttribute>

gsml:occurrence
</targetAttribute>
<sourceExpression>

9.18. Tutorial 259

GeoServer User Manual, Release 2.5.x

<OCQL>URN</OCQL>
<linkElement>gsml:MappedFeature</linkElement>
<linkField>gml:name[2]</linkField>

</sourceExpression>
<isMultiple>true</isMultiple>

</AttributeMapping>

• In this case from the mapping for gsml:GeologicUnit, we specify a mapping for its
gsml:occurrence.

• The URN field of the source gsml_GeologicUnit simple feature is use as the “foreign key”, which
maps to the second gml:name in each gsml:MappedFeature.

• Every gsml:MappedFeature with gml:name[2] equal to the URN of the gsml:GeologicUnit
under construction is included as a gsml:occurrence property of the gsml:GeologicUnit (by
value).

9.18.5 WFS response

When GeoServer is running, test app-schema WFS in a web browser. If GeoServer is listening on
localhost:8080 you can query the two feature types using these links:

• http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=gsml:GeologicUnit

• http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=gsml:MappedFeature

You can also obtain WFS responses by using the Demo requests page in the GeoServer web interface. (Note
that the web interface does not yet support app-schema store or layer administration.)

• http://localhost:8080/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.DemoRequestsPage

gsml:GeologicUnit

Feature chaining has been used to construct the multivalued property gsml:occurrence of
gsml:GeologicUnit. This property is a gsml:MappedFeature. The WFS response for
gsml:GeologicUnit combines the output of both feature types into a single response. The first
gsml:GeologicUnit has two gsml:occurrence properties, while the second has one. The relation-
ships between the feature instances are data driven.

Because the mapping files in the tutorial configuration do not contain attribute mappings for all mandatory
properties of these feature types, the WFS response is not schema-valid against the GeoSciML 2.0 schemas.
Schema-validity can be achieved by adding more attribute mappings to the mapping files.

9.18.6 Acknowledgements

gsml_GeologicUnit.properties and gsml_MappedFeature.properties are derived from data
provided by the Department of Primary Industries, Victoria, Australia. For the purposes of this tutorial,
this data has been modified to the extent that it has no real-world meaning.

260 Chapter 9. Working with Application Schemas

http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=gsml:GeologicUnit
http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=gsml:MappedFeature
http://localhost:8080/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.demo.DemoRequestsPage

CHAPTER 10

Working with Cascaded Services

This section discusses how GeoServer can proxy external OGC services. This is known as cascading ser-
vices.

GeoServer supports cascading the following services:

10.1 External Web Feature Server

GeoServer has the ability to load data from a remote Web Feature Server (WFS). This is useful if the remote
WFS lacks certain functionality that GeoServer contains. For example, if the remote WFS is not also a Web
Map Server (WMS), data from the WFS can be cascaded through GeoServer to utilize GeoServer’s WMS. If
the remote WFS has a WMS but that WMS cannot output KML, data can be cascaded through GeoServer’s
WMS to output KML.

10.1.1 Adding an external WFS

To connect to an external WFS, it is necessary to load it as a new datastore. To start, navigate to Stores →
Add a new store → Web Feature Server.

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the

layer names created from the store.
Data Source Name Name of the store as known to GeoServer.
Description Description of the store.
Enabled Enables the store. If disabled, no data from the external WFS will be served.
GET_CAPABILITIES_URLURL to access the capabilities document of the remote WFS.
PROTOCOL When checked, connects with POST, otherwise uses GET.
USERNAME The user name to connect to the external WFS.
PASSWORD The password associated with the above user name.
ENCODING The character encoding of the XML requests sent to the server. Defaults to UTF-8.
TIMEOUT Time (in milliseconds) before timing out. Default is 3000.
BUFFER_SIZE Specifies a buffer size (in number of features). Default is 10 features.
TRY_GZIP Specifies that the server should transfer data using compressed HTTP if supported

by the server.
LENIENT When checked, will try to render features that don’t match the appropriate

schema. Errors will be logged.
MAXFEATURES Maximum amount of features to retrieve for each featuretype. Default is no limit.

When finished, click Save.

261

GeoServer User Manual, Release 2.5.x

Figure 10.1: Adding an external WFS as a store

262 Chapter 10. Working with Cascaded Services

GeoServer User Manual, Release 2.5.x

10.1.2 Configuring external WFS layers

When properly loaded, all layers served by the external WFS will be available to GeoServer. Before they can
be served, however, they will need to be individually configured as new layers. See the section on Layers
for how to add and edit new layers.

10.1.3 Connecting to an external WFS layer via a proxy server

In a corporate environment it may be necessary to connect to an external WFS through a proxy server. To
achieve this, various java variables need to be set.

For a Windows install running Geoserver as a service, this is done by modifying the wrapper.conf file. For
a default Windows install, modify C:\Program Files\GeoServer x.x.x\wrapper\wrapper.conf
similarly to the following.

Java Additional Parameters

wrapper.java.additional.1=-Djetty.home=. wrapper.java.additional.2=-
DGEOSERVER_DATA_DIR=”%GEOSERVER_DATA_DIR%” wrapper.java.additional.3=-
Dhttp.proxySet=true wrapper.java.additional.4=-Dhttp.proxyHost=maitproxy
wrapper.java.additional.5=-Dhttp.proxyPort=8080 wrapper.java.additional.6=-
Dhttps.proxyHost=maitproxy wrapper.java.additional.7=-Dhttps.proxyPort=8080
wrapper.java.additional.8=-Dhttp.nonProxyHosts=”mait*|dpi*|localhost”

Note that the http.proxySet=true parameter is required. Also, the parameter numbers must be consecutive
- ie. no gaps.

For a Windows install not running Geoserver as a service, modify startup.bat so that the java command
runs with similar -D parameters.

For a Linux/UNIX install, modify startup.sh so that the java command runs with similar -D parameters.

10.2 External Web Map Server

GeoServer has the ability to proxy a remote Web Map Service (WMS). This process is sometimes known as
Cascading WMS. Loading a remote WMS is useful for many reasons. If you don’t manage or have access
to the remote WMS, you can now manage its output as if it were local. Even if the remote WMS is not
GeoServer, you can use GeoServer features to treat its output (watermarking, decoration, printing, etc).

To access a remote WMS, it is necessary to load it as a store in GeoServer. GeoServer must be able to access
the capabilities document of the remote WMS for the store to be successfully loaded.

10.2.1 Adding an external WMS

To connect to an external WMS, it is necessary to load it as a new store. To start, in the Web Administration
Interface, navigate to Stores → Add a new store → WMS. The option is listed under Other Data Sources.

Figure 10.2: Adding an external WMS as a store

10.2. External Web Map Server 263

GeoServer User Manual, Release 2.5.x

Figure 10.3: Configuring a new external WMS store

Option Description
Workspace Name of the workspace to contain the store. This will also be the prefix of all of the

layer names published from the store. The workspace name on the remote WMS is
not cascaded.

Data Source
Name

Name of the store as known to GeoServer.

Description Description of the store.
Enabled Enables the store. If disabled, no data from the remote WMS will be served.
Capabilities
URL

The full URL to access the capabilities document of the remote WMS.

User Name If the WMS requires authentication, the user name to connect as.
Password If the WMS requires authentication, the password to connect with.
Max
concurrent
connections

The maximum number of persistent connections to keep for this WMS.

When finished, click Save.

10.2.2 Configuring external WMS layers

When properly loaded, all layers served by the external WMS will be available to GeoServer. Before they
can be served, however, they will need to be individually configured (published) as new layers. See the
section on Layers for how to add and edit new layers. Once published, these layers will show up in the
Layer Preview and as part of the WMS capabilities document.

264 Chapter 10. Working with Cascaded Services

GeoServer User Manual, Release 2.5.x

10.2.3 Features

Connecting a remote WMS allows for the following features:

• Dynamic reprojection. While the default projection for a layer is cascaded, it is possible to pass
the SRS parameter through to the remote WMS. Should that SRS not be valid on the remote server,
GeoServer will dynamically reproject the images sent to it from the remote WMS.

• GetFeatureInfo. WMS GetFeatureInfo requests will be passed to the remote WMS. If the remote WMS
supports the application/vnd.ogc.gml format the request will be successful.

• Full REST Configuration. See the REST configuration section for more information about the
GeoServer REST interface.

10.2.4 Limitations

Layers served through an external WMS have some, but not all of the functionality of a local WMS.

• Layers cannot be styled with SLD.

• Alternate (local) styles cannot be used.

• Extra request parameters (time, elevation, cql_filter, etc.) cannot be used.

• GetLegendGraphic requests aren’t supported.

• Image format cannot be specified. GeoServer will attempt to request PNG images, and if that fails
will use the remote server’s default image format.

• Authentication for the remote WMS isn’t supported. The remote WMS must be unsecured.

10.2. External Web Map Server 265

GeoServer User Manual, Release 2.5.x

266 Chapter 10. Working with Cascaded Services

CHAPTER 11

Filtering in GeoServer

Filtering allows selecting features that satisfy a specific set of conditions. Filters can be used in several
contexts in GeoServer:

• in WMS requests, to select which features should be displayed on a map

• in WFS requests, to specify the features to be returned

• in SLD documents, to apply different symbolization to features on a thematic map.

11.1 Supported filter languages

Data filtering in GeoServer is based on the concepts found in the OGC Filter Encoding Specification.

GeoServer accepts filters encoded in two different languages: Filter Encoding and Common Query Language.

11.1.1 Filter Encoding

The Filter Encoding language is an XML-based method for defining filters. XML Filters can be used in the
following places in GeoServer:

• in WMS GetMap requests, using the filter parameter

• in WFS GetFeature requests, using the filter parameter

• in SLD Rules, in the Filter element

The Filter Encoding language is defined in the following OGC specifications:

• OGC Filter encoding specification v 1.0, used in WFS 1.0 and SLD 1.0

• OGC Filter encoding specification v 1.1, used in WFS 1.1

11.1.2 CQL/ECQL

CQL (Common Query Language) is a plain-text language created for the OGC Catalog specification.
GeoServer has adapted it to be an easy-to-use filtering mechanism. GeoServer actually implements a more
powerful extension called ECQL (Extended CQL), which allows expressing the full range of filters that
OGC Filter 1.1 can encode. ECQL is accepted in many places in GeoServer:

• in WMS GetMap requests, using the cql_filter parameter

• in WFS GetFeature requests, using the cql_filter parameter

267

http://www.opengeospatial.org/standards/filter
http://portal.opengeospatial.org/files/?artifact_id=1171
http://portal.opengeospatial.org/files/?artifact_id=8340

GeoServer User Manual, Release 2.5.x

• in SLD dynamic symbolizers

The ECQL Reference describes the features of the ECQL language. The CQL and ECQL tutorial shows exam-
ples of defining filters.

The CQL and ECQL languages are defined in:

• OpenGIS Catalog Services Specification contains the standard definition of CQL

• ECQL Grammar is the grammar defining the GeoTools ECQL implementation

11.2 Filter Encoding Reference

This is a reference for the Filter Encoding language implemented in GeoServer. The Filter Encoding lan-
guage uses an XML-based syntax. It is defined by the OGC Filter Encoding standard.

Filters are used to select features or other objects from the context in which they are evaluated. They are
similar in functionality to the SQL “WHERE” clause. A filter is specified using a condition.

11.2.1 Condition

A condition is a single Predicate element, or a combination of conditions by Logical operators.

11.2.2 Predicate

Predicates are boolean-valued expressions which compute relationships between values. A predicate is
specified by using a comparison operator or a spatial operator. The operators are used to compare proper-
ties of the features being filtered to other feature properties or to literal data.

Comparison operators

Comparison operators are used to specify conditions on non-spatial attributes.

Binary Comparison operators

The binary comparison operators are:

• <PropertyIsEqualTo>

• <PropertyIsNotEqualTo>

• <PropertyIsLessThan>

• <PropertyIsLessThanOrEqualTo>

• <PropertyIsGreaterThan>

• <PropertyIsGreaterThanOrEqualTo>

They contain the elements:

Element Required? Description
Expression Yes The first value to compare. Often a <PropertyName>.
Expression Yes The second value to compare

268 Chapter 11. Filtering in GeoServer

http://portal.opengeospatial.org/files/?artifact_id=3843
http://docs.codehaus.org/display/GEOTOOLS/ECQL+Parser+Design
http://www.opengeospatial.org/standards/filter

GeoServer User Manual, Release 2.5.x

Binary comparison operator elements may include an optional matchCase attribute, with the value true
or false. If this attribute is true (the default), string comparisons are case-sensitive. If the attribute is
false strings comparisons do not check case.

PropertyIsLike operator

The <PropertyIsLike> operator matches a string property value against a text pattern. It contains the
elements:

Element Required? Description
<PropertyName> Yes Contains a string specifying the name of the property to test
<Literal> Yes Contains a pattern string to be matched

The pattern is specified by a sequence of regular characters and three special pattern characters. The pattern
characters are defined by the following required attributes of the <PropertyIsLike> element:

• wildCard specifies the pattern character which matches any sequence of zero or more string charac-
ters

• singleChar specifies the pattern character which matches any single string character

• escapeChar specifies the escape character which can be used to escape the pattern characters

PropertyIsNull operator

The <PropertyIsNull> operator tests whether a property value is null. It contains the element:

Element Required? Description
<PropertyName> Yes contains a string specifying the name of the property to be tested

PropertyIsBetweeen operator

The <PropertyIsBetween> operator tests whether an expression value lies within a range given by a
lower and upper bound (inclusive). It contains the elements:

Element Required? Description
Expression Yes The value to test
<LowerBoundary> Yes Contains an Expression giving the lower bound of the range
<UpperBoundary> Yes Contains an Expression giving the upper bound of the range

Spatial operators

Spatial operators are used to specify conditions on the geometric attributes of a feature. The following
spatial operators are available:

Topological operators

These operators test topological spatial relationships using the standard OGC Simple Features predicates:

• <Intersects> - Tests whether two geometries intersect

• <Disjoint> - Tests whether two geometries are disjoint

• <Contains> - Tests whether a geometry contains another one

11.2. Filter Encoding Reference 269

GeoServer User Manual, Release 2.5.x

• <Within> - Tests whether a geometry is within another one

• <Touches> - Tests whether two geometries touch

• <Crosses> - Tests whether two geometries cross

• <Overlaps> - Tests whether two geometries overlap

• <Equals> - Tests whether two geometries are topologically equal

These contains the elements:

Element Re-
quired?

Description

<PropertyName>Yes Contains a string specifying the name of the geometry-valued property
to be tested.

GML Geometry Yes A GML literal value specifying the geometry to test against

Distance operators

These operators test distance relationships between a geometry property and a geometry literal:

• <DWithin>

• <Beyond>

They contain the elements:

Element Re-
quired?

Description

<PropertyName>Yes Contains a string specifying the name of the property to be tested. If omitted,
the default geometry attribute is assumed.

GML
Geometry

Yes A literal value specifying a geometry to compute the distance to. This may be
either a geometry or an envelope in GML 3 format

<Distance> Yes Contains the numeric value for the distance tolerance. The element may
include an optional units attribute.

Bounding Box operator

The <BBOX> operator tests whether a geometry-valued property intersects a fixed bounding box. It contains
the elements:

Element Re-
quired?

Description

<PropertyName>No Contains a string specifying the name of the property to be tested. If omitted,
the default geometry attribute is assumed.

<gml:Box> Yes A GML Box literal value specifying the bounding box to test against

Examples

• This filter selects features with a geometry that intersects the point (1,1).

<Intersects>
<PropertyName>GEOMETRY</PropertyName>
<gml:Point>
<gml:coordinates>1 1</gml:coordinates>

270 Chapter 11. Filtering in GeoServer

GeoServer User Manual, Release 2.5.x

</gml:Point>
</Intersects>

• This filter selects features with a geometry that overlaps a polygon.

<Overlaps>
<PropertyName>Geometry</PropertyName>
<gml:Polygon srsName="http://www.opengis.net/gml/srs/epsg.xml#63266405">
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:posList> ... </gml:posList>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>
</Overlaps>

• This filter selects features with a geometry that intersects the geographic extent [-10,0 : 10,10].

<BBOX>
<PropertyName>GEOMETRY</PropertyName>
<gml:Box srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:coord>

<gml:X>-10</gml:X> <gml:Y>0</gml:Y>
</gml:coord>
<gml:coord>

<gml:X>10</gml:X> <gml:Y>10</gml:Y>
</gml:coord>

</gml:Box>
</BBOX>

11.2.3 Logical operators

Logical operators are used to specify logical combinations of Condition elements (which may be either Pred-
icate elements or other logical operators). They may be nested to any depth.

The following logical operators are available:

• <And> - computes the logical conjunction of the operands

• <Or> - computes the logical disjunction of the operands

The content for <And> and <Or> is two operands given by Condition elements.

• <Not> - computes the logical negation of the operand

The content for <Not> is a single operand given by a Condition element.

Examples

• This filter uses <And> to combine a comparison predicate and a spatial predicate:

<And>
<PropertyIsEqualTo>

<PropertyName>NAME</PropertyName>
<Literal>New York</Literal>

</PropertyIsEqualTo>
<Intersects>

<PropertyName>GEOMETRY</PropertyName>
<Literal>

11.2. Filter Encoding Reference 271

GeoServer User Manual, Release 2.5.x

<gml:Point>
<gml:coordinates>1 1</gml:coordinates>

</gml:Point>
</Literal>

</Intersects>
</And>

11.2.4 Expression

Filter expressions specify constant, variable or computed data values. An expression is formed from one
of the following elements (some of which contain sub-expressions, meaning that expressions may be of
arbitrary depth):

Arithmetic operators

The arithmetic operator elements compute arithmetic operations on numeric values.

• <Add> - adds the two operands

• <Sub> - subtracts the second operand from the first

• <Mul> - multiplies the two operands

• <Div> - divides the first operand by the second

Each arithmetic operator element contains two Expression elements providing the operands.

Function

The <Function> element specifies a filter function to be evaluated. The required name attribute gives the
function name. The element contains a sequence of zero or more Expression elements providing the values
of the function arguments.

See the Filter Function Reference for details of the functions provided by GeoServer.

Property Value

The <PropertyName> element refers to the value of a feature attribute. It contains a string or an XPath
expression specifying the attribute name.

Literal

The <Literal> element specifies a constant value. It contains data of one of the following types:

Type Description
Nu-
meric

A string representing a numeric value (integer or decimal).

Boolean A boolean value of true or false.
String A string value. XML-incompatible text may be included by using character entities or

<![CDATA[]]> delimiters.
Date A string representing a date.
Geome-
try

An element specifying a geometry in GML3 format.

272 Chapter 11. Filtering in GeoServer

GeoServer User Manual, Release 2.5.x

11.3 ECQL Reference

This section provides a reference for the syntax of the ECQL language. The full language grammar is
documented in the the GeoTools ECQL BNF definition

11.3.1 Syntax Notes

The sections below describe the major language constructs. Each construct lists all syntax options for it.
Each option is defined as a sequence of other constructs, or recursively in terms of itself.

• Symbols which are part of the ECQL language are shown in code font. All other symbols are part
of the grammar description.

• ECQL keywords are not case-sensitive.

• A vertical bar symbol ‘|‘ indicates that a choice of keyword can be made.

• Brackets ‘[...]‘ delimit syntax that is optional.

• Braces ‘{ ... }‘ delimit syntax that may be present zero or more times.

11.3.2 Condition

A filter condition is a single predicate, or a logical combination of other conditions.

Syntax Description
Predicate Single predicate expression
Condition AND | OR Condition Conjunction or disjunction of conditions
NOT Condition Negation of a condition
(| [Condition] |) Bracketing with (or [controls evaluation order

11.3.3 Predicate

Predicates are boolean-valued expressions which specify relationships between values.

Syntax Description
Expression = | <> | < | <=
| > | >= Expression

Comparison operations

Expression [NOT] BETWEEN
Expression AND Expression

Tests whether a value lies in or outside a range (inclusive)

Expression [NOT] LIKE |
ILIKE like-pattern

Simple pattern matching. like-pattern uses the % character as a wild-card
for any number of characters. ILIKE does case-insensitive matching.

Expression [NOT] IN (
Expression { ,Expression })

Tests whether an expression value is (not) in a set of values

Expression IN (Literal {
,Literal })

Tests whether a feature ID value is in a given set. ID values are integers
or string literals

Expression IS [NOT] NULL Tests whether a value is (non-)null
Attribute EXISTS |
DOES-NOT-EXIST

Tests whether a featuretype does (not) have a given attribute

INCLUDE | EXCLUDE Always include (exclude) features to which this filter is applied

11.3. ECQL Reference 273

http://docs.codehaus.org/display/GEOTOOLS/ECQL+Parser+Design

GeoServer User Manual, Release 2.5.x

Temporal Predicate

Temporal predicates specify the relationship of a time-valued expression to a time or time period.

Syntax Description
Expression BEFORE Time Tests whether a time value is before a point in time
Expression BEFORE OR DURING Time Period Tests whether a time value is before or during a time period
Expression DURING Time Period Tests whether a time value is during a time period
Expression DURING OR AFTER Time Period Tests whether a time value is during or after a time period
Expression AFTER Time Tests whether a time value is after a point in time

Spatial Predicate

Spatial predicates specify the relationship between geometric values. Topological spatial predicates
(INTERSECTS, DISJOINT, CONTAINS, WITHIN, TOUCHES CROSSES, OVERLAPS and RELATE) are defined
in terms of the DE-9IM model described in the OGC Simple Features for SQL specification.

Syntax Description
INTERSECTS(Expression ,
Expression)

Tests whether two geometries intersect. The converse of DISJOINT

DISJOINT(Expression ,
Expression)

Tests whether two geometries are disjoint. The converse of
INTERSECTS

CONTAINS(Expression ,
Expression)

Tests whether the first geometry topologically contains the second.
The converse of WITHIN

WITHIN(Expression ,
Expression)

Tests whether the first geometry is topologically within the second.
The converse of CONTAINS

TOUCHES(Expression ,
Expression)

Tests whether two geometries touch. Geometries touch if they have
at least one point in common, but their interiors do not intersect.

CROSSES(Expression ,
Expression)

Tests whether two geometries cross. Geometries cross if they have
some but not all interior points in common

OVERLAPS(Expression ,
Expression)

Tests whether two geometries overlap. Geometries overlap if they
have the same dimension, have at least one point each not shared by
the other, and the intersection of the interiors of the two geometries
has the same dimension as the geometries themselves

EQUALS(Expression ,
Expression)

Tests whether two geometries are topologically equal

RELATE(Expression ,
Expression , pattern)

Tests whether geometries have the spatial relationship specified by a
DE-9IM matrix pattern. A DE-9IM pattern is a string of length 9
specified using the characters *TF012. Example: ’1*T***T**’

DWITHIN(Expression ,
Expression , distance , units)

Tests whether the distance between two geometries is no more than
the specified distance. distance is an unsigned numeric value for the
distance tolerance. units is one of feet, meters, statute miles,
nautical miles, kilometers

BEYOND(Expression ,
Expression , distance , units)

Similar to DWITHIN, but tests whether the distance between two
geometries is greater than the given distance.

BBOX (Expression , Number ,
Number , Number , Number [,
CRS])

Tests whether a geometry intersects a bounding box specified by its
minimum and maximum X and Y values. The optional CRS is a
string containing an SRS code (For example, ’EPSG:1234’. The
default is to use the CRS of the queried layer)

BBOX (Expression , Expression
| Geometry)

Tests whether a geometry intersects a bounding box specified by a
geometric value computed by a function or provided by a geometry
literal.

274 Chapter 11. Filtering in GeoServer

http://www.opengeospatial.org/standards/sfs

GeoServer User Manual, Release 2.5.x

11.3.4 Expression

An expression specifies a attribute, literal, or computed value. The type of the value is determined by the
nature of the expression. The standard PEMDAS order of evaluation is used.

Syntax Description
Attribute Name of a feature attribute
Literal Literal value
Expression + | - | * | / Expression Arithmetic operations
function ([Expression { ,
Expression }])

Value computed by evaluation of a filter function with zero or more
arguments.

(| [Expression] |) Bracketing with (or [controls evaluation order

11.3.5 Attribute

An attribute name denotes the value of a feature attribute.

• Simple attribute names are sequences of letters and numbers,

• Attribute names quoted with double-quotes may be any sequence of characters.

11.3.6 Literal

Literals specify constant values of various types.

Type Description
Num-
ber

Integer or floating-point number. Scientific notation is supported.

Boolean TRUE or FALSE
String String literal delimited by single quotes. To include a single quote in the string use two

single-quotes: ’’
Ge-
ome-
try

Geometry in WKT format. WKT is defined in the OGC Simple Features for SQL specification.
All standard geometry types are supported: POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTILINESTRING, MULTIPOLYGON, GEOMETRYCOLLECTION. A custom type of Envelope is
also supported with syntax ENVELOPE (x1 x2 y1 y2).

Time A UTC date/time value in the format yyyy-mm-hhThh:mm:ss. The seconds value may have
a decimal fraction. The time zone may be specified as Z or +/-hh:mm. Example:
2006-11-30T00:30:00Z

Du-
ration

A time duration specified as P [y Y m M d D] T [h H m M s S]. The duration can be specified to
any desired precision by including only the required year, month, day, hour, minute and
second components. Examples: P1Y2M, P4Y2M20D, P4Y2M1DT20H3M36S

Time Period

Specifies a period of time, in several different formats.

Syntax Description
Time / Time Period specified by a start and end time
Duration / Time Period specified by a duration before a given time
Time / Duration Period specified by a duration after a given time

11.3. ECQL Reference 275

http://en.wikipedia.org/wiki/Order_of_operations#Mnemonics
http://www.opengeospatial.org/standards/sfs

GeoServer User Manual, Release 2.5.x

11.4 Filter functions

The OGC Filter Encoding specification provides a generic concept of a filter function. A filter function is a
named function with any number of arguments, which can be used in a filter expression to perform specific
calculations. This provides much richer expressiveness for defining filters. Filter functions can be used in
both the XML Filter Encoding language and the textual ECQL language, using the syntax appropriate to
the language.

GeoServer provides many different kinds of filter functions, covering a wide range of functionality includ-
ing mathematics, string formatting, and geometric operations. A complete list is provided in the Filter
Function Reference.

Note: The Filter Encoding specification provides a standard syntax for filter functions, but does not man-
date a specific set of functions. Servers are free to provide whatever functions they want, so some function
expressions may work only in specific software.

11.4.1 Examples

The following examples show how filter functions are used. The first shows enhanced WFS filtering us-
ing the geometryType function. The second shows how to use functions in SLD to get improved label
rendering.

WFS filtering

Let’s assume we have a feature type whose geometry field, geom, can contain any kind of geometry. For a
certain application we need to extract only the features whose geometry is a simple point or a multipoint.
This can be done using a GeoServer-specific filter function named geometryType. Here is the WFS request
including the filter function:

<wfs:GetFeature service="WFS" version="1.0.0"
outputFormat="GML2"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs

http://schemas.opengis.net/wfs/1.0.0/WFS-basic.xsd">
<wfs:Query typeName="sf:archsites">
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:Function name="geometryType">

<ogc:PropertyName>geom</ogc:PropertyName>
</ogc:Function>
<ogc:Literal>Point</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
</wfs:Query>

</wfs:GetFeature>

SLD formatting

We want to display elevation labels in a contour map. The elevations are stored as floating point values,
so the raw numeric values may display with unwanted decimal places (such as “150.0” or “149.999999”).

276 Chapter 11. Filtering in GeoServer

GeoServer User Manual, Release 2.5.x

We want to ensure the numbers are rounded appropriately (i.e. to display “150”). To achieve this the
numberFormat filter function can be used in the SLD label content expression:
...
<TextSymbolizer>

<Label>
<ogc:Function name="numberFormat">

<ogc:Literal>##</ogc:Literal>
<ogc:PropertyName>ELEVATION</ogc:PropertyName>

</ogc:Function>
</Label>
...

</TextSymbolizer>
...

11.4.2 Performance implications

Using filter functions in SLD symbolizer expressions does not have significant overhead, unless the function
is performing very heavy computation.

However, using functions in WFS filtering or SLD rule expressions may cause performance issues in certain
cases. This is usually because specific filter functions are not recognized by a native data store filter encoder,
and thus GeoServer must execute the functions in memory instead.

For example, given a filter like BBOX(geom,-10,30,20,45) and geometryType(geom) = ’Point’
most data stores will split the filter into two separate parts. The bounding box filter will be encoded as a
primary filter and executed in SQL, while the geometryType function will be executed in memory on the
results coming from the primary filter.

11.5 Filter Function Reference

This reference describes all filter functions that can be used in WFS/WMS filtering or in SLD expressions.

The list of functions available on a Geoserver instance can be determined by browsing to
http://localhost:8080/geoserver/wfs?request=GetCapabilities and searching for ogc:FunctionNames in
the returned XML. If a function is described in the Capabilities document but is not in this reference, then
it might mean that the function cannot be used for filtering, or that it is new and has not been documented.
Ask for details on the user mailing list.

Unless otherwise specified, none of the filter functions in this reference are understood natively by the data
stores, and thus expressions using them will be evaluated in-memory.

11.5. Filter Function Reference 277

http://localhost:8080/geoserver/wfs?request=GetCapabilities

GeoServer User Manual, Release 2.5.x

11.5.1 Function argument type reference

Type Description
Dou-
ble

Floating point number, 8 bytes, IEEE 754. Ranges from 4.94065645841246544e-324d to
1.79769313486231570e+308d

Float Floating point number, 4 bytes, IEEE 754. Ranges from 1.40129846432481707e-45 to
3.40282346638528860e+38. Smaller range and less accurate than Double.

Inte-
ger

Integer number, ranging from -2,147,483,648 to 2,147,483,647

Long Integer number, ranging from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807
Num-
ber

A numeric value of any type

Object A value of any type
String A sequence of characters
Times-
tamp

Date and time information

11.5.2 Comparison functions

Name Arguments Description
between num:Number,

low:Number,
high:Number

returns true if low <= num <= high

equalTo a:Object, b:Object Can be used to compare for equality two numbers, two
strings, two dates, and so on

greaterEqualThan x:Object, y:Object Returns true if x >= y. Parameters can be either numbers or
strings (in the second case lexicographic ordering is used)

greaterThan x:Object, y:Object Returns true if x > y. Parameters can be either numbers or
strings (in the second case lexicographic ordering is used)

in2, in3, in4, in5,
in6, in7, in8, in9,
in10

candidate:Object,
v1:Object, ...,
v9:Object

Returns true if candidate is equal to one of the v1, ..., v9
values. Use the function name matching the number of
arguments specified.

isLike string:String,
pattern:String

Returns true if the string matches the specified pattern. For
the full syntax of the pattern specification see the Java
Pattern class javadocs

isNull obj:Object Returns true the passed parameter is null, false otherwise
lessThan x:Object, y:Object Returns true if x < y. Parameters can be either numbers or

strings (in the second case lexicographic ordering is used
lessEqualThan x:Object, y:Object Returns true if x <= y. Parameters can be either numbers or

strings (in the second case lexicographic ordering is used
not bool:Boolean Returns the negation of bool
notEqual x:Object, y:Object Returns true if x and y are equal, false otherwise

11.5.3 Control functions

Name Arguments Description
if_then_else condition:Boolean, x:Object, y: Object Returns x if the condition is true, y otherwise

278 Chapter 11. Filtering in GeoServer

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

GeoServer User Manual, Release 2.5.x

11.5.4 Environment function

This function returns the value of environment variables defined in various contexts. Contexts which define
environment variables include SLD rendering and the WMS Animator.

Name Arguments Description
env variable:String Returns the value of the environment variable variable.

11.5.5 Feature functions

Name Arguments Description
id feature:Feature returns the identifier of the feature
Proper-
tyExists

f:Feature,
propertyName:String

Returns true if f has a property named propertyName

prop-
erty

f:Feature,
propertyName:String

Returns the value of the property propertyName. Allows property
names to be computed or specified by Variable substitution in SLD.

11.5.6 Spatial Relationship functions

For more information about the precise meaning of the spatial relationships consult the OGC Simple Feature
Specification for SQL

Name Arguments Description
contains a:Geometry,

b:Geometry
Returns true if the geometry a contains b

crosses a:Geometry,
b:Geometry

Returns true if a crosses b

disjoint a:Geometry,
b:Geometry

Returns true if the two geometries are disjoint, false otherwise

equalsEx-
act

a:Geometry,
b:Geometry

Returns true if the two geometries are exactly equal, same
coordinates in the same order

equalsEx-
actToler-
ance

a:Geometry,
b:Geometry,
tol:Double

Returns true if the two geometries are exactly equal, same
coordinates in the same order, allowing for a tol distance in the
corresponding points

intersects a:Geometry,
b:Geometry

Returns true if a intersects b

isWithinDis-
tance

a: Geometry,
b:Geometry,
distance: Double

Returns true if the distance between a and b is less than
distance (measured as an euclidean distance)

overlaps a: Geometry,
b:Geometry

Returns true a overlaps with b

relate a: Geometry,
b:Geometry

Returns the DE-9IM intersection matrix for a and b

relatePat-
tern

a: Geometry,
b:Geometry,
pattern:String

Returns true if the DE-9IM intersection matrix for a and b matches
the specified pattern

touches a: Geometry, b:
Geometry

Returns true if a touches b according to the SQL simple feature
specification rules

within a: Geometry,
b:Geometry

Returns true is fully contained inside b

11.5. Filter Function Reference 279

http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

GeoServer User Manual, Release 2.5.x

11.5.7 Geometric functions

Name Arguments Description
area geometry:Geometry The area of the specified geometry. Works in a Cartesian plane, the result will be in the same unit of measure as the geometry coordinates (which also means the results won’t make any sense for geographic data)
boundary geometry:Geometry Returns the boundary of a geometry
boundaryDimension geometry:Geometry Returns the number of dimensions of the geometry boundary
buffer geometry:Geometry, distance:Double Returns the buffered area around the geometry using the specified distance
bufferWithSegments geometry:Geometry, distance:Double, segments:Integer Returns the buffered area around the geometry using the specified distance and using the specified number of segments to represent a quadrant of a circle.
centroid geometry:Geometry Returns the centroid of the geometry. Can be often used as a label point for polygons, though there is no guarantee it will actually lie inside the geometry
convexHull geometry:Geometry Returns the convex hull of the specified geometry
difference a:Geometry, b:Geometry Returns all the points that sit in a but not in b
dimension a:Geometry Returns the dimension of the specified geometry
distance a:Geometry, b:Geometry Returns the euclidean distance between the two geometries
endAngle line:LineString Returns the angle of the end segment of the linestring
endPoint line:LineString Returns the end point of the linestring
envelope geometry:geometry Returns the polygon representing the envelope of the geometry, that is, the minimum rectangle with sides parallels to the axis containing it
exteriorRing poly:Polygon Returns the exterior ring of the specified polygon
geometryType geometry:Geometry Returns the type of the geometry as a string. May be Point, MultiPoint, LineString, LinearRing, MultiLineString, Polygon, MultiPolygon, GeometryCollection
geomFromWKT wkt:String Returns the Geometry represented in the Well Known Text format contained in the wkt parameter
geomLength geometry:Geometry Returns the length/perimeter of this geometry (computed in Cartesian space)
getGeometryN collection:GeometryCollection, n:Integer Returns the n-th geometry inside the collection
getX p:Point Returns the x ordinate of p
getY p:Point Returns the y ordinate of p
getZ p:Point Returns the z ordinate of p
interiorPoint geometry:Geometry Returns a point that is either interior to the geometry, when possible, or sitting on its boundary, otherwise
interiorRingN polyg:Polygon, n:Integer Returns the n-th interior ring of the polygon
intersection a:Geometry, b:Geometry Returns the intersection between a and b. The intersection result can be anything including a geometry collection of heterogeneous, if the result is empty, it will be represented by an empty collection.
isClosed line: LineString Returns true if line forms a closed ring, that is, if the first and last coordinates are equal
isEmpty geometry:Geometry Returns true if the geometry does not contain any point (typical case, an empty geometry collection)
isometric geometry:Geometry, extrusion:Double Returns a MultiPolygon containing the isometric extrusions of all components of the input geometry. The extrusion distance is extrusion, expressed in the same unit as the geometry coordinates. Can be used to get a pseudo-3d effect in a map
isRing line:LineString Returns true if the line is actually a closed ring (equivalent to isRing(line) and isSimple(line))
isSimple line:LineString Returns true if the geometry self intersects only at boundary points
isValid geometry: Geometry Returns true if the geometry is topologically valid (rings are closed, holes are inside the hull, and so on)
numGeometries collection: GeometryCollection Returns the number of geometries contained in the geometry collection
numInteriorRing poly: Polygon Returns the number of interior rings (holes) inside the specified polygon
numPoint geometry: Geometry Returns the number of points (vertexes) contained in geometry
offset geometry: Geometry, offsetX:Double, offsetY:Double Offsets all points in a geometry by the specified X and Y offsets. Offsets are working in the same coordinate system as the geometry own coordinates.
pointN geometry: Geometry, n:Integer Returns the n-th point inside the specified geometry
startAngle line: LineString Returns the angle of the starting segment of the input linestring
startPoint line: LineString Returns the starting point of the input linestring
symDifference a: Geometry, b:Geometry Returns the symmetrical difference between a and b (all points that are inside a or b, but not both)
toWKT geometry: Geometry Returns the WKT representation of geometry
union a: Geometry, b:Geometry Returns the union of a and b (the result may be a geometry collection)
vertices geom: Geometry Returns a multi-point made with all the vertices of geom

280 Chapter 11. Filtering in GeoServer

GeoServer User Manual, Release 2.5.x

11.5. Filter Function Reference 281

GeoServer User Manual, Release 2.5.x

11.5.8 Math functions

Name Arguments Description
abs value:Integer The absolute value of the specified Integer value
abs_2 value:Long The absolute value of the specified Long value
abs_3 value:Float The absolute value of the specified Float value
abs_4 value:Double The absolute value of the specified Double value
acos angle:Double Returns the arc cosine of an angle in radians, in the range of 0.0

through PI
asin angle:Double Returns the arc sine of an angle in radians, in the range of -PI /

2 through PI / 2
atan angle:Double Returns the arc tangent of an angle in radians, in the range of -PI/2

through PI/2
atan2 x:Double, y:Double Converts a rectangular coordinate (x, y) to polar (r, theta) and

returns theta.
ceil x: Double Returns the smallest (closest to negative infinity) double value that

is greater than or equal to x and is equal to a mathematical integer.
cos angle: Double Returns the cosine of an angle expressed in radians
dou-
ble2bool

x: Double Returns true if x is zero, false otherwise

exp x: Double Returns Euler’s number e raised to the power of x
floor x: Double Returns the largest (closest to positive infinity) value that is less

than or equal to x and is equal to a mathematical integer
IEEERe-
mainder

x: Double, y:Double Computes the remainder of x divided by y as prescribed by the
IEEE 754 standard

int2bbool x: Integer Returns true if x is zero, false otherwise
int2ddoublex: Integer Converts x to a Double
log x: Integer Returns the natural logarithm (base e) of x
max,
max_3,
max_4

x1: Double,
x2:Double,
x3:Double,
x4:Double

Returns the maximum between x1, ..., x4

min,
min_3,
min_4

x1: Double,
x2:Double,
x3:Double,
x4:Double

Returns the minimum between x1, ..., x4

pi None Returns an approximation of pi, the ratio of the circumference of a
circle to its diameter

pow base:Double,
exponent:Double

Returns the value of base raised to the power of exponent

random None Returns a Double value with a positive sign, greater than or equal to
0.0 and less than 1.0. Returned values are chosen
pseudo-randomly with (approximately) uniform distribution from
that range.

rint x:Double Returns the Double value that is closest in value to the argument
and is equal to a mathematical integer. If two double values that are
mathematical integers are equally close, the result is the integer
value that is even.

round_2 x:Double Same as round, but returns a Long
round x:Double Returns the closest Integer to x. The result is rounded to an integer

by adding 1/2, taking the floor of the result, and casting the result to
type Integer. In other words, the result is equal to the value of the
expression (int)floor(a + 0.5)

round-
Double

x:Double Returns the closest Long to x

tan angle:Double Returns the trigonometric tangent of angle
toDe-
grees

angle:Double Converts an angle expressed in radians into degrees

toRadi-
ans

angle:Double Converts an angle expressed in radians into degrees

282 Chapter 11. Filtering in GeoServer

GeoServer User Manual, Release 2.5.x

11.5.9 String functions

String functions generally will accept any type of value for String arguments. Non-string values will be
converted into a string representation automatically.

Name Arguments Description
Con-
cate-
nate

s1:String, s2:String, ... Concatenates any number of strings. Non-string arguments
are allowed.

strCapi-
talize

sentence:String Fully capitalizes the sentence. For example, “HoW aRe
YOU?” will be turned into “How Are You?”

strCon-
cat

a:String, b:String Concatenates the two strings into one

strEndsWithstring:String,
suffix:String

Returns true if string ends with suffix

strE-
qualsIg-
nore-
Case

a:String, b:String Returns true if the two strings are equal ignoring case
considerations

strIndexOfstring:String,
substring:String

Returns the index within this string of the first occurrence of
the specified substring, or -1 if not found

str-
LastIn-
dexOf

string:String,
substring:String

Returns the index within this string of the last occurrence of
the specified substring, or -1 if not found

str-
Length

string:String Returns the string length

str-
Matches

string:String,
pattern:String

Returns true if the string matches the specified regular
expression. For the full syntax of the pattern specification
see the Java Pattern class javadocs

strRe-
place

string:String,
pattern:String,
replacement:String,
global: boolean

Returns the string with the pattern replaced with the given
replacement text. If the global argument is true then all
occurrences of the pattern will be replaced, otherwise only
the first. For the full syntax of the pattern specification see
the Java Pattern class javadocs

strStartsWithstring:String,
prefix:String

Returns true if string starts with prefix

strSub-
string

string:String,
begin:Integer, end:Integer

Returns a new string that is a substring of this string. The
substring begins at the specified begin and extends to the
character at index endIndex - 1 (indexes are zero-based).

strSub-
stringStart

string:String,
begin:Integer

Returns a new string that is a substring of this string. The
substring begins at the specified begin and extends to the
last character of the string

str-
ToLow-
erCase

string:String Returns the lower case version of the string

str-
ToUp-
perCase

string:String Returns the upper case version of the string

strTrim string:String Returns a copy of the string, with leading and trailing white
space omitted

11.5. Filter Function Reference 283

http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html

GeoServer User Manual, Release 2.5.x

11.5.10 Parsing and formatting functions

Name Arguments Description
date-
Format

date:Timestamp,
format:String

Formats the specified date according to the provided format. The format
syntax can be found in the Java SimpleDateFormat javadocs

dateParsedateString:String,
format:String

Parses a date from a dateString formatted according to the format
specification. The format syntax can be found in the Java
SimpleDateFormat javadocs

num-
ber-
Format

number:Double,
format:String

Formats the number according to the specified format. The format
syntax can be found in the Java DecimalFormat javadocs

parse-
Boolean

boolean:String Parses a string into a boolean. The empty string, f, 0.0 and 0 are
considered false, everything else is considered true.

parse-
Dou-
ble

number:String Parses a string into a double. The number can be expressed in normal or
scientific form.

par-
seInt

number:String Parses a string into an integer.

parse-
Long

number:String Parses a string into a long integer

11.5.11 Transformation functions

Transformation functions transform values from one data space into another. These functions provide a
concise way to compute styling parameters from feature attribute values. See also Styling using Transforma-
tion Functions.

Name Arguments Description
Re-
code

lookupValue:Object,
data:Object, value:Object, ...

Transforms a lookupValue from a set of discrete data
values into another set of values. Any number of
data/value pairs may be specified.

Cat-
e-
go-
rize

lookupValue:Object, value:Object,
threshold:Object, ... value:Object,
belongsTo : String

Transforms a continuous-valued attribute value into a
set of discrete values. lookupValue and value must
be an orderable type (typically numeric). The initial
value is required. Any number of additional
threshold/value pairs may be specified.
belongsTo is optional, with the value succeeding or
preceding. It defines which interval to use when the
lookup value equals a threshold value.

In-
ter-
po-
late

lookupValue:Numeric,
data:Numeric, value:Numeric or
#RRGGBB, ...
mode:String, method:String

Transforms a continuous-valued attribute value into
another continuous range of values. Any number of
data/value pairs may be specified. mode is optional,
with the value linear, cosine or cubic. It defines
the interpolation algorithm to use. method is optional,
with the value numeric or color. It defines whether
the target values are numeric or RGB color
specifications.

284 Chapter 11. Filtering in GeoServer

http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

CHAPTER 12

Styling

This section discusses the styling of geospatial data served through GeoServer.

12.1 Introduction to SLD

Geospatial data has no intrinsic visual component. In order to see data, it must be styled. Styling specifies
color, thickness, and other visible attributes used to render data on a map.

In GeoServer, styling is accomplished using a markup language called Styled Layer Descriptor, or SLD for
short. SLD is an XML-based markup language and is very powerful, although somewhat complex. This
page gives an introduction to the capabilities of SLD and how it works within GeoServer.

Note: Since GeoServer uses SLD exclusively for styling, the terms “SLD” and “style” will often be used
interchangeably.

12.1.1 SLD Concepts

In GeoServer styling is most often specified using XML SLD style documents. Style documents are asso-
ciated with GeoServer layers (featuretypes) to specify how they should be rendered. A style document
specifies a single named layer and a user style for it. The layer and style can have metadata elements such
as a name identifying them, a title for displaying them, and an abstract describing them in detail. Within
the top-level style are one or more feature type styles, which act as “virtual layers” to provide control over
rendering order (allowing styling effects such as cased lines for roads). Each feature type style contains
one or more rules, which control how styling is applied based on feature attributes and zoom level. Rules
select applicable features by using filters, which are logical conditions containing predicates, expressions
and filter functions. To specify the details of styling for individual features, rules contain any number of
symbolizers. Symbolizers specify styling for points, lines and polygons, as well as rasters and text labels.

For more information refer to the SLD Reference.

12.1.2 Types of styling

Vector data that GeoServer can serve consists of three classes of shapes: Points, lines, and polygons. Lines
(one dimensional shapes) are the simplest, as they have only the edge to style (also known as “stroke”).
Polygons, two dimensional shapes, have an edge and an inside (also known as a “fill”), both of which can
be styled differently. Points, even though they lack dimension, have both an edge and a fill (not to mention
a size) that can be styled. For fills, color can be specified; for strokes, color and thickness can be specified.

285

http://www.opengeospatial.org/standards/sld

GeoServer User Manual, Release 2.5.x

GeoServer also serves raster data. This can be styled with a wide variety of control over color palette,
opacity, contrast and other parameters.

More advanced styling is possible as well. Points can be specified with well-known shapes like circles,
squares, stars, and even custom graphics or text. Lines can be styled with a dash styles and hashes. Poly-
gons can be filled with a custom tiled graphics. Styling can be based on attributes in the data, so that certain
features are styled differently. Text labels on features are possible as well. Styling can also be determined
by zoom level, so that features are displayed in a way appropriate to their apparent size. The possibilities
are vast.

12.1.3 A basic style example

A good way to learn about SLD is to study styling examples. The following is a simple SLD that can be
applied to a layer that contains points, to style them as red circles with a size of 6 pixels. (This is the first
example in the Points section of the SLD Cookbook.)

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <StyledLayerDescriptor version="1.0.0"
3 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
4 xmlns="http://www.opengis.net/sld"
5 xmlns:ogc="http://www.opengis.net/ogc"
6 xmlns:xlink="http://www.w3.org/1999/xlink"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
8 <NamedLayer>
9 <Name>Simple point</Name>

10 <UserStyle>
11 <Title>GeoServer SLD Cook Book: Simple point</Title>
12 <FeatureTypeStyle>
13 <Rule>
14 <PointSymbolizer>
15 <Graphic>
16 <Mark>
17 <WellKnownName>circle</WellKnownName>
18 <Fill>
19 <CssParameter name="fill">#FF0000</CssParameter>
20 </Fill>
21 </Mark>
22 <Size>6</Size>
23 </Graphic>
24 </PointSymbolizer>
25 </Rule>
26 </FeatureTypeStyle>
27 </UserStyle>
28 </NamedLayer>
29 </StyledLayerDescriptor>

Although the example looks long, only a few lines are really important to understand. Line 14 states that a
“PointSymbolizer” is to be used to style data as points. Lines 15-17 state that points are to be styled using
a graphic shape specified by a “well known name”, in this case a circle. SLD provides names for many
shapes such as “square”, “star”, “triangle”, etc. Lines 18-20 specify the shape should be filled with a color
of #FF0000 (red). This is an RGB color code, written in hexadecimal, in the form of #RRGGBB. Finally, line
22 specifies that the size of the shape is 6 pixels in width. The rest of the structure contains metadata about
the style, such as a name identifying the style and a title for use in legends.

Note: In SLD documents some tags have prefixes, such as ogc:. This is because they are defined in XML
namespaces. The top-level StyledLayerDescriptor tag (lines 2-7) specifies two XML namespaces, one
called xmlns, and one called xmlns:ogc. The first namespace is the default for the document, so tags

286 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

belonging to it do not need a prefix. Tags belonging to the second require the prefix ogc:. In fact, the
namespace prefixes can be any identifier. The first namespace could be called xmlns:sld (as it often is)
and then all the tags in this example would require an sld: prefix. The key point is that tags need to have
the prefix for the namespace they belong to.

See the SLD Cookbook for more examples of styling with SLD.

12.2 Working with SLD

This section describes how to create, view and troubleshoot SLD styling in GeoServer.

12.2.1 Creating

GeoServer comes with some basic styles defined in its catalog. Any number of new styles can be added
to the catalog. Styles can also be specified externally to the server, either to define a complete map, or to
extend the server style catalog using library mode.

Catalog Styles

Styles in the catalog can be viewed, edited and validated via the Styles menu of the Web Administration
Interface. They may also be created and accessed via the REST Styles API.

Catalog styles consist of a StyledLayerDescriptor document containing a single <NamedLayer> element,
which contains a single <UserStyle> element to specify the styling. The layer name is ignored, since the
style may be applied to many different layers.

Every layer (featuretype) registered with GeoServer must have at least one catalog style associated with it,
which is the default style for rendering the layer. Any number of additional styles can be associated with a
layer. This allows layers to have appropriate styles advertised in the WMS GetCapabilities document.
A layer’s styles can be changed using the Layers page of the Web Administration Interface.

Note: When adding a layer and a style for it to GeoServer at the same time, the style should be added first,
so that the new layer can be associated with the style immediately.

External Styles

Styling can be defined externally to the server in a number of ways:

• An internet-accessible SLD document can be provided via the SLD=url parameter in a WMS GetMap
GET request

• An SLD document can be provided directly in a WMS GetMap GET request using the
SLD_BODY=style parameter. The SLD XML must be URL-encoded.

• A StyledLayerDescriptor element can be included in a WMS GetMap POST request XML document.

In all of these cases, if the WMS layers parameter is not supplied then the map content is defined com-
pletely by the layers and styles present in the external SLD. If the layers parameter is present, then styling
operates in Library Mode.

External styles can define new layers of styled data, by using the SLD InlineFeature element to provide
feature data. This can be used to implement dynamic feature highlighting, for example.

12.2. Working with SLD 287

GeoServer User Manual, Release 2.5.x

External styling may be generated dynamically by client applications, This provides a powerful way for
clients to control styling effects.

Library Mode

In library mode externally-defined styles are treated as a style library, which acts as an extension to the
server style catalog. Library mode occurs when map layers and styles are specified using the layers and
stylesWMS parameters, and additional styling is supplied externally using one of the methods described
in the previous section. The styles in the external style document take precedence over the catalog styles
during rendering.

Style lookup in library mode operates as follows:

• For each layer in the layers list, the applied style is either a named style specified in the styles list
(if present), or the layer default style

• For a named style, if the eternal style document has a <NamedLayer>...<UserStyle>with match-
ing layer name and style name, then it is used. Otherwise, the style name is searched for in the catalog.
If it is not found there, an error occurs.

• For a default style, the external style document is searched to find a <NamedLayer> element with
the layer name. If it contains a <UserStyle> with the <IsDefault> element having the value 1
then that style is used. Otherwise, the default server style for the layer (which must exist) is used.

Generally it is simpler and more performant to use styles from the server catalog. However, library mode
can be useful if it is required to style a map containing many layers and where only a few of them need to
have their styling defined externally.

12.2.2 Viewing

Once a style has been associated with a layer, the resulting rendering of the layer data can be viewed by
using the Layer Preview. The most convenient output format to use is the built-in OpenLayers viewer.
Styles can be modified while the view is open, and their effect is visible as soon as the map view is panned
or zoomed. Alternate styles can be viewed by specifying them in the styles WMS request parameter.

To view the effect of compositing multiple styled layers, several approaches are available:

• Create a layer group for the desired layers using the Layer Groups page, and preview it. Non-default
styles can be specified for layers if required.

• Submit a WMS GetMap GET request specifying multiple layers in the layers parameter, and the
corresponding styles in the styles parameter (if non-default styles are required).

• Submit a WMS GetMap POST request containing a StyledLayerDescriptor element specifying server
layers, optional layers of inline data, and either named catalog styles or user-defined styling for each
layer.

12.2.3 Troubleshooting

SLD is a type of programming language, not unlike creating a web page or building a script. As such,
problems may arise that may require troubleshooting.

288 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Syntax Errors

To minimize syntax errors when creating the SLD, it is recommended to use a text editor that is designed
to work with XML (such as the Style Editor provided in the GeoServer UI). XML editors can make finding
syntax errors easier by providing syntax highlighting and (sometimes) built-in error checking.

The GeoServer Style Editor allows validating a document against the SLD XML schema. This is not manda-
tory, but is recommended to do before saving styles.

Semantic Errors

Semantic errors cannot be caught by SLD validation, but show up when a style is applied during map
rendering. Most of the time this will result in a map displaying no features (a blank map), but some errors
will prevent the map from rendering at all.

The easiest way to fix semantic errors in an SLD is to try to isolate the error. If the SLD is long with many
rules and filters, try temporarily removing some of them to see if the errors go away.

In some cases the server will produce a WMS Exception document which may help to identify the error. It
is also worth checking the server log to see if any error messages have been recorded.

12.3 SLD Cookbook

The SLD Cookbook is a collection of SLD “recipes” for creating various types of map styles. Wherever
possible, each example is designed to show off a single SLD feature so that code can be copied from the
examples and adapted when creating SLDs of your own. While not an exhaustive reference like the SLD
Reference or the OGC SLD 1.0 specification the SLD Cookbook is designed to be a practical reference, show-
ing common style templates that are easy to understand.

The SLD Cookbook is divided into four sections: the first three for each of the vector types (points, lines, and
polygons) and the fourth section for rasters. Each example in every section contains a screenshot showing
actual GeoServer WMS output, a snippet of the SLD code for reference, and a link to download the full
SLD.

Each section uses data created especially for the SLD Cookbook, with shapefiles for vector data and Geo-
TIFFs for raster data. The projection for data is EPSG:4326. All files can be easily loaded into GeoServer in
order to recreate the examples.

Data Type Shapefile
Point sld_cookbook_point.zip
Line sld_cookbook_line.zip
Polygon sld_cookbook_polygon.zip
Raster sld_cookbook_raster.zip

12.3.1 Points

While points are seemingly the simplest type of shape, possessing only position and no other dimensions,
there are many different ways that a point can be styled in SLD.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

12.3. SLD Cookbook 289

http://www.opengeospatial.org/standards/sld

GeoServer User Manual, Release 2.5.x

Example points layer

The points layer used for the examples below contains name and population information for the major
cities of a fictional country. For reference, the attribute table for the points in this layer is included below.

fid (Feature ID) name (City name) pop (Population)
point.1 Borfin 157860
point.2 Supox City 578231
point.3 Ruckis 98159
point.4 Thisland 34879
point.5 Synopolis 24567
point.6 San Glissando 76024
point.7 Detrania 205609

Download the points shapefile

Simple point

This example specifies points be styled as red circles with a diameter of 6 pixels.

Figure 12.1: Simple point

Code

View and download the full "Simple point" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>

290 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

14 </Rule>
15 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this SLD, which is the simplest possible situation.
(All subsequent examples will contain one <Rule> and one <FeatureTypeStyle> unless otherwise spec-
ified.) Styling points is accomplished via the <PointSymbolizer> (lines 3-13). Line 6 specifies the shape
of the symbol to be a circle, with line 8 determining the fill color to be red (#FF0000). Line 11 sets the size
(diameter) of the graphic to be 6 pixels.

Simple point with stroke

This example adds a stroke (or border) around the Simple point, with the stroke colored black and given a
thickness of 2 pixels.

Figure 12.2: Simple point with stroke

Code

View and download the full "Simple point with stroke" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 <Stroke>
11 <CssParameter name="stroke">#000000</CssParameter>
12 <CssParameter name="stroke-width">2</CssParameter>
13 </Stroke>
14 </Mark>
15 <Size>6</Size>
16 </Graphic>

12.3. SLD Cookbook 291

GeoServer User Manual, Release 2.5.x

17 </PointSymbolizer>
18 </Rule>
19 </FeatureTypeStyle>

Details

This example is similar to the Simple point example. Lines 10-13 specify the stroke, with line 11 setting the
color to black (#000000) and line 12 setting the width to 2 pixels.

Rotated square

This example creates a square instead of a circle, colors it green, sizes it to 12 pixels, and rotates it by 45
degrees.

Figure 12.3: Rotated square

Code

View and download the full "Rotated square" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>square</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#009900</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>12</Size>
12 <Rotation>45</Rotation>
13 </Graphic>
14 </PointSymbolizer>
15 </Rule>
16 </FeatureTypeStyle>

292 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

In this example, line 6 sets the shape to be a square, with line 8 setting the color to a dark green (#009900).
Line 11 sets the size of the square to be 12 pixels, and line 12 set the rotation is to 45 degrees.

Transparent triangle

This example draws a triangle, creates a black stroke identical to the Simple point with stroke example, and
sets the fill of the triangle to 20% opacity (mostly transparent).

Figure 12.4: Transparent triangle

Code

View and download the full "Transparent triangle" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>triangle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#009900</CssParameter>
9 <CssParameter name="fill-opacity">0.2</CssParameter>

10 </Fill>
11 <Stroke>
12 <CssParameter name="stroke">#000000</CssParameter>
13 <CssParameter name="stroke-width">2</CssParameter>
14 </Stroke>
15 </Mark>
16 <Size>12</Size>
17 </Graphic>
18 </PointSymbolizer>
19 </Rule>
20 </FeatureTypeStyle>

12.3. SLD Cookbook 293

GeoServer User Manual, Release 2.5.x

Details

In this example, line 6 once again sets the shape, in this case to a triangle. Line 8 sets the fill color to a
dark green (#009900) and line 9 sets the opacity to 0.2 (20% opaque). An opacity value of 1 means that
the shape is drawn 100% opaque, while an opacity value of 0 means that the shape is drawn 0% opaque, or
completely transparent. The value of 0.2 (20% opaque) means that the fill of the points partially takes on the
color and style of whatever is drawn beneath it. In this example, since the background is white, the dark
green looks lighter. Were the points imposed on a dark background, the resulting color would be darker.
Lines 12-13 set the stroke color to black (#000000) and width to 2 pixels. Finally, line 16 sets the size of the
point to be 12 pixels in diameter.

Point as graphic

This example styles each point as a graphic instead of as a simple shape.

Figure 12.5: Point as graphic

Code

View and download the full "Point as graphic" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <ExternalGraphic>
6 <OnlineResource
7 xlink:type="simple"
8 xlink:href="smileyface.png" />
9 <Format>image/png</Format>

10 </ExternalGraphic>
11 <Size>32</Size>
12 </Graphic>
13 </PointSymbolizer>
14 </Rule>
15 </FeatureTypeStyle>

294 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

This style uses a graphic instead of a simple shape to render the points. In SLD, this is known as an
<ExternalGraphic>, to distinguish it from the commonly-used shapes such as squares and circles that
are “internal” to the renderer. Lines 5-10 specify the details of this graphic. Line 8 sets the path and file
name of the graphic, while line 9 indicates the format (MIME type) of the graphic (image/png). In this
example, the graphic is contained in the same directory as the SLD, so no path information is necessary in
line 8, although a full URL could be used if desired. Line 11 determines the size of the displayed graphic;
this can be set independently of the dimensions of the graphic itself, although in this case they are the same
(32 pixels). Should a graphic be rectangular, the <Size> value will apply to the height of the graphic only,
with the width scaled proportionally.

Figure 12.6: Graphic used for points

Point with default label

This example shows a text label on the Simple point that displays the “name” attribute of the point. This is
how a label will be displayed in the absence of any other customization.

Figure 12.7: Point with default label

Code

View and download the full "Point with default label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>

12.3. SLD Cookbook 295

GeoServer User Manual, Release 2.5.x

11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18 <Fill>
19 <CssParameter name="fill">#000000</CssParameter>
20 </Fill>
21 </TextSymbolizer>
22 </Rule>
23 </FeatureTypeStyle>

Details

Lines 3-13, which contain the <PointSymbolizer>, are identical to the Simple point example above. The
label is set in the <TextSymbolizer> on lines 14-27. Lines 15-17 determine what text to display in the
label, which in this case is the value of the “name” attribute. (Refer to the attribute table in the Example
points layer section if necessary.) Line 19 sets the text color. All other details about the label are set to the
renderer default, which here is Times New Roman font, font color black, and font size of 10 pixels. The
bottom left of the label is aligned with the center of the point.

Point with styled label

This example improves the label style from the Point with default label example by centering the label above
the point and providing a different font name and size.

Figure 12.8: Point with styled label

Code

View and download the full "Point with styled label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>

296 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">12</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>
25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.0</AnchorPointY>
29 </AnchorPoint>
30 <Displacement>
31 <DisplacementX>0</DisplacementX>
32 <DisplacementY>5</DisplacementY>
33 </Displacement>
34 </PointPlacement>
35 </LabelPlacement>
36 <Fill>
37 <CssParameter name="fill">#000000</CssParameter>
38 </Fill>
39 </TextSymbolizer>
40 </Rule>
41 </FeatureTypeStyle>

Details

In this example, lines 3-13 are identical to the Simple point example above. The <TextSymbolizer> on
lines 14-39 contains many more details about the label styling than the previous example, Point with default
label. Lines 15-17 once again specify the “name” attribute as text to display. Lines 18-23 set the font infor-
mation: line 19 sets the font family to be “Arial”, line 20 sets the font size to 12, line 21 sets the font style
to “normal” (as opposed to “italic” or “oblique”), and line 22 sets the font weight to “bold” (as opposed to
“normal”). Lines 24-35 (<LabelPlacement>) determine the placement of the label relative to the point.
The <AnchorPoint> (lines 26-29) sets the point of intersection between the label and point, which here
(line 27-28) sets the point to be centered (0.5) horizontally axis and bottom aligned (0.0) vertically with the
label. There is also <Displacement> (lines 30-33), which sets the offset of the label relative to the line,
which in this case is 0 pixels horizontally (line 31) and 5 pixels vertically (line 32). Finally, line 37 sets the
font color of the label to black (#000000).

The result is a centered bold label placed slightly above each point.

12.3. SLD Cookbook 297

GeoServer User Manual, Release 2.5.x

Point with rotated label

This example builds on the previous example, Point with styled label, by rotating the label by 45 degrees,
positioning the labels farther away from the points, and changing the color of the label to purple.

Figure 12.9: Point with rotated label

Code

View and download the full "Point with rotated label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PointSymbolizer>
4 <Graphic>
5 <Mark>
6 <WellKnownName>circle</WellKnownName>
7 <Fill>
8 <CssParameter name="fill">#FF0000</CssParameter>
9 </Fill>

10 </Mark>
11 <Size>6</Size>
12 </Graphic>
13 </PointSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">12</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>
25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.0</AnchorPointY>
29 </AnchorPoint>
30 <Displacement>

298 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

31 <DisplacementX>0</DisplacementX>
32 <DisplacementY>25</DisplacementY>
33 </Displacement>
34 <Rotation>-45</Rotation>
35 </PointPlacement>
36 </LabelPlacement>
37 <Fill>
38 <CssParameter name="fill">#990099</CssParameter>
39 </Fill>
40 </TextSymbolizer>
41 </Rule>
42 </FeatureTypeStyle>

Details

This example is similar to the Point with styled label, but there are three important differences. Line 32
specifies 25 pixels of vertical displacement. Line 34 specifies a rotation of “-45” or 45 degrees counter-
clockwise. (Rotation values increase clockwise, which is why the value is negative.) Finally, line 38 sets the
font color to be a shade of purple (#99099).

Note that the displacement takes effect before the rotation during rendering, so in this example, the 25 pixel
vertical displacement is itself rotated 45 degrees.

Attribute-based point

This example alters the size of the symbol based on the value of the population (“pop”) attribute.

Figure 12.10: Attribute-based point

Code

View and download the full "Attribute-based point" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>SmallPop</Name>
4 <Title>1 to 50000</Title>
5 <ogc:Filter>

12.3. SLD Cookbook 299

GeoServer User Manual, Release 2.5.x

6 <ogc:PropertyIsLessThan>
7 <ogc:PropertyName>pop</ogc:PropertyName>
8 <ogc:Literal>50000</ogc:Literal>
9 </ogc:PropertyIsLessThan>

10 </ogc:Filter>
11 <PointSymbolizer>
12 <Graphic>
13 <Mark>
14 <WellKnownName>circle</WellKnownName>
15 <Fill>
16 <CssParameter name="fill">#0033CC</CssParameter>
17 </Fill>
18 </Mark>
19 <Size>8</Size>
20 </Graphic>
21 </PointSymbolizer>
22 </Rule>
23 <Rule>
24 <Name>MediumPop</Name>
25 <Title>50000 to 100000</Title>
26 <ogc:Filter>
27 <ogc:And>
28 <ogc:PropertyIsGreaterThanOrEqualTo>
29 <ogc:PropertyName>pop</ogc:PropertyName>
30 <ogc:Literal>50000</ogc:Literal>
31 </ogc:PropertyIsGreaterThanOrEqualTo>
32 <ogc:PropertyIsLessThan>
33 <ogc:PropertyName>pop</ogc:PropertyName>
34 <ogc:Literal>100000</ogc:Literal>
35 </ogc:PropertyIsLessThan>
36 </ogc:And>
37 </ogc:Filter>
38 <PointSymbolizer>
39 <Graphic>
40 <Mark>
41 <WellKnownName>circle</WellKnownName>
42 <Fill>
43 <CssParameter name="fill">#0033CC</CssParameter>
44 </Fill>
45 </Mark>
46 <Size>12</Size>
47 </Graphic>
48 </PointSymbolizer>
49 </Rule>
50 <Rule>
51 <Name>LargePop</Name>
52 <Title>Greater than 100000</Title>
53 <ogc:Filter>
54 <ogc:PropertyIsGreaterThanOrEqualTo>
55 <ogc:PropertyName>pop</ogc:PropertyName>
56 <ogc:Literal>100000</ogc:Literal>
57 </ogc:PropertyIsGreaterThanOrEqualTo>
58 </ogc:Filter>
59 <PointSymbolizer>
60 <Graphic>
61 <Mark>
62 <WellKnownName>circle</WellKnownName>
63 <Fill>

300 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

64 <CssParameter name="fill">#0033CC</CssParameter>
65 </Fill>
66 </Mark>
67 <Size>16</Size>
68 </Graphic>
69 </PointSymbolizer>
70 </Rule>
71 </FeatureTypeStyle>

Details

Note: Refer to the Example points layer to see the attributes for this data. This example has eschewed labels
in order to simplify the style, but you can refer to the example Point with styled label to see which attributes
correspond to which points.

This style contains three rules. Each <Rule> varies the style based on the value of the population (“pop”)
attribute for each point, with smaller values yielding a smaller circle, and larger values yielding a larger
circle.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Size
1 SmallPop Less than 50,000 8
2 MediumPop 50,000 to 100,000 12
3 LargePop Greater than 100,000 16

The order of the rules does not matter in this case, since each shape is only rendered by a single rule.

The first rule, on lines 2-22, specifies the styling of those points whose population attribute is less than
50,000. Lines 5-10 set this filter, with lines 6-9 setting the “less than” filter, line 7 denoting the attribute
(“pop”), and line 8 the value of 50,000. The symbol is a circle (line 14), the color is dark blue (#0033CC, on
line 16), and the size is 8 pixels in diameter (line 19).

The second rule, on lines 23-49, specifies a style for points whose population attribute is greater than or
equal to 50,000 and less than 100,000. The population filter is set on lines 26-37. This filter is longer than
in the first rule because two criteria need to be specified instead of one: a “greater than or equal to” and a
“less than” filter. Notice the And on line 27 and line 36. This mandates that both filters need to be true for
the rule to be applicable. The size of the graphic is set to 12 pixels on line 46. All other styling directives
are identical to the first rule.

The third rule, on lines 50-70, specifies a style for points whose population attribute is greater than or equal
to 100,000. The population filter is set on lines 53-58, and the only other difference is the size of the circle,
which in this rule (line 67) is 16 pixels.

The result of this style is that cities with larger populations have larger points.

Zoom-based point

This example alters the style of the points at different zoom levels.

Code

View and download the full "Zoom-based point" SLD

12.3. SLD Cookbook 301

GeoServer User Manual, Release 2.5.x

Figure 12.11: Zoom-based point: Zoomed in

Figure 12.12: Zoom-based point: Partially zoomed

302 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.13: Zoom-based point: Zoomed out

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>160000000</MaxScaleDenominator>
5 <PointSymbolizer>
6 <Graphic>
7 <Mark>
8 <WellKnownName>circle</WellKnownName>
9 <Fill>

10 <CssParameter name="fill">#CC3300</CssParameter>
11 </Fill>
12 </Mark>
13 <Size>12</Size>
14 </Graphic>
15 </PointSymbolizer>
16 </Rule>
17 <Rule>
18 <Name>Medium</Name>
19 <MinScaleDenominator>160000000</MinScaleDenominator>
20 <MaxScaleDenominator>320000000</MaxScaleDenominator>
21 <PointSymbolizer>
22 <Graphic>
23 <Mark>
24 <WellKnownName>circle</WellKnownName>
25 <Fill>
26 <CssParameter name="fill">#CC3300</CssParameter>
27 </Fill>
28 </Mark>
29 <Size>8</Size>
30 </Graphic>
31 </PointSymbolizer>
32 </Rule>
33 <Rule>
34 <Name>Small</Name>
35 <MinScaleDenominator>320000000</MinScaleDenominator>
36 <PointSymbolizer>
37 <Graphic>
38 <Mark>
39 <WellKnownName>circle</WellKnownName>
40 <Fill>

12.3. SLD Cookbook 303

GeoServer User Manual, Release 2.5.x

41 <CssParameter name="fill">#CC3300</CssParameter>
42 </Fill>
43 </Mark>
44 <Size>4</Size>
45 </Graphic>
46 </PointSymbolizer>
47 </Rule>
48 </FeatureTypeStyle>

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example styles the points to vary in size based on the zoom level (or more accurately, scale denominator).
Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the map has a scale
of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules. The three rules are designed as follows:

Rule order Rule name Scale denominator Point size
1 Large 1:160,000,000 or less 12
2 Medium 1:160,000,000 to 1:320,000,000 8
3 Small Greater than 1:320,000,000 4

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The first rule (lines 2-16) is for the smallest scale denominator, corresponding to when the view is “zoomed
in”. The scale rule is set on line 4, so that the rule will apply to any map with a scale denominator of
160,000,000 or less. The rule draws a circle (line 8), colored red (#CC3300 on line 10) with a size of 12 pixels
(line 13).

The second rule (lines 17-32) is the intermediate scale denominator, corresponding to when the view is
“partially zoomed”. The scale rules are set on lines 19-20, so that the rule will apply to any map with a
scale denominator between 160,000,000 and 320,000,000. (The <MinScaleDenominator> is inclusive and
the <MaxScaleDenominator> is exclusive, so a zoom level of exactly 320,000,000 would not apply here.)
Aside from the scale, the only difference between this rule and the first is the size of the symbol, which is
set to 8 pixels on line 29.

The third rule (lines 33-47) is the largest scale denominator, corresponding to when the map is “zoomed
out”. The scale rule is set on line 35, so that the rule will apply to any map with a scale denominator of
320,000,000 or more. Again, the only other difference between this rule and the others is the size of the
symbol, which is set to 4 pixels on line 44.

The result of this style is that points are drawn larger as one zooms in and smaller as one zooms out.

12.3.2 Lines

While lines can also seem to be simple shapes, having length but no width, there are many options and
tricks for making lines display nicely.

304 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example lines layer

The lines layer used in the examples below contains road information for a fictional country. For refer-
ence, the attribute table for the points in this layer is included below.

fid (Feature ID) name (Road name) type (Road class)
line.1 Latway highway
line.2 Crescent Avenue secondary
line.3 Forest Avenue secondary
line.4 Longway highway
line.5 Saxer Avenue secondary
line.6 Ridge Avenue secondary
line.7 Holly Lane local-road
line.8 Mulberry Street local-road
line.9 Nathan Lane local-road
line.10 Central Street local-road
line.11 Lois Lane local-road
line.12 Rocky Road local-road
line.13 Fleet Street local-road
line.14 Diane Court local-road
line.15 Cedar Trail local-road
line.16 Victory Road local-road
line.17 Highland Road local-road
line.18 Easy Street local-road
line.19 Hill Street local-road
line.20 Country Road local-road
line.21 Main Street local-road
line.22 Jani Lane local-road
line.23 Shinbone Alley local-road
line.24 State Street local-road
line.25 River Road local-road

Download the lines shapefile

Simple line

This example specifies lines be colored black with a thickness of 3 pixels.

Code

View and download the full "Simple line" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#000000</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>

12.3. SLD Cookbook 305

GeoServer User Manual, Release 2.5.x

Figure 12.14: Simple line

7 </Stroke>
8 </LineSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this SLD, which is the simplest possible situation.
(All subsequent examples will contain one <Rule> and one <FeatureTypeStyle> unless otherwise spec-
ified.) Styling lines is accomplished via the <LineSymbolizer> (lines 3-8). Line 5 specifies the color of
the line to be black (#000000), while line 6 specifies the width of the lines to be 3 pixels.

Line with border

This example shows how to draw lines with borders (sometimes called “cased lines”). In this case the lines
are drawn with a 3 pixel blue center and a 1 pixel wide gray border.

Code

View and download the full "Line with border" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#333333</CssParameter>
6 <CssParameter name="stroke-width">5</CssParameter>
7 <CssParameter name="stroke-linecap">round</CssParameter>
8 </Stroke>

306 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.15: Line with border

9 </LineSymbolizer>
10 </Rule>
11 </FeatureTypeStyle>
12 <FeatureTypeStyle>
13 <Rule>
14 <LineSymbolizer>
15 <Stroke>
16 <CssParameter name="stroke">#6699FF</CssParameter>
17 <CssParameter name="stroke-width">3</CssParameter>
18 <CssParameter name="stroke-linecap">round</CssParameter>
19 </Stroke>
20 </LineSymbolizer>
21 </Rule>
22 </FeatureTypeStyle>

Details

Lines in SLD have no notion of a “fill”, only “stroke”. Thus, unlike points or polygons, it is not possible
to style the “edge” of the line geometry. It is, however, possible to achieve this effect by drawing each line
twice: once with a certain width and again with a slightly smaller width. This gives the illusion of fill and
stroke by obscuring the larger lines everywhere except along the edges of the smaller lines.

Since every line is drawn twice, the order of the rendering is very important. GeoServer renders
<FeatureTypeStyle>s in the order that they are presented in the SLD. In this style, the gray border
lines are drawn first via the first <FeatureTypeStyle>, followed by the blue center lines in a second
<FeatureTypeStyle>. This ensures that the blue lines are not obscured by the gray lines, and also en-
sures proper rendering at intersections, so that the blue lines “connect”.

In this example, lines 1-11 comprise the first <FeatureTypeStyle>, which is the outer line (or “stroke”).
Line 5 specifies the color of the line to be dark gray (#333333), line 6 specifies the width of this line to be
5 pixels, and in line 7 a stroke-linecap parameter of round renders the ends of the line as rounded
instead of flat. (When working with bordered lines using a round line cap ensures that the border connects

12.3. SLD Cookbook 307

GeoServer User Manual, Release 2.5.x

properly at the ends of the lines.)

Lines 12-22 comprise the second <FeatureTypeStyle>, which is the the inner line (or “fill”). Line 16
specifies the color of the line to be a medium blue (#6699FF), line 17 specifies the width of this line to be 3
pixels, and line 18 again renders the edges of the line to be rounded instead of flat.

The result is a 3 pixel blue line with a 1 pixel gray border, since the 5 pixel gray line will display 1 pixel on
each side of the 3 pixel blue line.

Dashed line

This example alters the Simple line to create a dashed line consisting of 5 pixels of drawn line alternating
with 2 pixels of blank space.

Figure 12.16: Dashed line

Code

View and download the full "Dashed line" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#0000FF</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>
7 <CssParameter name="stroke-dasharray">5 2</CssParameter>
8 </Stroke>
9 </LineSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

308 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

In this example, line 5 sets the color of the lines to be blue (#0000FF) and line 6 sets the width of the lines
to be 3 pixels. Line 7 determines the composition of the line dashes. The value of 5 2 creates a repeating
pattern of 5 pixels of drawn line, followed by 2 pixels of omitted line.

Railroad (hatching)

This example uses hatching to create a railroad style. Both the line and the hatches are black, with a 2 pixel
thickness for the main line and a 1 pixel width for the perpendicular hatches.

Note: This example leverages an SLD extension in GeoServer. Hatching is not part of the standard SLD 1.0
specification.

Figure 12.17: Railroad (hatching)

Code

View and download the full "Railroad (hatching)" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#333333</CssParameter>
6 <CssParameter name="stroke-width">3</CssParameter>
7 </Stroke>
8 </LineSymbolizer>
9 <LineSymbolizer>

10 <Stroke>
11 <GraphicStroke>
12 <Graphic>

12.3. SLD Cookbook 309

GeoServer User Manual, Release 2.5.x

13 <Mark>
14 <WellKnownName>shape://vertline</WellKnownName>
15 <Stroke>
16 <CssParameter name="stroke">#333333</CssParameter>
17 <CssParameter name="stroke-width">1</CssParameter>
18 </Stroke>
19 </Mark>
20 <Size>12</Size>
21 </Graphic>
22 </GraphicStroke>
23 </Stroke>
24 </LineSymbolizer>
25 </Rule>
26 </FeatureTypeStyle>

Details

In this example there are two <LineSymbolizer>s. The first symbolizer, on lines 3-8, draws a standard
line, with line 5 drawing the lines as dark gray (#333333) and line 6 setting the width of the lines to be 2
pixels.

The hatching is invoked in the second symbolizer, on lines 9-24. Line 14 specifies that the symbolizer draw
a vertical line hatch (shape://vertline) perpendicular to the line geometry. Lines 16-17 set the hatch
color to dark gray (#333333) and width to 1 pixel. Finally, line 20 specifies both the length of the hatch
and the distance between each hatch to both be 12 pixels.

Spaced graphic symbols

This example uses a graphic stroke along with dash arrays to create a “dot and space” line type. Adding the
dash array specification allows to control the amount of space between one symbol and the next one. With-
out using the dash array the lines would be densely populated with dots, each one touching the previous
one.

Note: This example may not work in other systems using SLD, since they may not support combining the
use of stroke-dasharray and GraphicStroke. While the SLD is spec-compliant, the SLD specification
does not state what this combination is supposed to produce.

Code

View and download the full "Spaced symbols" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <GraphicStroke>
6 <Graphic>
7 <Mark>
8 <WellKnownName>circle</WellKnownName>
9 <Fill>

10 <CssParameter name="fill">#666666</CssParameter>
11 </Fill>
12 <Stroke>

310 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.18: Spaced symbols along a line

13 <CssParameter name="stroke">#333333</CssParameter>
14 <CssParameter name="stroke-width">1</CssParameter>
15 </Stroke>
16 </Mark>
17 <Size>4</Size>
18 </Graphic>
19 </GraphicStroke>
20 <CssParameter name="stroke-dasharray">4 6</CssParameter>
21 </Stroke>
22 </LineSymbolizer>
23 </Rule>
24 </FeatureTypeStyle>

Details

This example, like others before, uses a GraphicStroke to place a graphic symbol along a line. The
symbol, defined at lines 7-16 is a 4 pixel gray circle with a dark gray outline. The spacing between symbols
is controlled with the stroke-dasharray at line 20, which specifies 4 pixels of pen-down (just enough to
draw the circle) and 6 pixels of pen-up, to provide the spacing.

Alternating symbols with dash offsets

This example shows how to create a complex line style which alternates a dashed line and a graphic symbol.
The code builds on features shown in the previous examples:

• stroke-dasharray controls pen-down/pen-up behavior to generate dashed lines

• GraphicStroke places symbols along a line

• combining the two allows control of symbol spacing

This also shows the usage of a dash offset, which controls where rendering starts in the dash array. For
example, with a dash array of 5 10 and a dash offset of 7 the renderer starts drawing the pattern 7 pixels
from the beginning. It skips the 5 pixels pen-down section and 2 pixels of the pen-up section, then draws
the remaining 8 pixels of pen-up, then 5 down, 10 up, and so on.

12.3. SLD Cookbook 311

GeoServer User Manual, Release 2.5.x

The example shows how to use these features to create two synchronized sequences of dash arrays, one
drawing line segments and the other symbols.

Note: This example may not work in other systems using SLD, since they may not support combining the
use of stroke-dasharray and GraphicStroke. While the SLD is spec-compliant, the SLD specification
does not state what this combination is supposed to produce.

Figure 12.19: Alternating dash and symbol

Code

View and download the full "Spaced symbols" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#0000FF</CssParameter>
6 <CssParameter name="stroke-width">1</CssParameter>
7 <CssParameter name="stroke-dasharray">10 10</CssParameter>
8 </Stroke>
9 </LineSymbolizer>

10 <LineSymbolizer>
11 <Stroke>
12 <GraphicStroke>
13 <Graphic>
14 <Mark>
15 <WellKnownName>circle</WellKnownName>
16 <Stroke>
17 <CssParameter name="stroke">#000033</CssParameter>
18 <CssParameter name="stroke-width">1</CssParameter>
19 </Stroke>
20 </Mark>
21 <Size>5</Size>
22 </Graphic>
23 </GraphicStroke>
24 <CssParameter name="stroke-dasharray">5 15</CssParameter>
25 <CssParameter name="stroke-dashoffset">7.5</CssParameter>

312 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

26 </Stroke>
27 </LineSymbolizer>
28 </Rule>
29 </FeatureTypeStyle>

Details

In this example two LineSymbolizers use stroke-dasharray and different symbology to produce
a sequence of alternating dashes and symbols. The first symbolizer (lines 3-9) is a simple dashed line
alternating 10 pixels of pen-down with 10 pixels of pen-up. The second symbolizer (lines 10-27) alternates
a 5 pixel empty circle with 15 pixels of white space. The circle symbol is produced by a Mark element, with
its symbology specified by stroke parameters (lines 17-18). The spacing between symbols is controlled
with the stroke-dasharray (line 24), which specifies 5 pixels of pen-down (just enough to draw the
circle) and 15 pixels of pen-up. In order to have the two sequences positioned correctly the second one uses
a stroke-dashoffset of 7.5 (line 25). This makes the sequence start with 12.5 pixels of white space, then
a circle (which is then centered between the two line segments of the other pattern), then 15 pixels of white
space, and so on.

Line with default label

This example shows a text label on the simple line. This is how a label will be displayed in the absence of
any other customization.

Figure 12.20: Line with default label

Code

View and download the full "Line with default label" SLD

12.3. SLD Cookbook 313

GeoServer User Manual, Release 2.5.x

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <LabelPlacement>
13 <LinePlacement />
14 </LabelPlacement>
15 <Fill>
16 <CssParameter name="fill">#000000</CssParameter>
17 </Fill>
18 </TextSymbolizer>
19 </Rule>
20 </FeatureTypeStyle>

Details

In this example, there is one rule with a <LineSymbolizer> and a <TextSymbolizer>. The
<LineSymbolizer> (lines 3-7) draws red lines (#FF0000). Since no width is specified, the default is
set to 1 pixel. The <TextSymbolizer> (lines 8-15) determines the labeling of the lines. Lines 9-11 specify
that the text of the label will be determined by the value of the “name” attribute for each line. (Refer to the
attribute table in the Example lines layer section if necessary.) Line 13 sets the text color to black. All other
details about the label are set to the renderer default, which here is Times New Roman font, font color black,
and font size of 10 pixels.

Label following line

This example renders the text label to follow the contour of the lines.

Note: Labels following lines is an SLD extension specific to GeoServer. It is not part of the SLD 1.0
specification.

Code

View and download the full "Label following line" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>

314 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.21: Label following line

12 <LabelPlacement>
13 <LinePlacement />
14 </LabelPlacement>
15 <Fill>
16 <CssParameter name="fill">#000000</CssParameter>
17 </Fill>
18 <VendorOption name="followLine">true</VendorOption>
19 </TextSymbolizer>
20 </Rule>
21 </FeatureTypeStyle>

Details

As the Alternating symbols with dash offsets example showed, the default label behavior isn’t optimal. The
label is displayed at a tangent to the line itself, leading to uncertainty as to which label corresponds to
which line.

This example is similar to the Alternating symbols with dash offsets example with the exception of lines 12-18.
Line 18 sets the option to have the label follow the line, while lines 12-14 specify that the label is placed
along a line. If <LinePlacement /> is not specified in an SLD, then <PointPlacement /> is assumed,
which isn’t compatible with line-specific rendering options.

Note: Not all labels are shown due to label conflict resolution. See the next section on Optimized label
placement for an example of how to maximize label display.

Optimized label placement

This example optimizes label placement for lines such that the maximum number of labels are displayed.

Note: This example uses options that are specific to GeoServer and are not part of the SLD 1.0 specification.

12.3. SLD Cookbook 315

GeoServer User Manual, Release 2.5.x

Figure 12.22: Optimized label

Code

View and download the full "Optimized label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>
6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <LabelPlacement>
13 <LinePlacement />
14 </LabelPlacement>
15 <Fill>
16 <CssParameter name="fill">#000000</CssParameter>
17 </Fill>
18 <VendorOption name="followLine">true</VendorOption>
19 <VendorOption name="maxAngleDelta">90</VendorOption>
20 <VendorOption name="maxDisplacement">400</VendorOption>
21 <VendorOption name="repeat">150</VendorOption>
22 </TextSymbolizer>
23 </Rule>
24 </FeatureTypeStyle>

316 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

GeoServer uses “conflict resolution” to ensure that labels aren’t drawn on top of other labels, obscuring
them both. This accounts for the reason why many lines don’t have labels in the previous example, Label
following line. While this setting can be toggled, it is usually a good idea to leave it on and use other label
placement options to ensure that labels are drawn as often as desired and in the correct places. This example
does just that.

This example is similar to the previous example, Label following line. The only differences are contained in
lines 18-21. Line 19 sets the maximum angle that the label will follow. This sets the label to never bend
more than 90 degrees to prevent the label from becoming illegible due to a pronounced curve or angle.
Line 20 sets the maximum displacement of the label to be 400 pixels. In order to resolve conflicts with
overlapping labels, GeoServer will attempt to move the labels such that they are no longer overlapping.
This value sets how far the label can be moved relative to its original placement. Finally, line 21 sets the
labels to be repeated every 150 pixels. A feature will typically receive only one label, but this can cause
confusion for long lines. Setting the label to repeat ensures that the line is always labeled locally.

Optimized and styled label

This example improves the style of the labels from the Optimized label placement example.

Figure 12.23: Optimized and styled label

Code

View and download the full "Optimized and styled label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <LineSymbolizer>
4 <Stroke>
5 <CssParameter name="stroke">#FF0000</CssParameter>

12.3. SLD Cookbook 317

GeoServer User Manual, Release 2.5.x

6 </Stroke>
7 </LineSymbolizer>
8 <TextSymbolizer>
9 <Label>

10 <ogc:PropertyName>name</ogc:PropertyName>
11 </Label>
12 <LabelPlacement>
13 <LinePlacement />
14 </LabelPlacement>
15 <Fill>
16 <CssParameter name="fill">#000000</CssParameter>
17 </Fill>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">10</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <VendorOption name="followLine">true</VendorOption>
25 <VendorOption name="maxAngleDelta">90</VendorOption>
26 <VendorOption name="maxDisplacement">400</VendorOption>
27 <VendorOption name="repeat">150</VendorOption>
28 </TextSymbolizer>
29 </Rule>
30 </FeatureTypeStyle>

Details

This example is similar to the Optimized label placement. The only difference is in the font information, which
is contained in lines 18-23. Line 19 sets the font family to be “Arial”, line 20 sets the font size to 10, line
21 sets the font style to “normal” (as opposed to “italic” or “oblique”), and line 22 sets the font weight to
“bold” (as opposed to “normal”).

Attribute-based line

This example styles the lines differently based on the “type” (Road class) attribute.

Code

View and download the full "Attribute-based line" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>local-road</Name>
4 <ogc:Filter>
5 <ogc:PropertyIsEqualTo>
6 <ogc:PropertyName>type</ogc:PropertyName>
7 <ogc:Literal>local-road</ogc:Literal>
8 </ogc:PropertyIsEqualTo>
9 </ogc:Filter>

10 <LineSymbolizer>
11 <Stroke>
12 <CssParameter name="stroke">#009933</CssParameter>
13 <CssParameter name="stroke-width">2</CssParameter>

318 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.24: Attribute-based line

14 </Stroke>
15 </LineSymbolizer>
16 </Rule>
17 </FeatureTypeStyle>
18 <FeatureTypeStyle>
19 <Rule>
20 <Name>secondary</Name>
21 <ogc:Filter>
22 <ogc:PropertyIsEqualTo>
23 <ogc:PropertyName>type</ogc:PropertyName>
24 <ogc:Literal>secondary</ogc:Literal>
25 </ogc:PropertyIsEqualTo>
26 </ogc:Filter>
27 <LineSymbolizer>
28 <Stroke>
29 <CssParameter name="stroke">#0055CC</CssParameter>
30 <CssParameter name="stroke-width">3</CssParameter>
31 </Stroke>
32 </LineSymbolizer>
33 </Rule>
34 </FeatureTypeStyle>
35 <FeatureTypeStyle>
36 <Rule>
37 <Name>highway</Name>
38 <ogc:Filter>
39 <ogc:PropertyIsEqualTo>
40 <ogc:PropertyName>type</ogc:PropertyName>
41 <ogc:Literal>highway</ogc:Literal>
42 </ogc:PropertyIsEqualTo>
43 </ogc:Filter>
44 <LineSymbolizer>
45 <Stroke>
46 <CssParameter name="stroke">#FF0000</CssParameter>
47 <CssParameter name="stroke-width">6</CssParameter>

12.3. SLD Cookbook 319

GeoServer User Manual, Release 2.5.x

48 </Stroke>
49 </LineSymbolizer>
50 </Rule>
51 </FeatureTypeStyle>

Details

Note: Refer to the Example lines layer to see the attributes for the layer. This example has eschewed labels in
order to simplify the style, but you can refer to the example Optimized and styled label to see which attributes
correspond to which points.

There are three types of road classes in our fictional country, ranging from back roads to high-speed free-
ways: “highway”, “secondary”, and “local-road”. In order to handle each case separately, there is more
than one <FeatureTypeStyle>, each containing a single rule. This ensures that each road type is ren-
dered in order, as each <FeatureTypeStyle> is drawn based on the order in which it appears in the
SLD.

The three rules are designed as follows:

Rule order Rule name / type Color Size
1 local-road #009933 (green) 2
2 secondary #0055CC (blue) 3
3 highway #FF0000 (red) 6

Lines 2-16 comprise the first <Rule>. Lines 4-9 set the filter for this rule, such that the “type” attribute
has a value of “local-road”. If this condition is true for a particular line, the rule is rendered according to
the <LineSymbolizer> which is on lines 10-15. Lines 12-13 set the color of the line to be a dark green
(#009933) and the width to be 2 pixels.

Lines 19-33 comprise the second <Rule>. Lines 21-26 set the filter for this rule, such that the “type”
attribute has a value of “secondary”. If this condition is true for a particular line, the rule is rendered
according to the <LineSymbolizer> which is on lines 27-32. Lines 29-30 set the color of the line to be a
dark blue (#0055CC) and the width to be 3 pixels, making the lines slightly thicker than the “local-road”
lines and also a different color.

Lines 36-50 comprise the third and final <Rule>. Lines 38-43 set the filter for this rule, such that the
“type” attribute has a value of “primary”. If this condition is true for a particular line, the rule is rendered
according to the <LineSymbolizer> which is on lines 44-49. Lines 46-47 set the color of the line to be a
bright red (#FF0000) and the width to be 6 pixels, so that these lines are rendered on top of and thicker
than the other two road classes. In this way, the “primary” roads are given priority in the map rendering.

Zoom-based line

This example alters the Simple line style at different zoom levels.

Code

View and download the full "Zoom-based line" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>180000000</MaxScaleDenominator>

320 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.25: Zoom-based line: Zoomed in

Figure 12.26: Zoom-based line: Partially zoomed

12.3. SLD Cookbook 321

GeoServer User Manual, Release 2.5.x

Figure 12.27: Zoom-based line: Zoomed out

5 <LineSymbolizer>
6 <Stroke>
7 <CssParameter name="stroke">#009933</CssParameter>
8 <CssParameter name="stroke-width">6</CssParameter>
9 </Stroke>

10 </LineSymbolizer>
11 </Rule>
12 <Rule>
13 <Name>Medium</Name>
14 <MinScaleDenominator>180000000</MinScaleDenominator>
15 <MaxScaleDenominator>360000000</MaxScaleDenominator>
16 <LineSymbolizer>
17 <Stroke>
18 <CssParameter name="stroke">#009933</CssParameter>
19 <CssParameter name="stroke-width">4</CssParameter>
20 </Stroke>
21 </LineSymbolizer>
22 </Rule>
23 <Rule>
24 <Name>Small</Name>
25 <MinScaleDenominator>360000000</MinScaleDenominator>
26 <LineSymbolizer>
27 <Stroke>
28 <CssParameter name="stroke">#009933</CssParameter>
29 <CssParameter name="stroke-width">2</CssParameter>
30 </Stroke>
31 </LineSymbolizer>
32 </Rule>
33 </FeatureTypeStyle>

322 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example varies the thickness of the lines according to the zoom level (or more accurately, scale denomina-
tor). Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the map has a
scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules. The three rules are designed as follows:

Rule order Rule name Scale denominator Line width
1 Large 1:180,000,000 or less 6
2 Medium 1:180,000,000 to 1:360,000,000 4
3 Small Greater than 1:360,000,000 2

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The first rule (lines 2-11) is the smallest scale denominator, corresponding to when the view is “zoomed in”.
The scale rule is set on line 4, so that the rule will apply to any map with a scale denominator of 180,000,000
or less. Line 7-8 draws the line to be dark green (#009933) with a width of 6 pixels.

The second rule (lines 12-22) is the intermediate scale denominator, corresponding to when the view is
“partially zoomed”. Lines 14-15 set the scale such that the rule will apply to any map with scale de-
nominators between 180,000,000 and 360,000,000. (The <MinScaleDenominator> is inclusive and the
<MaxScaleDenominator> is exclusive, so a zoom level of exactly 360,000,000 would not apply here.)
Aside from the scale, the only difference between this rule and the previous is the width of the lines, which
is set to 4 pixels on line 19.

The third rule (lines 23-32) is the largest scale denominator, corresponding to when the map is “zoomed
out”. The scale rule is set on line 25, so that the rule will apply to any map with a scale denominator of
360,000,000 or greater. Again, the only other difference between this rule and the others is the width of the
lines, which is set to 2 pixels on line 29.

The result of this style is that lines are drawn with larger widths as one zooms in and smaller widths as one
zooms out.

12.3.3 Polygons

Polygons are two dimensional shapes that contain both an outer edge (or “stroke”) and an inside (or “fill”).
A polygon can be thought of as an irregularly-shaped point and is styled in similar ways to points.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example polygons layer

The polygons layer used below contains county information for a fictional country. For reference, the
attribute table for the polygons is included below.

12.3. SLD Cookbook 323

GeoServer User Manual, Release 2.5.x

fid (Feature ID) name (County name) pop (Population)
polygon.1 Irony County 412234
polygon.2 Tracker County 235421
polygon.3 Dracula County 135022
polygon.4 Poly County 1567879
polygon.5 Bearing County 201989
polygon.6 Monte Cristo County 152734
polygon.7 Massive County 67123
polygon.8 Rhombus County 198029

Download the polygons shapefile

Simple polygon

This example shows a polygon filled in blue.

Figure 12.28: Simple polygon

Code

View and download the full "Simple polygon" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 </Fill>
7 </PolygonSymbolizer>
8 </Rule>
9 </FeatureTypeStyle>

324 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Details

There is one <Rule> in one <FeatureTypeStyle> for this style, which is the simplest possible situation.
(All subsequent examples will share this characteristic unless otherwise specified.) Styling polygons is
accomplished via the <PolygonSymbolizer> (lines 3-7). Line 5 specifies dark blue (#000080) as the
polygon’s fill color.

Note: The light-colored borders around the polygons in the figure are artifacts of the renderer caused by
the polygons being adjacent. There is no border in this style.

Simple polygon with stroke

This example adds a 2 pixel white stroke to the Simple polygon example.

Figure 12.29: Simple polygon with stroke

Code

View and download the full "Simple polygon with stroke" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>

12.3. SLD Cookbook 325

GeoServer User Manual, Release 2.5.x

12 </Rule>
13 </FeatureTypeStyle>

Details

This example is similar to the Simple polygon example above, with the addition of the <Stroke> tag (lines
7-10). Line 8 sets the color of stroke to white (#FFFFFF) and line 9 sets the width of the stroke to 2 pixels.

Transparent polygon

This example builds on the Simple polygon with stroke example and makes the fill partially transparent by
setting the opacity to 50%.

Figure 12.30: Transparent polygon

Code

View and download the full "Transparent polygon" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#000080</CssParameter>
6 <CssParameter name="fill-opacity">0.5</CssParameter>
7 </Fill>
8 <Stroke>
9 <CssParameter name="stroke">#FFFFFF</CssParameter>

10 <CssParameter name="stroke-width">2</CssParameter>
11 </Stroke>
12 </PolygonSymbolizer>

326 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

13 </Rule>
14 </FeatureTypeStyle>

Details

This example is similar to the Simple polygon with stroke example, save for defining the fill’s opacity in line
6. The value of 0.5 results in partially transparent fill that is 50% opaque. An opacity value of 1 would draw
the fill as 100% opaque, while an opacity value of 0 would result in a completely transparent (0% opaque)
fill. In this example, since the background is white, the dark blue looks lighter. Were the points imposed on
a dark background, the resulting color would be darker.

Graphic fill

This example fills the polygons with a tiled graphic.

Figure 12.31: Graphic fill

Code

View and download the full "Graphic fill" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <GraphicFill>
6 <Graphic>
7 <ExternalGraphic>
8 <OnlineResource
9 xlink:type="simple"

10 xlink:href="colorblocks.png" />

12.3. SLD Cookbook 327

GeoServer User Manual, Release 2.5.x

11 <Format>image/png</Format>
12 </ExternalGraphic>
13 <Size>93</Size>
14 </Graphic>
15 </GraphicFill>
16 </Fill>
17 </PolygonSymbolizer>
18 </Rule>
19 </FeatureTypeStyle>

Details

This style fills the polygon with a tiled graphic. This is known as an <ExternalGraphic> in SLD, to
distinguish it from commonly-used shapes such as squares and circles that are “internal” to the renderer.
Lines 7-12 specify details for the graphic, with line 10 setting the path and file name of the graphic and
line 11 indicating the file format (MIME type) of the graphic (image/png). Although a full URL could
be specified if desired, no path information is necessary in line 11 because this graphic is contained in the
same directory as the SLD. Line 13 determines the height of the displayed graphic in pixels; if the value
differs from the height of the graphic then it will be scaled accordingly while preserving the aspect ratio.

Figure 12.32: Graphic used for fill

Hatching fill

This example fills the polygons with a hatching pattern.

Note: This example leverages an SLD extension in GeoServer. Hatching is not part of the standard SLD 1.0
specification.

Code

View and download the full "Hatching fill" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <GraphicFill>
6 <Graphic>
7 <Mark>
8 <WellKnownName>shape://times</WellKnownName>
9 <Stroke>

10 <CssParameter name="stroke">#990099</CssParameter>
11 <CssParameter name="stroke-width">1</CssParameter>
12 </Stroke>
13 </Mark>

328 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.33: Hatching fill

14 <Size>16</Size>
15 </Graphic>
16 </GraphicFill>
17 </Fill>
18 </PolygonSymbolizer>
19 </Rule>
20 </FeatureTypeStyle>

Details

In this example, there is a <GraphicFill> tag as in the Graphic fill example, but a <Mark> (lines 7-13) is
used instead of an <ExternalGraphic>. Line 8 specifies a “times” symbol (an “x”) be tiled throughout
the polygon. Line 10 sets the color to purple (#990099), line 11 sets the width of the hatches to 1 pixel, and
line 14 sets the size of the tile to 16 pixels. Because hatch tiles are always square, the <Size> sets both the
width and the height.

Polygon with default label

This example shows a text label on the polygon. In the absence of any other customization, this is how a
label will be displayed.

Code

View and download the full "Polygon with default label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>

12.3. SLD Cookbook 329

GeoServer User Manual, Release 2.5.x

Figure 12.34: Polygon with default label

5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16 </TextSymbolizer>
17 </Rule>
18 </FeatureTypeStyle>

Details

In this example there is a <PolygonSymbolizer> and a <TextSymbolizer>. Lines 3-11 comprise the
<PolygonSymbolizer>. The fill of the polygon is set on line 5 to a light green (#40FF40) while the stroke
of the polygon is set on lines 8-9 to white (#FFFFFF) with a thickness of 2 pixels. The label is set in the
<TextSymbolizer> on lines 12-16, with line 14 determining what text to display, in this case the value
of the “name” attribute. (Refer to the attribute table in the Example polygons layer section if necessary.) All
other details about the label are set to the renderer default, which here is Times New Roman font, font color
black, and font size of 10 pixels.

Label halo

This example alters the look of the Polygon with default label by adding a white halo to the label.

330 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.35: Label halo

Code

View and download the full "Label halo" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16 <Halo>
17 <Radius>3</Radius>
18 <Fill>
19 <CssParameter name="fill">#FFFFFF</CssParameter>
20 </Fill>
21 </Halo>
22 </TextSymbolizer>
23 </Rule>
24 </FeatureTypeStyle>

12.3. SLD Cookbook 331

GeoServer User Manual, Release 2.5.x

Details

This example is similar to the Polygon with default label, with the addition of a halo around the labels on
lines 16-21. A halo creates a color buffer around the label to improve label legibility. Line 17 sets the radius
of the halo, extending the halo 3 pixels around the edge of the label, and line 19 sets the color of the halo
to white (#FFFFFF). Since halos are most useful when set to a sharp contrast relative to the text color, this
example uses a white halo around black text to ensure optimum readability.

Polygon with styled label

This example improves the label style from the Polygon with default label example by centering the label on
the polygon, specifying a different font name and size, and setting additional label placement optimiza-
tions.

Note: The label placement optimizations discussed below (the <VendorOption> tags) are SLD extensions
that are custom to GeoServer. They are not part of the SLD 1.0 specification.

Figure 12.36: Polygon with styled label

Code

View and download the full "Polygon with styled label" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <PolygonSymbolizer>
4 <Fill>
5 <CssParameter name="fill">#40FF40</CssParameter>
6 </Fill>
7 <Stroke>
8 <CssParameter name="stroke">#FFFFFF</CssParameter>
9 <CssParameter name="stroke-width">2</CssParameter>

332 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

10 </Stroke>
11 </PolygonSymbolizer>
12 <TextSymbolizer>
13 <Label>
14 <ogc:PropertyName>name</ogc:PropertyName>
15 </Label>
16
17 <CssParameter name="font-family">Arial</CssParameter>
18 <CssParameter name="font-size">11</CssParameter>
19 <CssParameter name="font-style">normal</CssParameter>
20 <CssParameter name="font-weight">bold</CssParameter>
21
22 <LabelPlacement>
23 <PointPlacement>
24 <AnchorPoint>
25 <AnchorPointX>0.5</AnchorPointX>
26 <AnchorPointY>0.5</AnchorPointY>
27 </AnchorPoint>
28 </PointPlacement>
29 </LabelPlacement>
30 <Fill>
31 <CssParameter name="fill">#000000</CssParameter>
32 </Fill>
33 <VendorOption name="autoWrap">60</VendorOption>
34 <VendorOption name="maxDisplacement">150</VendorOption>
35 </TextSymbolizer>
36 </Rule>
37 </FeatureTypeStyle>

Details

This example is similar to the Polygon with default label example, with additional styling options within the
<TextSymbolizer> on lines 12-35. Lines 16-21 set the font styling. Line 17 sets the font family to be
Arial, line 18 sets the font size to 11 pixels, line 19 sets the font style to “normal” (as opposed to “italic” or
“oblique”), and line 20 sets the font weight to “bold” (as opposed to “normal”).

The <LabelPlacement> tag on lines 22-29 affects where the label is placed relative to the centroid of the
polygon. Line 21 centers the label by positioning it 50% (or 0.5) of the way horizontally along the centroid
of the polygon. Line 22 centers the label vertically in exactly the same way.

Finally, there are two added touches for label placement optimization: line 33 ensures that long labels are
split across multiple lines by setting line wrapping on the labels to 60 pixels, and line 34 allows the label to
be displaced by up to 150 pixels. This ensures that labels are compacted and less likely to spill over polygon
boundaries. Notice little Massive County in the corner, whose label is now displayed.”

Attribute-based polygon

This example styles the polygons differently based on the “pop” (Population) attribute.

Code

View and download the full "Attribute-based polygon" SLD

12.3. SLD Cookbook 333

GeoServer User Manual, Release 2.5.x

Figure 12.37: Attribute-based polygon

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>SmallPop</Name>
4 <Title>Less Than 200,000</Title>
5 <ogc:Filter>
6 <ogc:PropertyIsLessThan>
7 <ogc:PropertyName>pop</ogc:PropertyName>
8 <ogc:Literal>200000</ogc:Literal>
9 </ogc:PropertyIsLessThan>

10 </ogc:Filter>
11 <PolygonSymbolizer>
12 <Fill>
13 <CssParameter name="fill">#66FF66</CssParameter>
14 </Fill>
15 </PolygonSymbolizer>
16 </Rule>
17 <Rule>
18 <Name>MediumPop</Name>
19 <Title>200,000 to 500,000</Title>
20 <ogc:Filter>
21 <ogc:And>
22 <ogc:PropertyIsGreaterThanOrEqualTo>
23 <ogc:PropertyName>pop</ogc:PropertyName>
24 <ogc:Literal>200000</ogc:Literal>
25 </ogc:PropertyIsGreaterThanOrEqualTo>
26 <ogc:PropertyIsLessThan>
27 <ogc:PropertyName>pop</ogc:PropertyName>
28 <ogc:Literal>500000</ogc:Literal>
29 </ogc:PropertyIsLessThan>
30 </ogc:And>
31 </ogc:Filter>
32 <PolygonSymbolizer>
33 <Fill>
34 <CssParameter name="fill">#33CC33</CssParameter>

334 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

35 </Fill>
36 </PolygonSymbolizer>
37 </Rule>
38 <Rule>
39 <Name>LargePop</Name>
40 <Title>Greater Than 500,000</Title>
41 <ogc:Filter>
42 <ogc:PropertyIsGreaterThan>
43 <ogc:PropertyName>pop</ogc:PropertyName>
44 <ogc:Literal>500000</ogc:Literal>
45 </ogc:PropertyIsGreaterThan>
46 </ogc:Filter>
47 <PolygonSymbolizer>
48 <Fill>
49 <CssParameter name="fill">#009900</CssParameter>
50 </Fill>
51 </PolygonSymbolizer>
52 </Rule>
53 </FeatureTypeStyle>

Details

Note: Refer to the Example polygons layer to see the attributes for the layer. This example has eschewed
labels in order to simplify the style, but you can refer to the example Polygon with styled label to see which
attributes correspond to which polygons.

Each polygon in our fictional country has a population that is represented by the population (“pop”) at-
tribute. This style contains three rules that alter the fill based on the value of “pop” attribute, with smaller
values yielding a lighter color and larger values yielding a darker color.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Color
1 SmallPop Less than 200,000 #66FF66
2 MediumPop 200,000 to 500,000 #33CC33
3 LargePop Greater than 500,000 #009900

The order of the rules does not matter in this case, since each shape is only rendered by a single rule.

The first rule, on lines 2-16, specifies the styling of polygons whose population attribute is less than 200,000.
Lines 5-10 set this filter, with lines 6-9 setting the “less than” filter, line 7 denoting the attribute (“pop”),
and line 8 the value of 200,000. The color of the polygon fill is set to a light green (#66FF66) on line 13.

The second rule, on lines 17-37, is similar, specifying a style for polygons whose population attribute is
greater than or equal to 200,000 but less than 500,000. The filter is set on lines 20-31. This filter is longer
than in the first rule because two criteria need to be specified instead of one: a “greater than or equal to”
and a “less than” filter. Notice the And on line 21 and line 30. This mandates that both filters need to be
true for the rule to be applicable. The color of the polygon fill is set to a medium green on (#33CC33) on
line 34.

The third rule, on lines 38-52, specifies a style for polygons whose population attribute is greater than or
equal to 500,000. The filter is set on lines 41-46. The color of the polygon fill is the only other difference in
this rule, which is set to a dark green (#009900) on line 49.

12.3. SLD Cookbook 335

GeoServer User Manual, Release 2.5.x

Zoom-based polygon

This example alters the style of the polygon at different zoom levels.

Figure 12.38: Zoom-based polygon: Zoomed in

Code

View and download the full "Zoom-based polygon" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <Name>Large</Name>
4 <MaxScaleDenominator>100000000</MaxScaleDenominator>
5 <PolygonSymbolizer>
6 <Fill>
7 <CssParameter name="fill">#0000CC</CssParameter>
8 </Fill>
9 <Stroke>

10 <CssParameter name="stroke">#000000</CssParameter>
11 <CssParameter name="stroke-width">7</CssParameter>
12 </Stroke>
13 </PolygonSymbolizer>
14 <TextSymbolizer>
15 <Label>
16 <ogc:PropertyName>name</ogc:PropertyName>
17 </Label>
18
19 <CssParameter name="font-family">Arial</CssParameter>
20 <CssParameter name="font-size">14</CssParameter>
21 <CssParameter name="font-style">normal</CssParameter>
22 <CssParameter name="font-weight">bold</CssParameter>
23
24 <LabelPlacement>

336 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.39: Zoom-based polygon: Partially zoomed

Figure 12.40: Zoom-based polygon: Zoomed out

12.3. SLD Cookbook 337

GeoServer User Manual, Release 2.5.x

25 <PointPlacement>
26 <AnchorPoint>
27 <AnchorPointX>0.5</AnchorPointX>
28 <AnchorPointY>0.5</AnchorPointY>
29 </AnchorPoint>
30 </PointPlacement>
31 </LabelPlacement>
32 <Fill>
33 <CssParameter name="fill">#FFFFFF</CssParameter>
34 </Fill>
35 </TextSymbolizer>
36 </Rule>
37 <Rule>
38 <Name>Medium</Name>
39 <MinScaleDenominator>100000000</MinScaleDenominator>
40 <MaxScaleDenominator>200000000</MaxScaleDenominator>
41 <PolygonSymbolizer>
42 <Fill>
43 <CssParameter name="fill">#0000CC</CssParameter>
44 </Fill>
45 <Stroke>
46 <CssParameter name="stroke">#000000</CssParameter>
47 <CssParameter name="stroke-width">4</CssParameter>
48 </Stroke>
49 </PolygonSymbolizer>
50 </Rule>
51 <Rule>
52 <Name>Small</Name>
53 <MinScaleDenominator>200000000</MinScaleDenominator>
54 <PolygonSymbolizer>
55 <Fill>
56 <CssParameter name="fill">#0000CC</CssParameter>
57 </Fill>
58 <Stroke>
59 <CssParameter name="stroke">#000000</CssParameter>
60 <CssParameter name="stroke-width">1</CssParameter>
61 </Stroke>
62 </PolygonSymbolizer>
63 </Rule>
64 </FeatureTypeStyle>

Details

It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking map. This
example varies the thickness of the lines according to the zoom level. Polygons already do this by nature of
being two dimensional, but another way to adjust styling of polygons based on zoom level is to adjust the
thickness of the stroke (to be larger as the map is zoomed in) or to limit labels to only certain zoom levels.
This is ensures that the size and quantity of strokes and labels remains legible and doesn’t overshadow the
polygons themselves.

Zoom levels (or more accurately, scale denominators) refer to the scale of the map. A scale denominator of
10,000 means the map has a scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

338 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

This style contains three rules, defined as follows:

Rule order Rule name Scale denominator Stroke width Label display?
1 Large 1:100,000,000 or less 7 Yes
2 Medium 1:100,000,000 to 1:200,000,000 4 No
3 Small Greater than 1:200,000,000 2 No

The first rule, on lines 2-36, is for the smallest scale denominator, corresponding to when the view is
“zoomed in”. The scale rule is set on line 40 such that the rule will apply only where the scale denom-
inator is 100,000,000 or less. Line 7 defines the fill as blue (#0000CC). Note that the fill is kept constant
across all rules regardless of the scale denominator. As in the Polygon with default label or Polygon with styled
label examples, the rule also contains a <TextSymbolizer> at lines 14-35 for drawing a text label on top of
the polygon. Lines 19-22 set the font information to be Arial, 14 pixels, and bold with no italics. The label is
centered both horizontally and vertically along the centroid of the polygon on by setting <AnchorPointX>
and <AnchorPointY> to both be 0.5 (or 50%) on lines 27-28. Finally, the color of the font is set to white
(#FFFFFF) in line 33.

The second rule, on lines 37-50, is for the intermediate scale denominators, corresponding to when the view
is “partially zoomed”. The scale rules on lines 39-40 set the rule such that it will apply to any map with a
scale denominator between 100,000,000 and 200,000,000. (The <MinScaleDenominator> is inclusive and
the <MaxScaleDenominator> is exclusive, so a zoom level of exactly 200,000,000 would not apply here.)
Aside from the scale, there are two differences between this rule and the first: the width of the stroke is set
to 4 pixels on line 47 and a <TextSymbolizer> is not present so that no labels will be displayed.

The third rule, on lines 51-63, is for the largest scale denominator, corresponding to when the map is
“zoomed out”. The scale rule is set on line 53 such that the rule will apply to any map with a scale de-
nominator of 200,000,000 or greater. Again, the only differences between this rule and the others are the
width of the lines, which is set to 1 pixel on line 60, and the absence of a <TextSymbolizer> so that no
labels will be displayed.

The resulting style produces a polygon stroke that gets larger as one zooms in and labels that only display
when zoomed in to a sufficient level.

12.3.4 Rasters

Rasters are geographic data displayed in a grid. They are similar to image files such as PNG files, except
that instead of each point containing visual information, each point contains geographic information in
numerical form. Rasters can be thought of as a georeferenced table of numerical values.

One example of a raster is a Digital Elevation Model (DEM) layer, which has elevation data encoded nu-
merically at each georeferenced data point.

Warning: The code examples shown on this page are not the full SLD code, as they omit the SLD
header and footer information for the sake of brevity. Please use the links to download the full SLD for
each example.

Example raster

The raster layer that is used in the examples below contains elevation data for a fictional world. The
data is stored in EPSG:4326 (longitude/latitude) and has a data range from 70 to 256. If rendered in
grayscale, where minimum values are colored black and maximum values are colored white, the raster
would look like this:

Download the raster shapefile

12.3. SLD Cookbook 339

GeoServer User Manual, Release 2.5.x

Figure 12.41: Raster file as rendered in grayscale

Two-color gradient

This example shows a two-color style with green at lower elevations and brown at higher elevations.

Figure 12.42: Two-color gradient

Code

View and download the full "Two-color gradient" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#008000" quantity="70" />
6 <ColorMapEntry color="#663333" quantity="256" />
7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

There is one <Rule> in one <FeatureTypeStyle> for this example, which is the simplest possible
situation. All subsequent examples will share this characteristic. Styling of rasters is done via the
<RasterSymbolizer> tag (lines 3-8).

340 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

This example creates a smooth gradient between two colors corresponding to two elevation values. The
gradient is created via the <ColorMap> on lines 4-7. Each entry in the <ColorMap> represents one entry or
anchor in the gradient. Line 5 sets the lower value of 70 via the quantity parameter, which is styled a dark
green (#008000). Line 6 sets the upper value of 256 via the quantity parameter again, which is styled
a dark brown (#663333). All data values in between these two quantities will be linearly interpolated: a
value of 163 (the midpoint between 70 and 256) will be colored as the midpoint between the two colors (in
this case approximately #335717, a muddy green).

Transparent gradient

This example creates the same two-color gradient as in the Two-color gradient as in the example above but
makes the entire layer mostly transparent by setting a 30% opacity.

Figure 12.43: Transparent gradient

Code

View and download the full "Transparent gradient" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <Opacity>0.3</Opacity>
5 <ColorMap>
6 <ColorMapEntry color="#008000" quantity="70" />
7 <ColorMapEntry color="#663333" quantity="256" />
8 </ColorMap>
9 </RasterSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Details

This example is similar to the Two-color gradient example save for the addition of line 4, which sets the
opacity of the layer to 0.3 (or 30% opaque). An opacity value of 1 means that the shape is drawn 100%
opaque, while an opacity value of 0 means that the shape is rendered as completely transparent. The value
of 0.3 means that the the raster partially takes on the color and style of whatever is drawn beneath it. Since
the background is white in this example, the colors generated from the <ColorMap> look lighter, but were
the raster imposed on a dark background the resulting colors would be darker.

12.3. SLD Cookbook 341

GeoServer User Manual, Release 2.5.x

Brightness and contrast

This example normalizes the color output and then increases the brightness by a factor of 2.

Figure 12.44: Brightness and contrast

Code

View and download the full "Brightness and contrast" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ContrastEnhancement>
5 <Normalize />
6 <GammaValue>0.5</GammaValue>
7 </ContrastEnhancement>
8 <ColorMap>
9 <ColorMapEntry color="#008000" quantity="70" />

10 <ColorMapEntry color="#663333" quantity="256" />
11 </ColorMap>
12 </RasterSymbolizer>
13 </Rule>
14 </FeatureTypeStyle>

Details

This example is similar to the Two-color gradient, save for the addition of the <ContrastEnhancement>
tag on lines 4-7. Line 5 normalizes the output by increasing the contrast to its maximum extent. Line 6
then adjusts the brightness by a factor of 0.5. Since values less than 1 make the output brighter, a value of
0.5 makes the output twice as bright.

As with previous examples, lines 8-11 determine the <ColorMap>, with line 9 setting the lower bound (70)
to be colored dark green (#008000) and line 10 setting the upper bound (256) to be colored dark brown
(#663333).

Three-color gradient

This example creates a three-color gradient in primary colors. In addition, the gradient doesn’t span the
entire range of data values, leading some data not to be rendered at all.

342 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.45: Three-color gradient

Code

View and download the full "Three-color gradient" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#0000FF" quantity="150" />
6 <ColorMapEntry color="#FFFF00" quantity="200" />
7 <ColorMapEntry color="#FF0000" quantity="250" />
8 </ColorMap>
9 </RasterSymbolizer>

10 </Rule>
11 </FeatureTypeStyle>

Details

This example creates a three-color gradient based on a <ColorMap> with three entries on lines 4-8: line 5
specifies the lower bound (150) be styled in blue (#0000FF), line 6 specifies an intermediate point (200) be
styled in yellow (#FFFF00), and line 7 specifies the upper bound (250) be styled in red (#FF0000).

Since our data values run between 70 and 256, some data points are not accounted for in this style. Those
values below the lowest entry in the color map (the range from 70 to 149) are styled the same color as the
lower bound, in this case blue. On the other hand, values above the upper bound in the color map (the
range from 251 to 256) are not rendered at all.

Alpha channel

This example creates an “alpha channel” effect such that higher values are increasingly transparent.

Code

View and download the full "Alpha channel" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>

12.3. SLD Cookbook 343

GeoServer User Manual, Release 2.5.x

Figure 12.46: Alpha channel

5 <ColorMapEntry color="#008000" quantity="70" />
6 <ColorMapEntry color="#008000" quantity="256" opacity="0"/>
7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

An alpha channel is another way of referring to variable transparency. Much like how a gradient maps
values to colors, each entry in a <ColorMap> can have a value for opacity (with the default being 1.0 or
completely opaque).

In this example, there is a <ColorMap> with two entries: line 5 specifies the lower bound of 70 be colored
dark green (#008000), while line 6 specifies the upper bound of 256 also be colored dark green but with
an opacity value of 0. This means that values of 256 will be rendered at 0% opacity (entirely transparent).
Just like the gradient color, the opacity is also linearly interpolated such that a value of 163 (the midpoint
between 70 and 256) is rendered at 50% opacity.

Discrete colors

This example shows a gradient that is not linearly interpolated but instead has values mapped precisely to
one of three specific colors.

Note: This example leverages an SLD extension in GeoServer. Discrete colors are not part of the standard
SLD 1.0 specification.

Code

View and download the full "Discrete colors" SLD

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap type="intervals">
5 <ColorMapEntry color="#008000" quantity="150" />
6 <ColorMapEntry color="#663333" quantity="256" />

344 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.47: Discrete colors

7 </ColorMap>
8 </RasterSymbolizer>
9 </Rule>

10 </FeatureTypeStyle>

Details

Sometimes color bands in discrete steps are more appropriate than a color gradient. The
type="intervals" parameter added to the <ColorMap> on line 4 sets the display to output discrete
colors instead of a gradient. The values in each entry correspond to the upper bound for the color band
such that colors are mapped to values less than the value of one entry but greater than or equal to the next
lower entry. For example, line 5 colors all values less than 150 to dark green (#008000) and line 6 colors
all values less than 256 but greater than or equal to 150 to dark brown (#663333).

Many color gradient

This example shows a gradient interpolated across eight different colors.

Figure 12.48: Many color gradient

Code

View and download the full "Many color gradient" SLD

12.3. SLD Cookbook 345

GeoServer User Manual, Release 2.5.x

1 <FeatureTypeStyle>
2 <Rule>
3 <RasterSymbolizer>
4 <ColorMap>
5 <ColorMapEntry color="#000000" quantity="95" />
6 <ColorMapEntry color="#0000FF" quantity="110" />
7 <ColorMapEntry color="#00FF00" quantity="135" />
8 <ColorMapEntry color="#FF0000" quantity="160" />
9 <ColorMapEntry color="#FF00FF" quantity="185" />

10 <ColorMapEntry color="#FFFF00" quantity="210" />
11 <ColorMapEntry color="#00FFFF" quantity="235" />
12 <ColorMapEntry color="#FFFFFF" quantity="256" />
13 </ColorMap>
14 </RasterSymbolizer>
15 </Rule>
16 </FeatureTypeStyle>

Details

A <ColorMap> can include up to 255 <ColorMapEntry> elements. This example has eight entries (lines
4-13):

Entry number Value Color RGB code
1 95 Black #000000
2 110 Blue #0000FF
3 135 Green #00FF00
4 160 Red #FF0000
5 185 Purple #FF00FF
6 210 Yellow #FFFF00
7 235 Cyan #00FFFF
8 256 White #FFFFFF

12.4 SLD Reference

The OGC Styled Layer Descriptor (SLD) standard defines a language for expressing styling of geospatial
data. GeoServer uses SLD as its primary styling language.

SLD 1.0.0 is defined in the following specification:

• OGC Styled Layer Descriptor Implementation Specification, Version 1.0.0

Subsequently the functionality of SLD has been split into two specifications:

• OGC Symbology Encoding Implementation Specification, Version 1.1.0

• OGC Styled Layer Descriptor profile of the Web Map Service Implementation Specification, Version
1.1.0

GeoServer implements the SLD 1.0.0 standard, as well as some parts of the SE 1.1.0 and WMS-SLD 1.1.0
standards.

Elements of SLD

The following sections describe the SLD elements implemented in GeoServer.

The root element for an SLD is <StyledLayerDescriptor>. It contains a Layers and Styles elements
which describe how a map is to be composed and styled.

346 Chapter 12. Styling

http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=16700
http://portal.opengeospatial.org/files/?artifact_id=1188
http://portal.opengeospatial.org/files/?artifact_id=1188

GeoServer User Manual, Release 2.5.x

12.4.1 StyledLayerDescriptor

The root element for an SLD is <StyledLayerDescriptor>. It contains a sequence of Layers defining the
styled map content.

The <StyledLayerDescriptor> element contains the following elements:

Tag Required? Description
<NamedLayer> 0..N A reference to a named layer in the server catalog
<UserLayer> 0..N A layer defined in the style itself

12.4.2 Layers

An SLD document contains a sequence of layer definitions indicating the layers to be styled. Each layer
definition is either a NamedLayer reference or a supplied UserLayer.

NamedLayer

A NamedLayer specifies an existing layer to be styled, and the styling to apply to it. The styling may be
any combination of catalog styles and explicitly-defined styles. If no style is specified, the default style for
the layer is used.

The <NamedLayer> element contains the following elements:

Tag Required? Description
<Name> Yes The name of the layer to be styled. (Ignored in catalog styles.)
<Description> No The description for the layer.
<NamedStyle> 0..N The name of a catalog style to apply to the layer.
<UserStyle> 0..N The definition of a style to apply to the layer. See Styles

UserLayer

A UserLayer defines a new layer to be styled, and the styling to apply to it. The data for the layer is provided
directly in the layer definition using the <InlineFeature> element. Since the layer is not known to the
server, the styling must be explicitly specified as well.

The <UserLayer> element contains the following elements:

Tag Re-
quired?

Description

<Name> No The name for the layer being defined
<Description> No The description for the layer
<InlineFeature> No One or more feature collections providing the layer data, specified

using GML.
<UserStyle> 1..N The definition of the style(s) to use for the layer. See Styles

A common use is to define a geometry to be rendered to indicate an Area Of Interest.

InlineFeature

An InlineFeature element contains data defining a layer to be styled. The element contains one or more
<FeatureCollection> elements defining the data. Each Feature Collection can contain any number of
<featureMember> elements, each containing a feature specified using GML markup. The features can

12.4. SLD Reference 347

GeoServer User Manual, Release 2.5.x

contain any type of geometry (point, line or polygon, and collections of these). They may also contain
scalar-valued attributes, which can be useful for labelling.

Example

The following style specifies a named layer using the default style, and a user-defined layer with inline data
and styling. It displays the US States layer, with a labelled red box surrounding the Pacific NW.

<sld:StyledLayerDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
xmlns:sld="http://www.opengis.net/sld" version="1.0.0">
<sld:NamedLayer>

<sld:Name>usa:states</sld:Name>
</sld:NamedLayer>
<sld:UserLayer>

<sld:Name>Inline</sld:Name>
<sld:InlineFeature>

<sld:FeatureCollection>
<sld:featureMember>
<feature>
<geometryProperty>
<gml:Polygon>

<gml:outerBoundaryIs>
<gml:LinearRing>

<gml:coordinates>
-127.0,51.0 -110.0,51.0 -110.0,41.0 -127.0,41.0 -127.0,51.0

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</geometryProperty>
<title>Pacific NW </title>

</feature>
</sld:featureMember>

</sld:FeatureCollection>
</sld:InlineFeature>
<sld:UserStyle>

<sld:FeatureTypeStyle>
<sld:Rule>

<sld:PolygonSymbolizer>
<Stroke>
<CssParameter name="stroke">#FF0000</CssParameter>
<CssParameter name="stroke-width">2</CssParameter>

</Stroke>
</sld:PolygonSymbolizer>
<sld:TextSymbolizer>
<sld:Label>
<ogc:PropertyName>title</ogc:PropertyName>

</sld:Label>
<sld:Fill>
<sld:CssParameter name="fill">#FF0000</sld:CssParameter>

</sld:Fill>
</sld:TextSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>
</sld:UserLayer>

348 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

</sld:StyledLayerDescriptor>

12.4.3 Styles

The style elements specify the styling to be applied to a layer.

UserStyle

The UserStyle element defines styling for a layer.

The <UserStyle> element contains the following elements:

Tag Re-
quired?

Description

<Name> No The name of the style, used to reference it externally. (Ignored for catalog
styles.)

<Title> No The title of the style.
<Abstract> No The description for the style.
<IsDefault> No Whether the style is the default one for a named layer. Used in SLD

Library Mode. Values are 1 or 0 (default).
<FeatureTypeStyle>1..N Defines the symbology for rendering a single feature type.

FeatureTypeStyle

The FeatureTypeStyle element specifies the styling that is applied to a single feature type of a layer. It
contains a list of rules which determine the symbology to be applied to each feature of a layer.

The <FeatureTypeStyle> element contains the following elements:

Tag Re-
quired?

Description

<Name> No Not used at present
<Title> No The title for the style.
<Abstract> No The description for the style.
<FeatureTypeName>No Identifies the feature type the style is to be applied to. Omitted if the style

applies to all features in a layer.
<Rule> 1..N A styling rule to be evaluated. See Rules

Usually a layer contains only a single feature type, so the <FeatureTypeName> is omitted.

Any number of <FeatureTypeStyle> elements can be specified in a style. In GeoServer each one is
rendered into a separate image buffer. After all features are rendered the buffers are composited to form
the final layer image. The compositing is done in the order the FeatureTypeStyles are given in the SLD,
with the first one on the bottom (the “Painter’s Model”). This effectively creates “virtual layers”, which can
be used to achieve styling effects such as cased lines.

Styles contain Rules and Filters to determine sets of features to be styled with specific symbology. Rules
may also specify the scale range in which the feature styling is visible.

12.4.4 Rules

Styling rules define the portrayal of features. A rule combines a filter with any number of symbolizers.
Features for which the filter condition evaluates as true are rendered using the the symbolizers in the rule.

12.4. SLD Reference 349

GeoServer User Manual, Release 2.5.x

Syntax

The <Rule> element contains the following elements:

Tag Re-
quired?

Description

<Name> No Specifies a name for the rule.
<Title> No Specifies a title for the rule. The title is used in display lists and legends.
<Abstract> No Specifies an abstract describing the rule.
<Filter> No Specifies a filter controlling when the rule is applied. See Filters
<MinScaleDenominator>No Specifies the minimum scale denominator (inclusive) for the scale range in

which this rule applies. If present, the rule applies at the given scale and all
smaller scales.

<MaxScaleDenominator>No Specifies the maximum scale denominator (exclusive) for the scale range in
which this rule applies. If present, the rule applies at scales larger than the
given scale.

<PointSymbolizer>0..N Specifies styling as points. See PointSymbolizer
<LineSymbolizer>0..N Specifies styling as lines. See LineSymbolizer
<PolygonSymbolizer>0..N Specifies styling as polygons. See PolygonSymbolizer
<TextSymbolizer>0..N Specifies styling for text labels. See TextSymbolizer
<RasterSymbolizer>0..N Specifies styling for raster data. See RasterSymbolizer

Scale Selection

Rules support scale selection to allow specifying the scale range in which a rule may be applied (assuming
the filter condition is satisfied as well, if present). Scale selection allows for varying portrayal of features at
different map scales. In particular, at smaller scales it is common to use simpler styling for features, or even
prevent the display of some features altogether.

Scale ranges are specified by using scale denominators. These values correspond directly to the ground
distance covered by a map, but are inversely related to the common “large” and “small” terminology for
map scale. In other words:

• large scale maps cover less area and have a smaller scale denominator

• small scale maps cover more area and have a larger scale denominator

Two optional elements specify the scale range for a rule:

Tag Re-
quired?

Description

<MinScaleDenominator>No Specifies the minimum scale denominator (inclusive) for the scale range in
which this rule applies. If present, the rule applies at the given scale and all
smaller scales.

<MaxScaleDenominator>No Specifies the maximum scale denominator (exclusive) for the scale range in
which this rule applies. If present, the rule applies at scales larger than the
given scale.

Note: The current scale can also be obtained via the wms_scale_denominator SLD environment variable.
This allows including scale dependency in Filter Expressions.

The following example shows the use of scale selection in a pair of rules. The rules specify that:

• at scales above 1:20,000 (larger scales, with scale denominators smaller than 20,000) features are sym-
bolized with 10-pixel red squares,

350 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

• at scales at or below 1:20,000 (smaller scales, with scale denominators larger than 20,000) features are
symbolized with 4-pixel blue triangles.

<Rule>
<MaxScaleDenominator>20000</MaxScaleDenominator>
<PointSymbolizer>

<Graphic>
<Mark>
<WellKnownName>square</WellKnownName>
<Fill><CssParameter name="fill">#FF0000</CssParameter>

</Mark>
<Size>10</Size>

</Graphic>
</PointSymbolizer>

</Rule>
<Rule>

<MinScaleDenominator>20000</MinScaleDenominator>
<PointSymbolizer>
<Graphic>

<Mark>
<WellKnownName>triangle</WellKnownName>
<Fill><CssParameter name="fill">#0000FF</CssParameter>

</Mark>
<Size>4</Size>

</Graphic>
</PointSymbolizer>

</Rule>

Evaluation Order

Within an SLD document each <FeatureTypeStyle> can contain many rules. Multiple-rule SLDs are
the basis for thematic styling. In GeoServer each <FeatureTypeStyle> is evaluated once for each feature
processed. The rules within it are evaluated in the order they occur. A rule is applied when its filter
condition (if any) is true for a feature and the rule is enabled at the current map scale. The rule is applied by
rendering the feature using each symbolizer within the rule, in the order in which they occur. The rendering
is performed into the image buffer for the parent <FeatureTypeStyle>. Thus symbolizers earlier in a
FeatureTypeStyle and Rule are rendered before symbolizers occuring later in the document (this is the
“Painter’s Model” method of rendering).

Examples

The following rule applies only to features which have a POPULATION attribute greater than 100,000, and
symbolizes the features as red points.

<Rule>
<ogc:Filter>

<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>POPULATION</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>

</ogc:PropertyIsGreaterThan>
</ogc:Filter>
<PointSymbolizer>

<Graphic>
<Mark>
<Fill><CssParameter name="fill">#FF0000</CssParameter>

</Mark>

12.4. SLD Reference 351

GeoServer User Manual, Release 2.5.x

</Graphic>
</PointSymbolizer>

</Rule>

An additional rule can be added which applies to features whose POPULATION attribute is less than 100,000,
and symbolizes them as green points.

<Rule>
<ogc:Filter>
<ogc:PropertyIsLessThan>

<ogc:PropertyName>POPULATION</ogc:PropertyName>
<ogc:Literal>100000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PointSymbolizer>
<Graphic>

<Mark>
<Fill><CssParameter name="fill">#0000FF</CssParameter>

</Mark>
</Graphic>

</PointSymbolizer>
</Rule>

12.4.5 Filters

A filter is the mechanism in SLD for specifying conditions. They are similar in functionality to the SQL
“WHERE” clause. Filters are used within Rules to determine which styles should be applied to which
features in a data set. The filter language used by SLD follows the OGC Filter Encoding standard. It is
described in detail in the Filter Encoding Reference.

A filter condition is specified by using a comparison operator or a spatial operator, or two or more of these
combined by logical operators. The operators are usually used to compare properties of the features being
filtered to other properties or to literal data.

Comparison operators

Comparison operators are used to specify conditions on the non-spatial attributes of a feature. The follow-
ing binary comparison operators are available:

• <PropertyIsEqualTo>

• <PropertyIsNotEqualTo>

• <PropertyIsLessThan>

• <PropertyIsLessThanOrEqualTo>

• <PropertyIsGreaterThan>

• <PropertyIsGreaterThanOrEqualTo>

These operators contain two filter expressions to be compared. The first operand is often a
<PropertyName>, but both operands may be any expression, function or literal value.

Binary comparison operators may include a matchCase attribute with the value true or false. If this
attribute is true (which is the default), string comparisons are case-sensitive. If the attribute is specified
and has the value false strings comparisons do not check case.

Other available value comparison operators are:

352 Chapter 12. Styling

http://www.opengeospatial.org/standards/filter

GeoServer User Manual, Release 2.5.x

• <PropertyIsLike>

• <PropertyIsNull>

• <PropertyIsBetween>

<PropertyIsLike> matches a string property value against a text pattern. It contains a
<PropertyName> element containing the name of the property containing the string to be matched and
a <Literal> element containing the pattern. The pattern is specified by a sequence of regular characters
and three special pattern characters. The pattern characters are defined by the following required attributes
of the <PropertyIsLike> element:

• wildCard specifies a pattern character which matches any sequence of zero or more characters

• singleChar specifies a pattern character which matches any single character

• escapeChar specifies an escape character which can be used to escape these pattern characters

<PropertyIsNull> tests whether a property value is null. It contains a single <PropertyName> element
containing the name of the property containing the value to be tested.

<PropertyIsBetween> tests whether an expression value lies within a range. It contains a filter expression
providing the value to test, followed by the elements <LowerBoundary> and <UpperBoundary>, each
containing a filter expression.

Examples

• The following filter selects features whose NAME attribute has the value of “New York”:

<PropertyIsEqualTo>
<PropertyName>NAME</PropertyName>
<Literal>New York</Literal>

</PropertyIsEqualTo>

• The following filter selects features whose geometry area is greater than 1,000,000:

<PropertyIsGreaterThan>
<ogc:Function name="area">

<PropertyName>GEOMETRY</PropertyName>
</ogc:Function>
<Literal>1000000</Literal>

</PropertyIsEqualTo>

Spatial operators

Spatial operators are used to specify conditions on the geometric attributes of a feature. The following
spatial operators are available:

Topological Operators

These operators test topological spatial relationships using the standard OGC Simple Features predicates:

• <Intersects>

• <Equals>

• <Disjoint>

• <Touches>

• <Within>

12.4. SLD Reference 353

GeoServer User Manual, Release 2.5.x

• <Overlaps>

• <Crosses>

• <Intersects>

• <Contains>

The content for these operators is a <PropertyName> element for a geometry-valued property and a GML
geometry literal.

Distance Operators

These operators compute distance relationships between geometries:

• <DWithin>

• <Beyond>

The content for these elements is a <PropertyName> element for a geometry-valued property, a GML
geometry literal, and a <Distance> element containing the value for the distance tolerance. The
<Distance> element may include an optional units attribute.

Bounding Box Operator

This operator tests whether a feature geometry attribute intersects a given bounding box:

• <BBOX>

The content is an optional <PropertyName> element, and a GML envelope literal. If the PropertyName
is omitted the default geometry attribute is assumed.

Examples

• The following filter selects features with a geometry that intersects the point (1,1):

<Intersects>
<PropertyName>GEOMETRY</PropertyName>
<Literal>

<gml:Point>
<gml:coordinates>1 1</gml:coordinates>

</gml:Point>
</Literal>

</Intersects>

• The following filter selects features with a geometry that intersects the box [-10,0 : 10,10]:

<ogc:BBOX>
<ogc:PropertyName>GEOMETRY</ogc:PropertyName>
<gml:Box srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:coord>

<gml:X>-10</gml:X> <gml:Y>0</gml:Y>
</gml:coord>
<gml:coord>

<gml:X>10</gml:X> <gml:Y>10</gml:Y>
</gml:coord>

</gml:Box>
</ogc:BBOX>

354 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Logical operators

Logical operators are used to create logical combinations of other filter operators. They may be nested to
any depth. The following logical operators are available:

• <And>

• <Or>

• <Not>

The content for <And> and <Or> is two filter operator elements. The content for <Not> is a single filter
operator element.

Examples

• The following filter uses <And> to combine a comparison operator and a spatial operator:

<And>
<PropertyIsEqualTo>

<PropertyName>NAME</PropertyName>
<Literal>New York</Literal>

</PropertyIsEqualTo>
<Intersects>

<PropertyName>GEOMETRY</PropertyName>
<Literal>

<gml:Point>
<gml:coordinates>1 1</gml:coordinates>

</gml:Point>
</Literal>

</Intersects>
</And>

Filter Expressions

Filter expressions allow performing computation on data values. The following elements can be used to
form expressions.

Arithmetic Operators

These operators perform arithmetic on numeric values. Each contains two expressions as sub-elements.

• <Add>

• <Sub>

• <Mul>

• <Div>

Functions

The <Function> element specifies a filter function to be evaluated. The name attribute gives the function
name. The element contains a sequence of zero or more filter expressions providing the function arguments.
See the Filter Function Reference for details of the functions provided by GeoServer.

Feature Property Values

The <PropertyName> element allows referring to the value of a given feature attribute. It contains a string
specifying the attribute name.

12.4. SLD Reference 355

GeoServer User Manual, Release 2.5.x

Literals

The <Literal> element allows specifying constant values of numeric, boolean, string, date or geometry
type.

Rules contain Symbolizers to specify how features are styled. There are 5 types of symbolizers:

• PointSymbolizer, which styles features as points

• LineSymbolizer, which styles features as lines

• PolygonSymbolizer, which styles features as polygons

• TextSymbolizer, which styles text labels for features

• RasterSymbolizer, which styles raster coverages

Each symbolizer type has its own parameters to control styling.

12.4.6 PointSymbolizer

A PointSymbolizer styles features as points. Points are depicted as graphic symbols at a single location on
the map.

Syntax

A <PointSymbolizer> contains an optional <Geometry> element, and a required <Graphic> element
specifying the point symbology.

Tag Required? Description
<Geometry> No Specifies the geometry to be rendered.
<Graphic> Yes Specifies the styling for the point symbol.

Geometry

The <Geometry> element is optional. If present, it specifies the featuretype property from which to obtain
the geometry to style using a <PropertyName> element. See also Geometry transformations in SLD for
GeoServer extensions for specifying geometry.

Any kind of geometry may be styled with a <PointSymbolizer>. For non-point geometries, a represen-
tative point is used (such as the centroid of a line or polygon).

Graphic

Symbology is specified using a <Graphic> element. The symbol is specified by either an
<ExternalGraphic> or a <Mark> element. External Graphics are image files (in a format such as PNG
or SVG) that contain the shape and color information defining how to render a symbol. Marks are vector
shapes whose stroke and fill are defined explicitly in the symbolizer.

There are five possible sub-elements of the <Graphic> element. One of <ExternalGraphic> or <Mark>
must be specified; the others are optional.

356 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Tag Required? Description
<ExternalGraphic>No (when using

<Mark>)
Specifies an external image file to use as the symbol.

<Mark> No (when using
<ExternalGraphic>)

Specifies a named shape to use as the symbol.

<Opacity> No Specifies the opacity (transparency) of the symbol. Values range from
0 (completely transparent) to 1 (completely opaque). Value may
contain expressions. Default is 1 (opaque).

<Size> No Specifies the size of the symbol, in pixels. When used with an image
file, this specifies the height of the image, with the width being
scaled accordingly. if omitted the native symbol size is used. Value
may contain expressions.

<Rotation>No Specifies the rotation of the symbol about its center point, in decimal
degrees. Positive values indicate rotation in the clockwise direction,
negative values indicate counter-clockwise rotation. Value may
contain expressions. Default is 0.

ExternalGraphic

External Graphics are image files (in formats such as PNG or SVG) that contain the shape and color infor-
mation defining how to render a symbol. For GeoServer extensions for specifying external graphics, see
Graphic symbology in GeoServer.

The <ExternalGraphic> element has the sub-elements:

Tag Re-
quired?

Description

<OnlineResource>Yes The xlink:href attribute specifies the location of the image file. The value can
be either a URL or a local pathname relative to the SLD directory. The value can
contain CQL expressions delimited by ${ }. The attribute
xlink:type="simple" is also required. The element does not contain any
content.

<Format> Yes The MIME type of the image format. Most standard web image formats are
supported. Common MIME types are image/png, image/jpeg, image/gif,
and image/svg+xml

Mark

Marks are predefined vector shapes identified by a well-known name. Their fill and stroke can be de-
fined explicitly in the SLD. For GeoServer extensions for specifying mark symbols, see Graphic symbology in
GeoServer.

The <Mark> element has the sub-elements:

12.4. SLD Reference 357

GeoServer User Manual, Release 2.5.x

Tag Re-
quired?

Description

<WellKnownName>Yes The name of the shape. Standard SLD shapes are circle, square, triangle,
star, cross, or x. Default is square.

<Fill> No Specifies how the symbol should be filled (for closed shapes). Options are to use
<CssParameter name="fill"> to specify a solid fill color, or using
<GraphicFill> for a tiled graphic fill. See the PolygonSymbolizer Fill for
the full syntax.

<Stroke> No Specifies how the symbol linework should be drawn. Some options are using
<CssParameter name="stroke"> to specify a stroke color, or using
<GraphicStroke> for a repeated graphic. See the LineSymbolizer Stroke for
the full syntax.

Example

The following symbolizer is taken from the Points section in the SLD Cookbook.

1 <PointSymbolizer>
2 <Graphic>
3 <Mark>
4 <WellKnownName>circle</WellKnownName>
5 <Fill>
6 <CssParameter name="fill">#FF0000</CssParameter>
7 </Fill>
8 </Mark>
9 <Size>6</Size>

10 </Graphic>
11 </PointSymbolizer>

The symbolizer contains the required <Graphic> element. Inside this element is the <Mark> element
and <Size> element, which are the minimum required element inside <Graphic> (when not using the
<ExternalGraphic> element). The <Mark> element contains the <WellKnownName> element and a
<Fill> element. No other element are required. In summary, this example specifies the following:

1. Features will be rendered as points

2. Points will be rendered as circles

3. Circles will be rendered with a diameter of 6 pixels and filled with the color red

The next example uses an external graphic loaded from the file system:

1 <PointSymbolizer>
2 <Graphic>
3 <ExternalGraphic>
4 <OnlineResource xlink:type="simple"
5 xlink:href="file:///var/www/htdocs/sun.png" />
6 <Format>image.png</Format>
7 </ExternalGraphic>
8 </Graphic>
9 </PointSymbolizer>

For file:// URLs, the file must be readable by the user the Geoserver process is running as. You can also
use href:// URLs to reference remote graphics.

Further examples can be found in the Points section of the SLD Cookbook.

358 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Using expressions in parameter values

Many SLD parameters allow their values to be of mixed type. This means that the element content can be:

• a constant value expressed as a string

• a filter expression

• any combination of strings and filter expressions.

Using expressions in parameter values provides the ability to determine styling dynamically on a per-
feature basis, by computing parameter values from feature properties. Using computed parameters is an
alternative to using rules in some situations, and may provide a more compact SLD document.

GeoServer also supports using substitution variables provided in WMS requests. This is described in Vari-
able substitution in SLD.

12.4.7 LineSymbolizer

A LineSymbolizer styles features as lines. Lines are one-dimensional geometries that have both position
and length. Each line is comprised of one or more line segments, and has either two ends or none (if it is
closed).

Syntax

A <LineSymbolizer> contains an optional <Geometry> element, and a required <Stroke> element
specifying the line symbology.

Tag Required? Description
<Geometry> No Specifies the geometry to be rendered.
<Stroke> Yes Specifies the styling for the line.

Geometry

The <Geometry> element is optional. If present, it specifies the featuretype property from which to ob-
tain the geometry to style using the PropertyName element. See also Geometry transformations in SLD for
GeoServer extensions for specifying geometry.

Any kind of geometry may be styled with a <LineSymbolizer>. Point geometries are treated as lines of
zero length, with a horizontal orientation. For polygonal geometries the boundary (or boundaries) are used
as the lines, each line being a closed ring with no ends.

Stroke

The <Stroke> element specifies the styling of a line. There are three elements that can be included inside
the <Stroke> element.

Tag Required? Description
<GraphicFill> No Renders the pixels of the line with a repeated pattern.
<GraphicStroke> No Renders the line with a repeated linear graphic.
<CssParameter> 0..N Determines the stroke styling parameters.

12.4. SLD Reference 359

GeoServer User Manual, Release 2.5.x

GraphicFill

The <GraphicFill> element specifies that the pixels of the line are to be filled with a repeating graphic
image or symbol. The graphic is specified by a <Graphic> sub-element, which is described in the
PointSymbolizer Graphic section.

GraphicStroke

The <GraphicStroke> element specifies the the line is to be drawn using a repeated graphic image or
symbol following the line. The graphic is specified by a <Graphic> sub-element, which is described in the
PointSymbolizer Graphic section.

The spacing of the graphic symbol can be specified using the <Size> element in the <Graphic> element,
or the <CSSParameter name="stroke-dasharray"> in the Stroke element.

CssParameter

The <CssParameter> elements describe the basic styling of the line. Any number of <CssParameter>
elements can be specified.

The name attribute indicates what aspect of styling an element specifies, using the standard CSS/SVG
styling model. The content of the element supplies the value of the styling parameter. The value may
contain expressions.

The following parameters are supported:

Parameter Re-
quired?

Description

name="stroke" No Specifies the solid color given to the line, in the form #RRGGBB. Default is
black (#000000).

name="stroke-width"No Specifies the width of the line in pixels. Default is 1.
name="stroke-opacity"No Specifies the opacity (transparency) of the line. The value is a number are

between 0 (completely transparent) and 1 (completely opaque). Default is 1.
name="stroke-linejoin"No Determines how lines are rendered at intersections of line segments.

Possible values are mitre (sharp corner), round (rounded corner), and
bevel (diagonal corner). Default is mitre.

name="stroke-linecap"No Determines how lines are rendered at their ends. Possible values are butt
(sharp square edge), round (rounded edge), and square (slightly
elongated square edge). Default is butt.

name="stroke-dasharray"No Encodes a dash pattern as a series of numbers separated by spaces.
Odd-indexed numbers (first, third, etc) determine the length in pxiels to
draw the line, and even-indexed numbers (second, fourth, etc) determine
the length in pixels to blank out the line. Default is an unbroken line.
Starting from version 2.1 dash arrays can be combined with graphic strokes to
generate complex line styles with alternating symbols or a mix of lines and
symbols.

name="stroke-dashoffset"No Specifies the distance in pixels into the dasharray pattern at which to start
drawing. Default is 0.

Example

The following symbolizer is taken from the Lines section in the SLD Cookbook.

360 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

1 <LineSymbolizer>
2 <Stroke>
3 <CssParameter name="stroke">#0000FF</CssParameter>
4 <CssParameter name="stroke-width">3</CssParameter>
5 <CssParameter name="stroke-dasharray">5 2</CssParameter>
6 </Stroke>
7 </LineSymbolizer>

The symbolizer styles a feature as a dashed blue line of width 3 pixels.

Figure 12.49: Dashed blue line

12.4.8 PolygonSymbolizer

A PolygonSymbolizer styles features as polygons. Polygons are two-dimensional geometries. They can
be depicted with styling for their interior (fill) and their border (stroke). Polygons may contain one or more
holes, which are stroked but not filled. When rendering a polygon, the fill is rendered before the border is
stroked.

Syntax

A <PolygonSymbolizer> contains an optional <Geometry> element, and two elements <Fill> and
<Stroke> for specifying styling:

Tag Required? Description
<Geometry> No Specifies the geometry to be rendered.
<Fill> No Specifies the styling for the polygon interior.
<Stroke> No Specifies the styling for the polygon border.

12.4. SLD Reference 361

GeoServer User Manual, Release 2.5.x

Geometry

The <Geometry> element is optional. If present, it specifies the featuretype property from which to ob-
tain the geometry to style using the PropertyName element. See also Geometry transformations in SLD for
GeoServer extensions for specifying geometry.

Any kind of geometry may be styled with a <PolygonSymbolizer>. Point geometries are treated as
small orthonormal square polygons. Linear geometries are closed by joining their ends.

Stroke

The <Stroke> element specifies the styling for the border of a polygon. The syntax is described in the
<LineSymbolizer> Stroke section.

Fill

The <Fill> element specifies the styling for the interior of a polygon. It can contain the sub-elements:

Tag Required? Description
<GraphicFill> No Renders the fill of the polygon with a repeated pattern.
<CssParameter> 0..N Specifies parameters for filling with a solid color.

GraphicFill

The <GraphicFill> element contains a <Graphic> element, which specifies a graphic image or symbol
to use for a repeated fill pattern. The syntax is described in the PointSymbolizer Graphic section.

CssParameter

The <CssParameter> elements describe the styling of a solid polygon fill. Any number of
<CssParameter> elements can be specified.

The name attribute indicates what aspect of styling an element specifies, using the standard CSS/SVG
styling model. The content of the element supplies the value of the styling parameter. The value may
contain expressions.

The following parameters are supported:

Parameter Re-
quired?

Description

name="fill" No Specifies the fill color, in the form #RRGGBB. Default is grey (#808080).
name="fill-opacity"No Specifies the opacity (transparency) of the fill. The value is a decimal number

between 0 (completely transparent) and 1 (completely opaque). Default is 1.

Example

The following symbolizer is taken from the Polygons section in the SLD Cookbook.

1 <PolygonSymbolizer>
2 <Fill>
3 <CssParameter name="fill">#000080</CssParameter>

362 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

4 </Fill>
5 </PolygonSymbolizer>

This symbolizer contains only a <Fill> element. Inside this element is a <CssParameter> that specifies
the fill color for the polygon to be #000080 (a muted blue).

Further examples can be found in the Polygons section of the SLD Cookbook.

12.4.9 TextSymbolizer

A TextSymbolizer styles features as text labels. Text labels are positioned eoither at points or along linear
paths derived from the geometry being labelled.

Labelling is a complex operation, and effective labelling is crucial to obtaining legible and visually pleasing
cartographic output. For this reason SLD provides many options to control label placement. To improve
quality even more GeoServer provides additional options and parameters. The usage of the standard and
extended options are described in greater detail in the following section on Labeling.

Syntax

A <TextSymbolizer> contains the following elements:

Tag Re-
quired?

Description

<Geometry> No The geometry to be labelled.
<Label> No The text content for the label.
 No The font information for the label.
<LabelPlacement>No Sets the position of the label relative to its associated geometry.
<Halo> No Creates a colored background around the label text, for improved legibility.
<Fill> No The fill style of the label text.
<Graphic> No A graphic to be displayed behind the label text. See Graphic for content

syntax.
<Priority> No The priority of the label during conflict resolution. Content may contains

expressions. See also Priority Labeling.
<VendorOption>0..N A GeoServer-specific option. See Labeling for descriptions of the available

options. Any number of options may be specified.

Geometry

The <Geometry> element is optional. If present, it specifies the featuretype property from which to obtain
the geometry to label, using a <PropertyName> element. See also Geometry transformations in SLD for
GeoServer extensions for specifying geometry.

Any kind of geometry may be labelled with a <TextSymbolizer>. For non-point geometries, a represen-
tative point is used (such as the centroid of a line or polygon).

Label

The <Label> element specifies the text that will be rendered as the label. It allows content of mixed type,
which means that the content can be a mixture of string data and Filter Expressions. These are concatenated
to form the final label text. If a label is provided directly by a feature property, the content is a single

12.4. SLD Reference 363

GeoServer User Manual, Release 2.5.x

<PropertyName>. Multiple properties can be included in the label, and property values can be manipu-
lated by filter expressions and functions. Additional “boilerplate” text can be provided as well. Whitespace
can be preserved by surrounding it with XML <![CDATA[]]> delimiters.

If this element is omitted, no label is rendered.

Font

The element specifes the font to be used for the label. A set of <CssParameter> elements specify
the details of the font.

The name attribute indicates what aspect of the font is described, using the standard CSS/SVG font model.
The content of the element supplies the value of the font parameter. The value may contain expressions.

Parameter Re-
quired?

Description

name="font-family"No The family name of the font to use for the label. Default is Times.
name="font-style"No The style of the font. Options are normal, italic, and oblique.

Default is normal.
name="font-weight"No The weight of the font. Options are normal and bold. Default is

normal.
name="font-size" No The size of the font in pixels. Default is 10.

LabelPlacement

The <LabelPlacement> element specifies the placement of the label relative to the geometry being la-
belled. There are two possible sub-elements: <PointPlacement> or <LinePlacement>. Exactly one of
these must be specified.

Tag Required? Description
<PointPlacement> No Labels a geometry at a single point
<LinePlacement> No Labels a geometry along a linear path

PointPlacement

The <PointPlacement> element indicates the label is placed at a labelling point derived from the geome-
try being labelled. The position of the label relative to the labelling point may be controlled by the following
sub-elements:

Tag Re-
quired?

Description

<AnchorPoint>No The location within the label bounding box that is aligned with the label point.
The location is specified by <AnchorPointX> and <AnchorPointY>
sub-elements, with values in the range [0..1]. Values may contain expressions.

<Displacement>No Specifies that the label point should be offset from the original point. The offset is
specified by <DisplacementX> and <DisplacementY> sub-elements, with
values in pixels. Values may contain expressions. Default is (0, 0).

<Rotation>No The rotation of the label in clockwise degrees (negative values are
counterclockwise). Value may contain expressions. Default is 0.

The anchor point justification, displacement offsetting, and rotation are applied in that order.

364 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

LinePlacement

The <LinePlacement> element indicates the label is placed along a linear path derived from the geometry
being labelled. The position of the label relative to the linear path may be controlled by the following sub-
element:

Tag Re-
quired?

Description

<PerpendicularOffset>No The offset from the linear path, in pixels. Positive values offset to the left of
the line, negative to the right. Value may contain expressions. Default is 0.

The appearance of text along linear paths can be further controlled by the vendor options followLine,
maxDisplacement, repeat, labelAllGroup, and maxAngleDelta. These are described in Labeling.

Halo

A halo creates a colored background around the label text, which improves readability in low contrast
situations. Within the <Halo> element there are two sub-elements which control the appearance of the
halo:

Tag Re-
quired?

Description

<Radius>No The halo radius, in pixels. Value may contain expressions. Default is 1.
<Fill> No The color and opacity of the halo via CssParameter elements for fill and

fill-opacity. See Fill for full syntax. The parameter values may contain
expressions. Default is a white fill (#FFFFFF) at 100% opacity.

Fill

The <Fill> element specifies the fill style for the label text. The syntax is the same as that of the
PolygonSymbolizer Fill element. The default fill color is black (#FFFFFF) at 100% opacity..

Graphic

The <Graphic> element specifies a graphic symbol to be displayed behind the label text (if any). A classic
use for this is to display “highway shields” behind road numbers provided by feature attributes. The ele-
ment content has the same syntax as the <PointSymbolizer> Graphic element. Graphics can be provided
by internal mark symbols, or by external images or SVG files. Their size and aspect ratio can be changed to
match the text displayed with them by using the vendor options graphic-resize and graphic-margin.

Example

The following symbolizer is taken from the Points section in the SLD Cookbook.

1 <TextSymbolizer>
2 <Label>
3 <ogc:PropertyName>name</ogc:PropertyName>
4 </Label>
5
6 <CssParameter name="font-family">Arial</CssParameter>
7 <CssParameter name="font-size">12</CssParameter>
8 <CssParameter name="font-style">normal</CssParameter>
9 <CssParameter name="font-weight">bold</CssParameter>

12.4. SLD Reference 365

GeoServer User Manual, Release 2.5.x

10
11 <LabelPlacement>
12 <PointPlacement>
13 <AnchorPoint>
14 <AnchorPointX>0.5</AnchorPointX>
15 <AnchorPointY>0.0</AnchorPointY>
16 </AnchorPoint>
17 <Displacement>
18 <DisplacementX>0</DisplacementX>
19 <DisplacementY>25</DisplacementY>
20 </Displacement>
21 <Rotation>-45</Rotation>
22 </PointPlacement>
23 </LabelPlacement>
24 <Fill>
25 <CssParameter name="fill">#990099</CssParameter>
26 </Fill>
27 </TextSymbolizer>

The symbolizer labels features with the text from the name property. The font is Arial in bold at 12 pt
size, filled in purple. The labels are centered on the point along their lower edge, then displaced 25 pixels
upwards, and finally rotated 45 degrees counterclockwise.

The displacement takes effect before the rotation during rendering, so the 25 pixel vertical displacement is
itself rotated 45 degrees.

Figure 12.50: Point with rotated label

12.4.10 Labeling

This section discusses the details of controlling label placement via the standard SLD options. It also de-
scribes a number of GeoServer enhanced options for label placement that provide better cartographic out-
put.

LabelPlacement

The SLD specification defines two alternative label placement strategies which can be used in the
<LabelPlacement> element:

• <PointPlacement> places labels at a single point

366 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

• <LinePlacement> places labels along a line

PointPlacement

When <PointPlacement> is used the geometry is labelled at a single label point. For lines, this point lies
at the middle of the visible portion of the line. For polygons, the point is the centroid of the visible portion
of the polygon. The position of the label relative to the label point can be controlled by the following
sub-elements:

Element Description
<AnchorPoint>This is relative to the LABEL. Using this you can do things such as center the label on top

of the point, have the label to the left of the point, or have the label centered under the
point.

<Displacement>Offsets the label from the anchor point by a given number pixels in X and Y.
<Rotation>Rotates the label clockwise by a given number of degrees.

The best way to explain these options is with examples.

AnchorPoint

The anchor point determines where the label is placed relative to the label point.

<AnchorPoint>
<AnchorPointX>
0.5
</AnchorPointX>
<AnchorPointY>
0.5
</AnchorPointY>

</AnchorPoint>

The anchor point values are specified relative to the bounding box of the label. The bottom left of the box
is (0, 0), the top left is (1, 1), and the middle is (0.5, 0.5). The (X,Y) location of the anchor point inside the
label’s bounding box is placed at the label point.

The following examples show how changing the anchor point affects the position of labels:

X=0, Y=0.5 - (default) places the label to the right of the label point

X=0.5, Y=0.5 - places the centre of the label at the label point

X=1, Y=0.5 - places the label to the left of the label point

X=0.5, Y=0 - places the label horizontally centred above the label point

12.4. SLD Reference 367

GeoServer User Manual, Release 2.5.x

Displacement

Displacement allows fine control of the placement of the label. The displacement values offset the location
of the label from the anchor point by a specified number of pixels. The element syntax is:

<Displacement>
<DisplacementX>

10
</DisplacementX>
<DisplacementY>

0
</DisplacementY>

</Displacement>

Examples:

Displacement of X=10 pixels (compare with default anchor point of (X=0, Y=0.5) shown above)

Displacement of Y=-10 pixels (compare with anchor point (X= 0.5, Y=1.0) - not shown)

Rotation

The optional <Rotation> element specifies that labels should be rotated clockwise by a given number of
degrees

<Rotation>
45

</Rotation>

The examples below show how the rotation interacts with anchor points and displacements.

45 degree rotation

45 degree rotation with anchor point (X=0.5, Y=0.5)

45 degree rotation with 40-pixel X displacement

45 degree rotation with 40-pixel Y displacement with anchor point (X=0.5, Y=0.5)

368 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

12.4. SLD Reference 369

GeoServer User Manual, Release 2.5.x

LinePlacement

To label linear features (such as a road or river), the <LinePlacement> element can be specified. This
indicates that the styler should determine the best placement and rotation for the labels along the lines.

The standard SLD LinePlacement element provides one optional sub-element,
<PerpendicularOffset>. GeoServer provides much more control over line label placement via
vendor-specific options; see below for details.

PerpendicularOffset

The optional <PerpendicularOffset> element allows you to position a label above or below a line.
(This is similiar to the <DisplacementY> for label points described above.) The displacement value is
specified in pixels. A positive value displaces upwards, a negative value downwards.

<LabelPlacement>
<LinePlacement>
<PerpendicularOffset>

10
</PerpendicularOffset>

</LinePlacement>
</LabelPlacement>

Examples:

PerpendicularOffset = 0 (default)

PerpendicularOffset = 10

370 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Composing labels from multiple attributes

The <Label> element in <TextSymbolizer> allows mixed content. This means its content can be a mixture
of plain text and Filter Expressions. The mix gets interepreted as a concatenation. You can leverage this to
create complex labels out of multiple attributes.

For example, if you want both a state name and its abbreviation to appear in a label, you can do the follow-
ing:

<Label>
<ogc:PropertyName>STATE_NAME</ogc:PropertyName> (<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>)

</Label>

and you’ll get a label looking like Texas (TX).

If you need to add extra white space or newline, you’ll stumble into an XML oddity. The whitespace
handling in the Label element is following a XML rule called “collapse”, in which all leading and trailing
whitespaces have to be removed, whilst all whitespaces (and newlines) in the middle of the xml element
are collapsed into a single whitespace.

So, what if you need to insert a newline or a sequence of two or more spaces between your property names?
Enter CDATA. CDATA is a special XML section that has to be returned to the interpreter as-is, without
following any whitespace handling rule. So, for example, if you wanted to have the state abbreviation
sitting on the next line you’d use the following:

<Label>
<ogc:PropertyName>STATE_NAME</ogc:PropertyName><![CDATA[

]]>(<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>)
</Label>

Geoserver Enhanced Options

GeoServer provides a number of label styling options as extensions to the SLD specification. Using these
options gives more control over how the map looks, since the SLD standard isn’t expressive enough to
provide all the options one might want.

These options are specified as subelements of <TextSymbolizer>.

Priority Labeling

The optional <Priority> element allows specifying label priority. This controls how conflicts (overlaps)
between labels are resolved during rendering. The element content may be an expression to retrieve or
calculate a relative priority value for each feature in a layer. Alternatively, the content may be a constant
value, to set the priority of a layer’s labels relative to other layers on a rendered map.

The default priority for labels is 1000.

Note: Standard SLD Conflict Resolution

If the <Priority> element is not present, or if a group of labels all have the same priority, then standard
SLD label conflict resolution is used. Under this strategy, the label to display out of a group of conflicting
labels is chosen essentially at random.

For example, take the following dataset of cities:

12.4. SLD Reference 371

GeoServer User Manual, Release 2.5.x

City Name | population
------------+------------
Yonkers | 197,818
Jersey City | 237,681
Newark | 280,123
New York | 8,107,916

City locations (large scale map)

More people know where New York City is than where Jersey City is. Thus we want to give the label “New
York” priority so it will be visible when in conflict with (overlapping) “Jersey City”. To do this we include
the following code in the <TextSymbolizer>:

<Priority>
<PropertyName>population</PropertyName>

</Priority>

This ensures that at small scales New York is labeled in preference to the less populous cities nearby:

City locations (small scale map)

Without priority labeling, Jersey City could be labeled in preference to New York, making it difficult to
interpret the map. At scales showing many features, priority labeling is essential to ensure that larger cities
are more visible than smaller cities.

Grouping Features (group)

The group option allows displaying a single label for multiple features in a logical group.

372 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

<VendorOption name="group">yes</VendorOption>

Grouping works by collecting all features with the same label text, then choosing a representative geometry
for the group, according to the following rules:

Geometry Label Point
Point Set The first point inside the view rectangle is used.
Line Set Lines are joined together, clipped to the view rectangle, and the longest path is used.
Polygon Set Polygons are clipped to the view rectangle, and the largest polygon is used.

If desired the labeller can be forced to label every element in a group by specifying the labelAllGroup option.

Warning: Be careful that the labels truly indicate features that should be grouped together. For example,
grouping on city name alone might end up creating a group containing both Paris (France) and Paris
(Texas).

Road data is a classic example to show why grouping is useful. It is usually desirable to display only a
single label for all of “Main Street”, not a label for every block of “Main Street.”

When the group option is off (the default), grouping is not performed and every block feature is labeled
(subject to label deconfliction):

When the group option is used, geometries with the same label are grouped together and the label position
is determined from the entire group. This produces a much less cluttered map:

12.4. SLD Reference 373

GeoServer User Manual, Release 2.5.x

labelAllGroup

The labelAllGroup option can be used in conjunction with the group option (see Grouping Features
(group)). It causes all of the disjoint paths in a line group to be labeled, not just the longest one.

<VendorOption name="labelAllGroup">true</VendorOption>

Overlapping and Separating Labels (spaceAround)

By default GeoServer will not render labels “on top of each other”. By using the spaceAround option you
can either allow labels to overlap, or add extra space around labels. The value supplied for the option is a
positive or negative size, in pixels.

<VendorOption name="spaceAround">10</VendorOption>

Using the default value of 0, the bounding box of a label cannot overlap the bounding box of another label:

With a negative spaceAround value, overlapping is allowed:

With a positive spaceAround value of 10, each label is at least 20 pixels apart from others:

Positive spaceAround values actually provide twice the space that you might expect. This is because you
can specify a spaceAround for one label as 5, and for another label (in another TextSymbolizer) as 3. The
total distance between them is 8. Two labels in the first symbolizer (“5”) will each be 5 pixels apart from
each other, for a total of 10 pixels.

Note: Interaction between values in different TextSymbolizers

374 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

You can have multiple TextSymbolizers in your SLD file, each with a different spaceAround option. If all
the spaceAround options are >=0, this will do what you would normally expect. If you have negative
values (‘allow overlap’) then these labels can overlap labels that you’ve said should not be overlapping. If
you don’t like this behavior, it’s not difficult to change - feel free to submit a patch!

followLine

The followLine option forces a label to follow the curve of the line. To use this option add the following
to the <TextSymbolizer>.

Note: Straight Lines

You don’t need to use followLine for straight lines. GeoServer will automatically follow the orientation of
the line. However in this case followLine can be used to ensure the text isn’t rendered if longer than the
line.

<VendorOption name="followLine">true</VendorOption>

It is required to use <LinePlacement> along with this option to ensure that labels are placed along lines:

<LabelPlacement>
<LinePlacement/>

</LabelPlacement>

maxDisplacement

The maxDisplacement option controls the displacement of the label along a line, around a point and
inside a polygon.

For lines, normally GeoServer labels a line at its center point only. If this label conflicts with another one it
may not be displayed at all. When this option is enabled the labeller will attempt to avoid conflic by using
an alternate location within maxDisplacement pixels along the line from the pre-computed label point.

If used in conjunction with repeat, the value for maxDisplacement should always be lower than the value
for repeat.

For points this causes the renderer to start circling around the point in search of a empty stop to place the
label, step by step increasing the size of the circle until the max displacement is reached. The same happens
for polygons, around the polygon labelling point (normally the centroid).

12.4. SLD Reference 375

GeoServer User Manual, Release 2.5.x

<VendorOption name="maxDisplacement">10</VendorOption>

repeat

The repeat option determines how often GeoServer displays labels along a line. Normally GeoServer
labels each line only once, regardless of length. Specifying a positive value for this option makes the labeller
attempt to draw the label every repeat pixels. For long or complex lines (such as contour lines) this makes
labeling more informative.

<VendorOption name="repeat">100</VendorOption>

maxAngleDelta

When used in conjunction with followLine, the maxAngleDelta option sets the maximum angle, in degrees,
between two subsequent characters in a curved label. Large angles create either visually disconnected
words or overlapping characters. It is advised not to use angles larger than 30.

<VendorOption name="maxAngleDelta">15</VendorOption>

autoWrap

The autoWrap option wraps labels when they exceed the given width (in pixels). The size should be wide
enough to accommodate the longest word, otherwise single words will be split over multiple lines.

<VendorOption name="autoWrap">50</VendorOption>

Labeling with autoWrap enabled

forceLeftToRight

The renderer tries to draw labels along lines so that the text is upright, for maximum legibility. This means
a label may not follow the line orientation, but instead may be rotated 180° to display the text the right way
up. In some cases altering the orientation of the label is not desired; for example, if the label is a directional
arrow showing the orientation of the line.

376 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

The forceLeftToRight option can be set to false to disable label flipping, making the label always
follow the inherent orientation of the line being labelled:

<VendorOption name="forceLeftToRight">false</VendorOption>

conflictResolution

By default labels are subject to conflict resolution, meaning the renderer will not allow any label to overlap
with a label that has been already drawn. Setting the conflictResolution option to false causes this
label to bypass conflict resolution. This means the label will be drawn even if it overlaps with other labels,
and other labels drawn after it may overlap it.

<VendorOption name="conflictResolution">false</VendorOption>

goodnessOfFit

Geoserver will remove labels if they are a particularly bad fit for the geometry they are labeling.

Ge-
ome-
try

Goodness of Fit Algorithm

Point Always returns 1.0 since the label is at the point
Line Always returns 1.0 since the label is always placed on the line.
Poly-
gon

The label is sampled approximately at every letter. The distance from these points to the
polygon is determined and each sample votes based on how close it is to the polygon. (see
LabelCacheDefault#goodnessOfFit())

The default value is 0.5, but it can be modified using:

<VendorOption name="goodnessOfFit">0.3</VendorOption>

polygonAlign

GeoServer normally tries to place labels horizontally within a polygon, and gives up if the label position
is busy or if the label does not fit enough in the polygon. This option allows GeoServer to try alternate
rotations for the labels.

<VendorOption name="polygonAlign">mbr</VendorOption>

Op-
tion

Description

manual The default value. Only a rotation manually specified in the <Rotation> tag will be used
ortho If the label does not fit horizontally and the polygon is taller than wider then vertical

alignment will also be tried
mbr If the label does not fit horizontally the minimum bounding rectangle will be computed and a

label aligned to it will be tried out as well

graphic-resize

When a <Graphic> is specified for a label by default it is displayed at its native size and aspect ratio. The
graphic-resize option instructs the renderer to magnify or stretch the graphic to fully contain the text
of the label. If this option is used the graphic-margin option may also be specified.

12.4. SLD Reference 377

GeoServer User Manual, Release 2.5.x

<VendorOption name="graphic-resize">stretch</VendorOption>

Option Description
none Graphic is displayed at its native size (default)
proportional Graphic size is increased uniformly to contain the label text
stretch Graphic size is increased anisotropically to contain the label text

Labeling with a Graphic Mark “square” - L) at native size; R) with “graphic-resize”=stretch and “graphic-margin”=3

graphic-margin

The graphic-margin options specifies a margin (in pixels) to use around the label text when the
graphic-resize option is specified.

<VendorOption name="graphic-margin">margin</VendorOption>

12.4.11 RasterSymbolizer

GeoServer supports the ability to display raster data in addition to vector data.

Raster data is not merely a picture, rather it can be thought of as a grid of georeferenced information, much
like a graphic is a grid of visual information (with combination of reds, greens, and blues). Unlike graphics,
which only contain visual data, each point/pixel in a raster grid can have many different attributes (bands),
with possibly none of them having an inherently visual component.

With the above in mind, one needs to choose how to visualize the data, and this, like in all other cases, is
done by using an SLD. The analogy to vector data is evident in the naming of the tags used. Vectors, con-
sisting of points, line, and polygons, are styled by using the <PointSymbolizer>, <LineSymbolizer>,
and <PolygonSymbolizer> tags. It is therefore not very surprising that raster data is styled with the tag
<RasterSymbolizer>.

Syntax

The following elements can be used inside the <RasterSymbolizer> element.

• <Opacity>

• <ColorMap>

• <ChannelSelection>

• <ContrastEnhancement>

• <ShadedRelief> *

• <OverlapBehavior> *

• <ImageOutline> *

Warning: The starred (*) elements are not yet implemented in GeoServer.

378 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Opacity

The <Opacity> element sets the transparency level for the entire rendered image. As is standard, the
values range from zero (0) to one (1), with zero being transparent, and one being opaque. The syntax is:

<Opacity>0.5</Opacity>

where, in this case, the raster is rendered at 50% opacity.

ColorMap

The <ColorMap> element defines the color values for the pixels of a raster image, as either color gradients,
or a mapping of specific values to fixed colors.

A color map is defined by a sequence of <ColorMapEntry> elements. Each <ColorMapEntry> element
specifies a color and a quantity attribute. The quantity refers to the value of a raster pixel. The color
value is denoted in standard hexadecimal RGB format (#RRGGBB). <ColorMapEntry> elements can also
have opacity and label attributes. The opacity attribute overrides the global <Opacity> value. The
label attribute is used to provide text for legends. A color map can contain up to 255 <ColorMapEntry>
elements.

The simplest <ColorMap> has two color map entries. One specifyies a color for the “bottom” of the dataset,
and the other specifyies a color for the “top” of the dataset. Pixels with values equal to or less than the
minimum value are rendered with the bottom color (and opacity). Pixels with values equal to or great
than the maximum value are rendered with the top color and opacity. The colors for values in between are
automatically interpolated, making creating color gradients easy.

A color map can be refined by adding additional intermediate entries. This is useful if the dataset has
discrete values rather than a gradient, or if a multi-colored gradient is desired. One entry is added for each
different color to be used, along with the corresponding quantity value.

For example, a simple ColorMap can define a color gradient from color #323232 to color #BBBBBB over
quantity values from -300 to 200:

<ColorMap>
<ColorMapEntry color="#323232" quantity="-300" label="label1" opacity="1"/>
<ColorMapEntry color="#BBBBBB" quantity="200" label="label2" opacity="1"/>

</ColorMap>

A more refined example defines a color gradient from color #FFCC32 through color #BBBBBB, running
through color #3645CC and color #CC3636. The bottom color #FFCC32 is defined to be transparent This
simulates an alpha channel, since pixels with values of -300 and below will not be rendered. Notice that the
default opacity is 1 (opaque) when not specified.

12.4. SLD Reference 379

GeoServer User Manual, Release 2.5.x

<ColorMap>
<ColorMapEntry color="#FFCC32" quantity="-300" label="label1" opacity="0"/>
<ColorMapEntry color="#3645CC" quantity="0" label="label2" opacity="1"/>
<ColorMapEntry color="#CC3636" quantity="100" label="label3" opacity="1"/>
<ColorMapEntry color="#BBBBBB" quantity="200" label="label4" opacity="1"/>

</ColorMap>

GeoServer extends the <ColorMap> element to allow two attributes: type and extended.

type The <ColorMap> type attribute specifies the kind of ColorMap to use. There are three different
types of ColorMaps that can be specified: ramp, intervals and values.

type="ramp" is the default ColorMap type. It specifies that colors should be interpolated for values
between the color map entries. The result is shown in the following example.

<ColorMap type="ramp">
<ColorMapEntry color="#EEBE2F" quantity="-300" label="label" opacity="0"/>
<ColorMapEntry color="#2851CC" quantity="0" label="values" opacity="1"/>
<ColorMapEntry color="#211F1F" quantity="50" label="label" opacity="1"/>
<ColorMapEntry color="#EE0F0F" quantity="100" label="label" opacity="1"/>
<ColorMapEntry color="#AAAAAA" quantity="200" label="label" opacity="1"/>
<ColorMapEntry color="#6FEE4F" quantity="250" label="label" opacity="1"/>
<ColorMapEntry color="#3ECC1B" quantity="300" label="label" opacity="1"/>
<ColorMapEntry color="#886363" quantity="350" label="label" opacity="1"/>
<ColorMapEntry color="#5194CC" quantity="400" label="label" opacity="1"/>
<ColorMapEntry color="#2C58DD" quantity="450" label="label" opacity="1"/>
<ColorMapEntry color="#DDB02C" quantity="600" label="label" opacity="1"/>

</ColorMap>

380 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

type="values" means that only pixels with the specified entry quantity values are rendered. Pixels with
other values are not rendered. Using the example set of color map entries:

<ColorMap type="values">
<ColorMapEntry color="#EEBE2F" quantity="-300" label="label" opacity="0"/>
...
<ColorMapEntry color="#DDB02C" quantity="600" label="label" opacity="1"/>

</ColorMap>

The result image is:

type="intervals" value means that each interval defined by two entries is rendered using the color of
the first (lowest-value) entry. No color interpolation is applied across the intervals. Using the example set
of color map entries:

<ColorMap type="intervals" extended="true">
<ColorMapEntry color="#EEBE2F" quantity="-300" label="label" opacity="0"/>
...
<ColorMapEntry color="#DDB02C" quantity="600" label="label" opacity="1"/>

</ColorMap>

The result image is:

The color map type is also reflected in the legend graphic. A typical request for a raster legend is (using the
forceRule:true option to force output of the color map):

http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&&STYLE=raster100&FORMAT=image/png&WIDTH=50&HEIGHT=20&LEGEND_OPTIONS=forceRule:true&LAYER=it.geosolutions:di08032_da

The legends returned for the different types are:

12.4. SLD Reference 381

GeoServer User Manual, Release 2.5.x

extended The extended attribute specifies whether the color map gradient uses 256 (8-bit) or 65536 (16-
bit) colors. The value false (the default) specifies that the color scale is calculated using 8-bit color, and
true specifies using 16-bit color.

ChannelSelection

The <ChannelSelection> element specifies how dataset bands are mapped to image color channels.
Named dataset bands may be mapped to red, green and blue channels, or a single named band may be
mapped to a grayscale channel.

The following example maps source channels 1, 2 and 3 to the red, green, and blue color channels.

<ChannelSelection>
<RedChannel>
<SourceChannelName>1</SourceChannelName>

</RedChannel>
<GreenChannel>
<SourceChannelName>2</SourceChannelName>

</GreenChannel>
<BlueChannel>
<SourceChannelName>3</SourceChannelName>

</BlueChannel>
</ChannelSelection>

The next example shows selecting a single band of an RGB image as a grayscale channel, and re-colorizing
it via a ColorMap:

382 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

<RasterSymbolizer>
<Opacity>1.0</Opacity>
<ChannelSelection>

<GrayChannel>
<SourceChannelName>1</SourceChannelName>

</GrayChannel>
</ChannelSelection>
<ColorMap extended="true">

<ColorMapEntry color="#0000ff" quantity="3189.0"/>
<ColorMapEntry color="#009933" quantity="6000.0"/>
<ColorMapEntry color="#ff9900" quantity="9000.0" />
<ColorMapEntry color="#ff0000" quantity="14265.0"/>

</ColorMap>
</RasterSymbolizer>

ContrastEnhancement

The <ContrastEnhancement> element is used to adjust the relative brightness of the image data. A
<ContrastEnhancement> element can be specified for the entire image, or in individual Channel ele-
ments. In this way, different enhancements can be used on each channel.

There are three types of enhancements possible:

• Normalize

• Histogram

• GammaValue

<Normalize> means to expand the contrast so that the minimum quantity is mapped to minimum bright-
ness, and the maximum quantity is mapped to maximum brightness.

<Histogram> is similar to Normalize, but the algorithm used attempts to produce an image with an equal
number of pixels at all brightness levels.

<GammaValue> is a scaling factor that adjusts the brightness of the image. A value less than one (1) darkens
the image, and a value greater than one (1) brightens it. The default is 1 (no change).

These examples turn on Normalize and Histogram, respectively:

<ContrastEnhancement>
<Normalize/>

</ContrastEnhancement>

12.4. SLD Reference 383

GeoServer User Manual, Release 2.5.x

<ContrastEnhancement>
<Histogram/>

</ContrastEnhancement>

This example increases the brightness of the image by a factor of two.

<ContrastEnhancement>
<GammaValue>2</GammaValue>

</ContrastEnhancement>

ShadedRelief

Warning: Support for this element has not been implemented yet.

The <ShadedRelief> element can be used to create a 3-D effect, by selectively adjusting brightness. This
is a nice effect to use on an elevation dataset. There are two types of shaded relief possible.

• BrightnessOnly

• ReliefFactor

BrightnessOnly, which takes no parameters, applies shading in WHAT WAY? ReliefFactor sets the amount
of exaggeration of the shading (for example, to make hills appear higher). According to the OGC SLD
specification, a value of around 55 gives “reasonable results” for Earth-based datasets:

<ShadedRelief>
<BrightnessOnly />
<ReliefFactor>55</ReliefFactor>

</ShadedRelief>

The above example turns on Relief shading in WHAT WAY?

OverlapBehavior

Warning: Support for this element has not been implemented yet.

Sometimes raster data is comprised of multiple image sets. Take, for example, a satellite view of the Earth
at night . As all of the Earth can’t be in nighttime at once, a composite of multiple images are taken. These
images are georeferenced, and pieced together to make the finished product. That said, it is possible that
two images from the same dataset could overlap slightly, and the OverlapBehavior element is designed to
determine how this is handled. There are four types of OverlapBehavior:

• AVERAGE

• RANDOM

• LATEST_ON_TOP

• EARLIEST_ON_TOP

AVERAGE takes each overlapping point and displays their average value. RANDOM determines
which image gets displayed according to chance (which can sometimes result in a crisper image). LAT-
EST_ON_TOP and EARLIEST_ON_TOP sets the determining factor to be the internal timestamp on each
image in the dataset. None of these elements have any parameters, and are all called in the same way:

384 Chapter 12. Styling

http://apod.nasa.gov/apod/ap001127.html
http://apod.nasa.gov/apod/ap001127.html

GeoServer User Manual, Release 2.5.x

<OverlapBehavior>
<AVERAGE />

</OverlapBehavior>

The above sets the OverlapBehavior to AVERAGE.

ImageOutline

Warning: Support for this element has not been implemented yet.

Given the situation mentioned previously of the image composite, it is possible to style each image so as
to have an outline. One can even set a fill color and opacity of each image; a reason to do this would be
to “gray-out” an image. To use ImageOutline, you would define a <LineSymbolizer> or <PolygonSymbol-
izer> inside of the element:

<ImageOutline>
<LineSymbolizer>
<Stroke>

<CssParameter name="stroke">#0000ff</CssParameter>
</Stroke>
</LineSymbolizer>

</ImageOutline>

The above would create a border line (colored blue with a one pixel default thickness) around each image
in the dataset.

12.5 SLD Extensions in GeoServer

GeoServer provides a number of vendor-specific extensions to SLD 1.0. Although not portable, the exten-
sions make styling more powerful and concise and generate better-looking maps.

12.5.1 Geometry transformations in SLD

SLD symbolizers may contain an optional <Geometry> element, which allows specifying which geometry
attribute is to be rendered. In the common case of a featuretype with a single geometry attribute this
element is usually omitted, but it is useful when a featuretype has multiple geometry-valued attributes.

SLD 1.0 requires the <Geometry> content to be a <ogc:PropertyName>. GeoServer extends this to allow
a general SLD expression to be used. The expression can contain filter functions that manipulate geometries
by transforming them into something different. This facility is called SLD geometry transformations.

GeoServer provides a number of filter functions that can transform geometry. A full list is available in
the Filter Function Reference. They can be used to do things such as extracting line vertices or endpoints,
offsetting polygons, or buffering geometries.

Geometry transformations are computed in the geometry’s original coordinate reference system, before
any reprojection and rescaling to the output map is performed. For this reason, transformation parameters
must be expressed in the units of the geometry CRS. This must be taken into account when using geometry
transformations at different screen scales, since the parameters will not change with scale.

12.5. SLD Extensions in GeoServer 385

GeoServer User Manual, Release 2.5.x

Examples

Let’s look at some examples.

Extracting vertices

Here is an example that allows one to extract all the vertices of a geometry, and make them visible in a map,
using the vertices function:

1 <PointSymbolizer>
2 <Geometry>
3 <ogc:Function name="vertices">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 </ogc:Function>
6 </Geometry>
7 <Graphic>
8 <Mark>
9 <WellKnownName>square</WellKnownName>

10 <Fill>
11 <CssParameter name="fill">#FF0000</CssParameter>
12 </Fill>
13 </Mark>
14 <Size>6</Size>
15 </Graphic>
16 </PointSymbolizer>

View the full "Vertices" SLD

Applied to the sample tasmania_roads layer this will result in:

Figure 12.51: Extracting and showing the vertices out of a geometry

Start and end point

The startPoint and endPoint functions can be used to extract the start and end point of a line.

386 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

1 <PointSymbolizer>
2 <Geometry>
3 <ogc:Function name="startPoint">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 </ogc:Function>
6 </Geometry>
7 <Graphic>
8 <Mark>
9 <WellKnownName>square</WellKnownName>

10 <Stroke>
11 <CssParameter name="stroke">0x00FF00</CssParameter>
12 <CssParameter name="stroke-width">1.5</CssParameter>
13 </Stroke>
14 </Mark>
15 <Size>8</Size>
16 </Graphic>
17 </PointSymbolizer>
18 <PointSymbolizer>
19 <Geometry>
20 <ogc:Function name="endPoint">
21 <ogc:PropertyName>the_geom</ogc:PropertyName>
22 </ogc:Function>
23 </Geometry>
24 <Graphic>
25 <Mark>
26 <WellKnownName>circle</WellKnownName>
27 <Fill>
28 <CssParameter name="fill">0xFF0000</CssParameter>
29 </Fill>
30 </Mark>
31 <Size>4</Size>
32 </Graphic>
33 </PointSymbolizer>

View the full "StartEnd" SLD

Applied to the sample tasmania_roads layer this will result in:

Drop shadow

The offset function can be used to create drop shadow effects below polygons. Notice that the offset values
reflect the fact that the data used in the example is in a geographic coordinate system.

1 <PolygonSymbolizer>
2 <Geometry>
3 <ogc:Function name="offset">
4 <ogc:PropertyName>the_geom</ogc:PropertyName>
5 <ogc:Literal>0.00004</ogc:Literal>
6 <ogc:Literal>-0.00004</ogc:Literal>
7 </ogc:Function>
8 </Geometry>
9 <Fill>

10 <CssParameter name="fill">#555555</CssParameter>
11 </Fill>
12 </PolygonSymbolizer>

View the full "Shadow" SLD

12.5. SLD Extensions in GeoServer 387

GeoServer User Manual, Release 2.5.x

Figure 12.52: Extracting start and end point of a line

Applied to the sample tasmania_roads layer this will result in:

Figure 12.53: Dropping building shadows

Performance tips

GeoServer’s filter functions contain a number of set-related or constructive geometric functions, such as
buffer, intersection, difference and others. These can be used as geometry transformations, but
they be can quite heavy in terms of CPU consumption so it is advisable to use them with care. One strategy
is to activate them only at higher zoom levels, so that fewer features are processed.

388 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Buffering can often be visually approximated by using very large strokes together with round line joins and
line caps. This avoids incurring the performance cost of a true geometric buffer transformation.

Adding new transformations

Additional filter functions can be developed in Java and then deployed in a JAR file as a GeoServer plugin.
A guide is not available at this time, but see the GeoTools main module for examples.

12.5.2 Rendering Transformations

Rendering Transformations allow processing to be carried out on datasets within the GeoServer rendering
pipeline. A typical transformation computes a derived or aggregated result from the input data, allowing
various useful visualization effects to be obtained. Transformations may transform data from one format
into another (i.e vector to raster or vice-versa), to provide an appropriate format for display.

The following table lists examples of various kinds of rendering transformations available in GeoServer:

Type Examples
Raster-to-
Vector

Contour extracts contours from a DEM raster. RasterAsPointCollections extracts a vector
field from a multi-band raster

Vector-to-
Raster

BarnesSurfaceInterpolation computes a surface from scattered data points. Heatmap
computes a heatmap surface from weighted data points.

Vector-to-
Vector

PointStacker aggregates dense point data into clusters.

Rendering transformations are invoked within SLD styles. Parameters may be supplied to control the
appearance of the output. The rendered output for the layer is produced by applying the styling rules and
symbolizers in the SLD to the result of transformation.

Rendering transformations are implemented using the same mechanism as WPS Processes. They can thus
also be executed via the WPS protocol, if required. Conversely, any WPS process can be executed as a
transformation, as long as the input and output are appropriate for use within an SLD.

This section is a general guide to rendering transformation usage in GeoServer. For details of input, param-
eters, and output for any particular rendering transformation, refer to its own documentation.

Installation

Using Rendering Transformations requires the WPS extension to be installed. See Installing the WPS exten-
sion.

Note: The WPS service does not need to be enabled to use Rendering Transformations. To avoid unwanted
consumption of server resources it may be desirable to disable the WPS service if it is not being used directly.

Usage

Rendering Transformations are invoked by adding the <Transformation> element to a
<FeatureTypeStyle> element in an SLD document. This element specifies the name of the trans-
formation process, and usually includes parameter values controlling the operation of the transformation.

The <Transformation> element syntax leverages the OGC Filter function syntax. The content of the
element is a <ogc:Function> with the name of the rendering transformation process. Transformation
processes may accept some number of parameters, which may be either required (in which case they must

12.5. SLD Extensions in GeoServer 389

GeoServer User Manual, Release 2.5.x

be specified), or optional (in which case they may be omitted if the default value is acceptable). Parameters
are supplied as name/value pairs. Each parameter’s name and value are supplied via another function
<ogc:Function name="parameter">. The first argument to this function is an <ogc:Literal> con-
taining the name of the parameter. The optional following arguments provide the value for the parameter
(if any). Some parameters accept only a single value, while others may accept a list of values. As with any
filter function argument, values may be supplied in several ways:

• As a literal value

• As a computed expression

• As an SLD environment variable, whose actual value is supplied in the WMS request (see Variable
substitution in SLD).

• As a predefined SLD environment variable (which allows obtaining values for the current request
such as output image width and height).

The order of the supplied parameters is not significant.

Most rendering transformations take as input a dataset to be transformed. This is supplied via a special
named parameter which does not have a value specified. The name of the parameter is determined by the
particular transformation being used. When the transformation is executed, the input dataset is passed to
it via this parameter.

The input dataset is determined by the same query mechanism as used for all WMS requests, and can thus
be filtered in the request if required.

In rendering transformations which take as input a featuretype (vector dataset) and convert it to a raster
dataset, in order to pass validation the SLD needs to mention the geometry attribute of the input dataset
(even though it is not used). This is done by specifying the attribute name in the symbolizer <Geometry>
element.

The output of the rendering transformation is styled using symbolizers appropriate to its format: PointSym-
bolizer, LineSymbolizer, PolygonSymbolizer, and TextSymbolizer for vector data, and RasterSymbolizer for raster
coverage data.

If it is desired to display the input dataset in its orginal form, or transformed in another way, there are two
options:

• Another <FeatureTypeStyle> can be used in the same SLD

• Another SLD can be created, and the layer displayed twice using the different SLDs

Notes

• Rendering transformations may not work correctly in tiled mode, unless they have been specifically
written to accomodate it.

Examples

Contour extraction

gs:Contour is a Raster-to-Vector rendering transformation which extracts contour lines at specified levels
from a raster DEM. The following SLD invokes the transformation and styles the contours as black lines.

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <StyledLayerDescriptor version="1.0.0"
3 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"

390 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

4 xmlns="http://www.opengis.net/sld"
5 xmlns:ogc="http://www.opengis.net/ogc"
6 xmlns:xlink="http://www.w3.org/1999/xlink"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
8 <NamedLayer>
9 <Name>contour_dem</Name>

10 <UserStyle>
11 <Title>Contour DEM</Title>
12 <Abstract>Extracts contours from DEM</Abstract>
13 <FeatureTypeStyle>
14 <Transformation>
15 <ogc:Function name="gs:Contour">
16 <ogc:Function name="parameter">
17 <ogc:Literal>data</ogc:Literal>
18 </ogc:Function>
19 <ogc:Function name="parameter">
20 <ogc:Literal>levels</ogc:Literal>
21 <ogc:Literal>1100</ogc:Literal>
22 <ogc:Literal>1200</ogc:Literal>
23 <ogc:Literal>1300</ogc:Literal>
24 <ogc:Literal>1400</ogc:Literal>
25 <ogc:Literal>1500</ogc:Literal>
26 <ogc:Literal>1600</ogc:Literal>
27 <ogc:Literal>1700</ogc:Literal>
28 <ogc:Literal>1800</ogc:Literal>
29 </ogc:Function>
30 </ogc:Function>
31 </Transformation>
32 <Rule>
33 <Name>rule1</Name>
34 <Title>Contour Line</Title>
35 <LineSymbolizer>
36 <Stroke>
37 <CssParameter name="stroke">#000000</CssParameter>
38 <CssParameter name="stroke-width">1</CssParameter>
39 </Stroke>
40 </LineSymbolizer>
41 <TextSymbolizer>
42 <Label>
43 <ogc:PropertyName>value</ogc:PropertyName>
44 </Label>
45
46 <CssParameter name="font-family">Arial</CssParameter>
47 <CssParameter name="font-style">Normal</CssParameter>
48 <CssParameter name="font-size">10</CssParameter>
49
50 <LabelPlacement>
51 <LinePlacement/>
52 </LabelPlacement>
53 <Halo>
54 <Radius>
55 <ogc:Literal>2</ogc:Literal>
56 </Radius>
57 <Fill>
58 <CssParameter name="fill">#FFFFFF</CssParameter>
59 <CssParameter name="fill-opacity">0.6</CssParameter>
60 </Fill>
61 </Halo>

12.5. SLD Extensions in GeoServer 391

GeoServer User Manual, Release 2.5.x

62 <Fill>
63 <CssParameter name="fill">#000000</CssParameter>
64 </Fill>
65 <Priority>2000</Priority>
66 <VendorOption name="followLine">true</VendorOption>
67 <VendorOption name="repeat">100</VendorOption>
68 <VendorOption name="maxDisplacement">50</VendorOption>
69 <VendorOption name="maxAngleDelta">30</VendorOption>
70 </TextSymbolizer>
71 </Rule>
72 </FeatureTypeStyle>
73 </UserStyle>
74 </NamedLayer>
75 </StyledLayerDescriptor>

Key aspects of the SLD are:

• Lines 14-15 define the rendering transformation, using the process gs:Contour.

• Lines 16-18 supply the input data parameter, named data in this process.

• Lines 19-29 supply values for the process’s levels parameter, which specifies the elevation levels
for the contours to extract.

• Lines 35-40 specify a LineSymbolizer to style the contour lines.

• Lines 41-70 specify a TextSymbolizer to show the contour levels along the lines.

The result of using this transformation is shown in the following map image (which also shows the under-
lying DEM raster):

Heatmap generation

gs:Heatmap is a Vector-to-Raster rendering transformation which generates a heatmap surface from
weighted point data. The following SLD invokes a Heatmap rendering transformation on a featuretype
with point geometries and an attribute pop2000 supplying the weight for the points (in this example, a
dataset of world urban areas is used). The output is styled using a color ramp across the output data value
range [0 .. 1].

392 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

1 <?xml version="1.0" encoding="ISO-8859-1"?>
2 <StyledLayerDescriptor version="1.0.0"
3 xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
4 xmlns="http://www.opengis.net/sld"
5 xmlns:ogc="http://www.opengis.net/ogc"
6 xmlns:xlink="http://www.w3.org/1999/xlink"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
8 <NamedLayer>
9 <Name>Heatmap</Name>

10 <UserStyle>
11 <Title>Heatmap</Title>
12 <Abstract>A heatmap surface showing population density</Abstract>
13 <FeatureTypeStyle>
14 <Transformation>
15 <ogc:Function name="gs:Heatmap">
16 <ogc:Function name="parameter">
17 <ogc:Literal>data</ogc:Literal>
18 </ogc:Function>
19 <ogc:Function name="parameter">
20 <ogc:Literal>weightAttr</ogc:Literal>
21 <ogc:Literal>pop2000</ogc:Literal>
22 </ogc:Function>
23 <ogc:Function name="parameter">
24 <ogc:Literal>radiusPixels</ogc:Literal>
25 <ogc:Function name="env">
26 <ogc:Literal>radius</ogc:Literal>
27 <ogc:Literal>100</ogc:Literal>
28 </ogc:Function>
29 </ogc:Function>
30 <ogc:Function name="parameter">
31 <ogc:Literal>pixelsPerCell</ogc:Literal>
32 <ogc:Literal>10</ogc:Literal>
33 </ogc:Function>
34 <ogc:Function name="parameter">
35 <ogc:Literal>outputBBOX</ogc:Literal>
36 <ogc:Function name="env">
37 <ogc:Literal>wms_bbox</ogc:Literal>
38 </ogc:Function>
39 </ogc:Function>
40 <ogc:Function name="parameter">
41 <ogc:Literal>outputWidth</ogc:Literal>
42 <ogc:Function name="env">
43 <ogc:Literal>wms_width</ogc:Literal>
44 </ogc:Function>
45 </ogc:Function>
46 <ogc:Function name="parameter">
47 <ogc:Literal>outputHeight</ogc:Literal>
48 <ogc:Function name="env">
49 <ogc:Literal>wms_height</ogc:Literal>
50 </ogc:Function>
51 </ogc:Function>
52 </ogc:Function>
53 </Transformation>
54 <Rule>
55 <RasterSymbolizer>
56 <!-- specify geometry attribute to pass validation -->
57 <Geometry>
58 <ogc:PropertyName>the_geom</ogc:PropertyName></Geometry>

12.5. SLD Extensions in GeoServer 393

GeoServer User Manual, Release 2.5.x

59 <Opacity>0.6</Opacity>
60 <ColorMap type="ramp" >
61 <ColorMapEntry color="#FFFFFF" quantity="0" label="nodata"
62 opacity="0"/>
63 <ColorMapEntry color="#FFFFFF" quantity="0.02" label="nodata"
64 opacity="0"/>
65 <ColorMapEntry color="#4444FF" quantity=".1" label="nodata"/>
66 <ColorMapEntry color="#FF0000" quantity=".5" label="values" />
67 <ColorMapEntry color="#FFFF00" quantity="1.0" label="values" />
68 </ColorMap>
69 </RasterSymbolizer>
70 </Rule>
71 </FeatureTypeStyle>
72 </UserStyle>
73 </NamedLayer>
74 </StyledLayerDescriptor>

Key aspects of the SLD are:

• Lines 14-15 define the rendering transformation, using the process gs:Heatmap.

• Lines 16-18 supply the input data parameter, named data in this process.

• Lines 19-22 supply a value for the process’s weightAttr parameter, which specifies the input at-
tribute providing a weight for each data point.

• Lines 23-29 supply the value for the radiusPixels parameter, which controls the “spread” of the
heatmap around each point. In this SLD the value of this parameter may be supplied by a SLD
substitution variable called radius, with a default value of 100 pixels.

• Lines 30-33 supply the pixelsPerCell parameter, which controls the resolution at which the
heatmap raster is computed.

• Lines 34-38 supply the outputBBOX parameter, which is given the value of the standard SLD envi-
ronment variable wms_bbox.

• Lines 40-45 supply the outputWidth parameter, which is given the value of the standard SLD envi-
ronment variable wms_width.

• Lines 46-52 supply the outputHeight parameter, which is given the value of the standard SLD
environment variable wms_height.

• Lines 55-70 specify a RasterSymbolizer to style the computed raster surface. The symbolizer
contains a ramped color map for the data range [0..1].

• Line 58 specifies the geometry attribute of the input featuretype, which is necessary to pass SLD
validation.

This transformation styles a layer to produce a heatmap surface for the data in the requested map extent,
as shown in the image below. (The map image also shows the original input data points styled by another
SLD, as well as a base map layer.)

12.5.3 Graphic symbology in GeoServer

Graphic symbology is supported via the SLD <Graphic> element. This element can appear in several
contexts in SLD:

• in a PointSymbolizer, to display symbols at points

• in the <Stroke>/<GraphicStroke> element of a LineSymbolizer and PolygonSymbolizer, to display
repeated symbols along lines and polygon boundaries.

394 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

• in the <Stroke>/<GraphicFill> element of a LineSymbolizer and PolygonSymbolizer, to fill lines
and polygon boundaries with tiled symbols.

• in the <Fill>/<GraphicFill> element of a PolygonSymbolizer, to fill polygons with tiled symbols
(stippling).

• in a TextSymbolizer to display a graphic behind or instead of text labels (this is a GeoServer extension).

<Graphic> contains either a <Mark> or an <ExternalGraphic> element. Marks are pure vector sym-
bols whose geometry is predefined but with stroke and fill defined in the SLD itself. External Graphics are
external files (such as PNG images or SVG graphics) that contain the shape and color information defining
how to render a symbol.

In standard SLD the <Mark> and <ExternalGraphic> names are fixed strings. GeoServer extends this by
providing dynamic symbolizers, which allow computing symbol names on a per-feature basis by embedding
CQL expressions in them.

Marks

GeoServer supports the standard SLD <Mark> symbols, a user-expandable set of extended symbols, and
also TrueType Font glyphs. The symbol names are specified in the <WellKnownName> element.

See also the PointSymbolizer reference for further details, as well as the examples in the Points Cookbook
section.

Standard symbols

The SLD specification mandates the support of the following symbols:

Name Description
square A square
circle A circle
triangle A triangle pointing up
star five-pointed star
cross A square cross with space around (not suitable for hatch fills)
x A square X with space around (not suitable for hatch fills)

12.5. SLD Extensions in GeoServer 395

GeoServer User Manual, Release 2.5.x

Shape symbols

The shape symbols set adds extra symbols that are not part of the basic set. Their names are prefixed by
shape://

Name Description
shape://vertlineA vertical line (suitable for hatch fills or to make railroad symbols)
shape://horline A horizontal line (suitable for hatch fills)
shape://slash A diagonal line leaning forwards like the “slash” keyboard symbol (suitable for

diagonal hatches)
shape://backslashSame as shape://slash, but oriented in the opposite direction
shape://dot A very small circle with space around
shape://plus A + symbol, without space around (suitable for cross-hatch fills)
shape://times A “X” symbol, without space around (suitable for cross-hatch fills)
shape://oarrow An open arrow symbol (triangle without one side, suitable for placing arrows at

the end of lines)
shape://carrow A closed arrow symbol (closed triangle, suitable for placing arrows at the end of

lines)

TTF marks

It is possible to create a mark using glyphs from any decorative or symbolic True Type Font, such as
Wingdings, WebDings, or the many symbol fonts available on the internet. The syntax for specifying this
is:

ttf://<fontname>#<hexcode>

where fontname is the full name of a TTF font available to GeoServer, and hexcode is the hexadecimal
code of the symbol. To get the hex code of a symbol, use the “Char Map” utility available in most operating
systems (Windows and Linux Gnome both have one).

For example, to use the “shield” symbol contained in the WebDings font, the Gnome charmap reports the
symbol hex code as shown:

The SLD to use the shield glyph as a symbol is:

1 <PointSymbolizer>
2 <Graphic>
3 <Mark>
4 <WellKnownName>ttf://Webdings#0x0064</WellKnownName>
5 <Fill>
6 <CssParameter name="fill">#AAAAAA</CssParameter>
7 </Fill>
8 <Stroke/>
9 </Mark>

10 <Size>16</Size>
11 </Graphic>
12 </PointSymbolizer>

This results in the following map display:

Extending the Mark subsytem using Java

The Mark subsystem is user-extensible. To do this using Java code, im-
plement the MarkFactory interface and declare the implementation in the
META-INF/services/org.geotools.renderer.style.MarkFactory file.

396 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Figure 12.54: Selecting a symbol hex code in the Gnome char map

Figure 12.55: Shield symbols rendered on the map

12.5. SLD Extensions in GeoServer 397

GeoServer User Manual, Release 2.5.x

For further information see the Javadoc of the GeoTools MarkFactory, along with the following example
code:

• The factory SPI registration file

• The TTFMarkFactory implementation

• The ShapeMarkFactory implementation

External Graphics

<ExternalGraphic> is the other way to define point symbology. Unlike marks, external graph-
ics are used as-is, so the specification is somewhat simpler. The element content specifies a graphic
<OnlineResource> using a URL or file path, and the graphic <Format> using a MIME type:

1 <PointSymbolizer>
2 <Graphic>
3 <ExternalGraphic>
4 <OnlineResource xlink:type="simple" xlink:href="http://mywebsite.com/pointsymbol.png" />
5 <Format>image/png</Format>
6 </ExternalGraphic>
7 </Graphic>
8 </PointSymbolizer>

As with <Mark>, a <Size> element can be optionally specified. When using images as graphic symbols
it is better to avoid resizing, as that may blur their appearance. Use images at their native resolution by
omitting the <Size> element. In contrast, for SVG graphics specifying a <Size> is recommended. SVG
files are a vector-based format describing both shape and color, so they scale cleanly to any size.

If the path of the symbol file is relative, the file is looked for under $GEOSERVER_DATA_DIR/styles. For
example:

1 <PointSymbolizer>
2 <Graphic>
3 <ExternalGraphic>
4 <OnlineResource xlink:type="simple" xlink:href="burg02.svg" />
5 <Format>image/svg+xml</Format>
6 </ExternalGraphic>
7 <Size>20</Size>
8 </Graphic>
9 </PointSymbolizer>

In this example an SVG graphic is being used, so the size is specified explicitly.

Symbol Positioning

Graphic symbols are rendered so that the center of the graphic extent lies on the placement point (or points,
in the case of repeated or tiled graphics). If it is desired to have a graphic offset from a point (such as a
symbol which acts as a pointer) it is necessary to offset the visible portion of the graphic within the overall
extent. For images this can be accomplished by extending the image with transparent pixels. For SVG
graphics this can be done by surrounding the shape with an invisible rectangle with the desired relative
position.

398 Chapter 12. Styling

http://svn.osgeo.org/geotools/trunk/modules/library/render/src/main/java/org/geotools/renderer/style/MarkFactory.java
http://svn.osgeo.org/geotools/trunk/modules/library/render/src/main/resources/META-INF/services/org.geotools.renderer.style.MarkFactory
http://svn.osgeo.org/geotools/trunk/modules/library/render/src/main/java/org/geotools/renderer/style/TTFMarkFactory.java
http://svn.osgeo.org/geotools/trunk/modules/library/render/src/main/java/org/geotools/renderer/style/ShapeMarkFactory.java

GeoServer User Manual, Release 2.5.x

Dynamic symbolizers

In standard SLD, the Mark/WellKnowName element and the ExternalGraphic/OnlineResource/@xlink:href
attribute are fixed strings. This means they have the same value for all rendered features. When the sym-
bols to be displayed vary depending on feature attributes this restriction leads to very verbose styling, as a
separate Rule and Symbolizer must be used for each different symbol.

GeoServer improves this by allowing CQL expressions to be embedded inside the content of both
WellKnownName and OnlineResource/@xlink:href. When the names of the symbols can be derived
from the feature attribute values, this provides much more compact styling. CQL expressions can be em-
bedded in a <WellKnownName> content string or an <OnlineResource> xlink:href attribute by using
the syntax:

${<cql expression>}

Note: Currently xlink:href strings must be valid URLs before expression expansion is performed. This
means that the URL cannot be completely provided by an expression. The xlink:href string must ex-
plicitly include at least the prefix http://

The simplest form of expression is a single attribute name, such as ${STATE_ABBR}. For example, suppose
we want to display the flags of the US states using symbols whose file names match the state name. The
following style specifies the flag symbols using a single rule:

1 <ExternalGraphic>
2 <OnlineResource xlink:type="simple"
3 xlink:href="http://mysite.com/tn_${STATE_ABBR}.jpg"/>
4 <Format>image/jpeg</Format>
5 </ExternalGraphic>

If manipulation of the attribute values is required a full CQL expression can be specified. For example, if
the values in the STATE_ABBR attribute are uppercase but the URL requires a lowercase name, the CQL
strToLowerCase function can be used:

1 <ExternalGraphic>
2 <OnlineResource xlink:type="simple"
3 xlink:href="http://mysite.com/tn_${strToLowerCase(STATE_ABBR)}.jpg" />
4 <Format>image/jpeg</Format>
5 </ExternalGraphic>

12.5.4 Variable substitution in SLD

Variable substitution in SLD is a GeoServer extension (starting in version 2.0.2) that allows passing values
from WMS requests into SLD styles. This allows dynamically setting values such as colors, fonts, sizes and
filter thresholds.

Variables are specified in WMS GetMap requests by using the env request parameter followed by a list of
name:value pairs separated by semicolons:

...&env=name1:value1;name2=value2&...

In an SLD the variable values are accessed using the env function. The function retrieves a substitution
variable value specified in the current request:

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>

</ogc:Function>

12.5. SLD Extensions in GeoServer 399

GeoServer User Manual, Release 2.5.x

A default value can be provided. It will be used if the variable was not specified in the request:

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>
<ogc:Literal>6</ogc:Literal>

</ogc:Function>

The env function can be used in an SLD anywhere an OGC expression is allowed. For example, it can
be used in CSSParameter elements, in size and offset elements, and in rule filter expressions. It is also
accepted in some places where full expressions are not allowed, such as in the Mark/WellKnownName
element.

Predefined Variables

GeoServer has predefined variables which provide information about specific properties of the request
output. These are useful when SLD parameters need to depend on output dimensions. The predefined
variables are:

Name Type Description
wms_bbox ReferencedEnvelopethe georeferenced extent of the request output
wms_crs CoordinateReferenceSystemthe definition of the output coordinate reference system
wms_srs String the code for the output coordinate reference system
wms_width Integer the width (in pixels) of the output image
wms_height Integer the height (in pixels) of the output image
wms_scale_denominatorInteger the denominator of the output map scale
kmlOutputModeEither vector

or empty
this variable gets set to vector when the kml generator is writing
out vector features as placemarks, as opposed to ground overlays

Example

The following SLD symbolizer has been parameterized in three places, with default values provided in
each case:

<PointSymbolizer>
<Graphic>
<Mark>

<WellKnownName><ogc:Function name="env">
<ogc:Literal>name</ogc:Literal>
<ogc:Literal>square</ogc:Literal>

</ogc:Function>
</WellKnownName>
<Fill>

<CssParameter name="fill">
#<ogc:Function name="env">

<ogc:Literal>color</ogc:Literal>
<ogc:Literal>FF0000</ogc:Literal>

</ogc:Function>
</CssParameter>

</Fill>
</Mark>
<Size>

<ogc:Function name="env">
<ogc:Literal>size</ogc:Literal>
<ogc:Literal>6</ogc:Literal>

</ogc:Function>
</Size>

400 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

</Graphic>
</PointSymbolizer>

Download the full SLD style

When no variables are provided in the WMS request, the SLD uses the default values and renders the
sample sf:bugsites dataset as shown:

Figure 12.56: Default rendering

If the request is changed to specify the following variable values:

&env=color:00FF00;name:triangle;size:12

the result is instead:

Figure 12.57: Rendering with varialbes supplied

12.5.5 Specifying symbolizer sizes in ground units

The SLD 1.0 specification allows giving symbolizer sizes in a single unit of measure: pixels. This means
that the size of symbolizers is the same at all zoom levels (which is commonly the desired behaviour).

The Symbology Encoding 1.1 specification provides a uom attribute on Symbolizer elements. This allows
specifying styling parameter sizes in ground units of metres or feet, as well as the default screen pixels.

12.5. SLD Extensions in GeoServer 401

GeoServer User Manual, Release 2.5.x

When ground units are used, the screen size of styled elements increases as the map is zoomed in to larger
scales. GeoServer supports the SE 1.1 uom attribute in its extended SLD 1.0 support.

Note: This extended feature is officially supported in GeoServer 2.1.0. It is available in GeoServer 2.0.3 if
the -DenableDpiUomRescaling=true system variable is specified for the JVM.

The value of the uom attribute is a URI indicating the desired unit. The units of measure supported are
those given in the SE 1.1 specification:

http://www.opengeospatial.org/se/units/metre
http://www.opengeospatial.org/se/units/foot
http://www.opengeospatial.org/se/units/pixel

Note: The px override modifier for parameters values is not currently supported.

Example

The following SLD shows the uom attribute used to specify the width of a LineSymbolizer in metres:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0" xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>
<Name>5m blue line</Name>
<UserStyle>

<Title>tm blue line</Title>
<Abstract>Default line style, 5m wide blue</Abstract>

<FeatureTypeStyle>
<Rule>
<Title>Blue Line, 5m large</Title>
<LineSymbolizer uom="http://www.opengeospatial.org/se/units/metre">
<Stroke>
<CssParameter name="stroke">#0000FF</CssParameter>
<CssParameter name="stroke-width">5</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

Applying the style to the tiger:tiger_roads dataset shows how the line widths increase as the map is
zoomed in:

12.5.6 Label Obstacles

GeoServer implements an algorithm for label conflict resolution, to prevent labels from overlapping one
another. By default this algorithm only considers conflicts with other labels. This can result in labels over-
lapping other symbolizers, which may produce an undesirable effect.

402 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

12.5. SLD Extensions in GeoServer 403

GeoServer User Manual, Release 2.5.x

GeoServer supports a vendor option called labelObstacle that allows marking a symbolizer as an ob-
stacle. This tells the labeller to avoid rendering labels that overlap it.

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0" xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>
<UserStyle>

<FeatureTypeStyle>
<Rule>

<PointSymbolizer>
<Graphic>
<ExternalGraphic>
<OnlineResource
xlink:type="simple"
xlink:href="smileyface.png" />

<Format>image/png</Format>
</ExternalGraphic>
<Size>32</Size>

</Graphic>
<VendorOption name="labelObstacle">true</VendorOption>

</PointSymbolizer>
</Rule>

</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Applying the obstacle to a regular point style:

<PointSymbolizer>
<Graphic>
<ExternalGraphic>

<OnlineResource
xlink:type="simple"
xlink:href="smileyface.png" />

<Format>image/png</Format>
</ExternalGraphic>
<Size>32</Size>

</Graphic>
<VendorOption name="labelObstacle">true</VendorOption>

</PointSymbolizer>

Applying the obstacle to line/polygon style style:

Warning: Beware of marking a line or poly symbolizer as a label obstacle. The label conflict resolving
routine is based on the bounding box so marking as a label obstacle will result in no label overlapping
not only the geometry itself, but its bounding box as well.

404 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

12.5.7 Adding space around graphic fills

Starting with GeoServer 2.3.4 it is possible to add white space around symbols used inside graphic fills,
effectively allowing to control the density of the symbols in the map.

<PolygonSymbolizer>
<Fill>
<GraphicFill>

<Graphic>
<ExternalGraphic>
<OnlineResource xlink:type="simple" xlink:href="./rockFillSymbol.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</GraphicFill>
</Fill>
<VendorOption name="graphic-margin">10</VendorOption>

</PolygonSymbolizer>

The above forces 10 pixels of white space above, below and on either side of the symbol, effectively adding
20 pixels of white space between the symbols in the fill. The graphic-margin can be expressed, just like
the CSS margin, in four different ways:

• top,right,bottom,left (one explicit value per margin)

• top,right-left,bottom (three values, with right and left sharing the same value)

• top-bottom,right-left (two values, top and bottom sharing the same value)

• top-right-bottom-left (single value for all four margins)

The ability to specify different margins allows to use more than one symbol in a fill, and synchronize the
relative positions of the various symbols to generate a composite fill:

<PolygonSymbolizer>
<Fill>
<GraphicFill>

<Graphic>
<ExternalGraphic>
<OnlineResource xlink:type="simple" xlink:href="./boulderGeometry.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</GraphicFill>
</Fill>
<VendorOption name="graphic-margin">35 17 17 35</VendorOption>

</PolygonSymbolizer>
<PolygonSymbolizer>

<Fill>
<GraphicFill>

<Graphic>
<ExternalGraphic>
<OnlineResource xlink:type="simple" xlink:href="./roughGrassFillSymbol.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</GraphicFill>
</Fill>
<VendorOption name="graphic-margin">16 16 32 32</VendorOption>

</PolygonSymbolizer>

12.5. SLD Extensions in GeoServer 405

GeoServer User Manual, Release 2.5.x

12.5.8 Fills with randomized symbols

Starting with GeoServer 2.4.2 it is possible to generate fills by randomly repeating a symbol in the polygons
to be filled. Or, to be more precise, generate the usual texture fill by repeating over and over a tile, whose
contents is the random repetition of a fill. The random distribution is stable, so it will be the same across
calls and tiles, and it’s controlled by the seed used to generate the distribution.

The random fill is generated by specifying a GraphicFill with a Mark or ExternalGraphic, and then adding
vendor options to control how the symbol is randomly repeated. Here is a table with options, default
values, and possible values:

Option De-
fault
value

Description

random none Activates random distribution of symbol. Possible values are none, free, grid.
none disables random distribution, free generates a completely random
distribution, grid will generate a regular grid of positions, and only
randomizes the position of the symbol around the cell centers, providing a
more even distribution in space

random-
tile-size

256 Size the the texture fill tile that will contain the randomly distributed symbols

random-
rotation

none Activates random symbol rotation. Possible values are none (no rotation) or
free

random-
symbol-
count

16 The number of symbols in the tile. The number of symbols actually painted
can be lower, as the distribution will ensure no two symbols overlap with each
other.

random-
seed

0 The “seed” used to generate the random distribution. Changing this value will
result in a different symbol distribution

Here is an example:

<sld:PolygonSymbolizer>
<sld:Fill>
<sld:GraphicFill>

<sld:Graphic>
<sld:Mark>
<sld:WellKnownName>shape://slash</sld:WellKnownName>
<sld:Stroke>
<sld:CssParameter name="stroke">#0000ff</sld:CssParameter>
<sld:CssParameter name="stroke-linecap">round</sld:CssParameter>
<sld:CssParameter name="stroke-width">4</sld:CssParameter>

406 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

</sld:Stroke>
</sld:Mark>
<sld:Size>8</sld:Size>

</sld:Graphic>
</sld:GraphicFill>

</sld:Fill>
<sld:VendorOption name="random-seed">5</sld:VendorOption>
<sld:VendorOption name="random">grid</sld:VendorOption>
<sld:VendorOption name="random-tile-size">100</sld:VendorOption>
<sld:VendorOption name="random-rotation">free</sld:VendorOption>
<sld:VendorOption name="random-symbol-count">50</sld:VendorOption>

</sld:PolygonSymbolizer>

Figure 12.58: Random distribution of a diagonal line

Randomized distributions can also be used for thematic mapping, for example, here is the SLD for a version
of topp:states that displays the number of inhabitantìs varying the density of a random point distribution:

<?xml version="1.0" encoding="UTF-8"?>
<sld:UserStyle xmlns="http://www.opengis.net/sld" xmlns:sld="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc" xmlns:gml="http://www.opengis.net/gml">

<sld:Name>Default Styler</sld:Name>
<sld:FeatureTypeStyle>
<sld:Name>name</sld:Name>
<sld:Rule>

<ogc:Filter>
<ogc:And>
<ogc:Not>

<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Not>
<ogc:Not>

<ogc:PropertyIsGreaterThanOrEqualTo>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>4000000</ogc:Literal>

</ogc:PropertyIsGreaterThanOrEqualTo>
</ogc:Not>

</ogc:And>
</ogc:Filter>
<sld:PolygonSymbolizer>

<sld:Fill>
<sld:GraphicFill>

12.5. SLD Extensions in GeoServer 407

GeoServer User Manual, Release 2.5.x

<sld:Graphic>
<sld:Mark>
<sld:WellKnownName>circle</sld:WellKnownName>
<sld:Fill>
<sld:CssParameter name="fill">#a9a9a9</sld:CssParameter>

</sld:Fill>
</sld:Mark>
<sld:Size>2</sld:Size>

</sld:Graphic>
</sld:GraphicFill>

</sld:Fill>
<sld:VendorOption name="random">grid</sld:VendorOption>
<sld:VendorOption name="random-tile-size">100</sld:VendorOption>
<sld:VendorOption name="random-symbol-count">150</sld:VendorOption>

</sld:PolygonSymbolizer>
<sld:LineSymbolizer>

<sld:Stroke/>
</sld:LineSymbolizer>

</sld:Rule>
<sld:Rule>

<ogc:Filter>
<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<sld:PolygonSymbolizer>

<sld:Fill>
<sld:GraphicFill>
<sld:Graphic>
<sld:Mark>
<sld:WellKnownName>circle</sld:WellKnownName>
<sld:Fill>
<sld:CssParameter name="fill">#a9a9a9</sld:CssParameter>

</sld:Fill>
</sld:Mark>
<sld:Size>2</sld:Size>

</sld:Graphic>
</sld:GraphicFill>

</sld:Fill>
<sld:VendorOption name="random">grid</sld:VendorOption>
<sld:VendorOption name="random-tile-size">100</sld:VendorOption>
<sld:VendorOption name="random-symbol-count">50</sld:VendorOption>

</sld:PolygonSymbolizer>
<sld:LineSymbolizer>

<sld:Stroke/>
</sld:LineSymbolizer>

</sld:Rule>
<sld:Rule>

<ogc:Filter>
<ogc:PropertyIsGreaterThanOrEqualTo>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>4000000</ogc:Literal>

</ogc:PropertyIsGreaterThanOrEqualTo>
</ogc:Filter>
<sld:PolygonSymbolizer>

<sld:Fill>
<sld:GraphicFill>

408 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

<sld:Graphic>
<sld:Mark>
<sld:WellKnownName>circle</sld:WellKnownName>
<sld:Fill>
<sld:CssParameter name="fill">#a9a9a9</sld:CssParameter>

</sld:Fill>
</sld:Mark>
<sld:Size>2</sld:Size>

</sld:Graphic>
</sld:GraphicFill>

</sld:Fill>
<sld:VendorOption name="random">grid</sld:VendorOption>
<sld:VendorOption name="random-tile-size">100</sld:VendorOption>
<sld:VendorOption name="random-symbol-count">500</sld:VendorOption>

</sld:PolygonSymbolizer>
<sld:LineSymbolizer>

<sld:Stroke/>
</sld:LineSymbolizer>

</sld:Rule>
</sld:FeatureTypeStyle>

</sld:UserStyle>

Figure 12.59: Thematic map via point density approach

12.6 SLD Tips and Tricks

This section details various advanced strategies for working with SLD.

12.6.1 Styling mixed geometry types

On occasion one might need to style a geometry column whose geometry type can be different for each
feature (some are polygons, some are points, etc), and use different styling for different geometry types.

SLD 1.0 does not provide a clean solution for dealing with this situation. Point, Line, and Polygon symbol-
izers do not select geometry by type, since each can apply to all geometry types:

• Point symbolizers apply to any kind of geometry. If the geometry is not a point, the centroid of the
geometry is used.

• Line symbolizers apply to both lines and polygons. For polygons the boundary is styled.

• Polygon symbolizers apply to lines, by adding a closing segment connecting the first and last points
of the line.

12.6. SLD Tips and Tricks 409

GeoServer User Manual, Release 2.5.x

There is also no standard filter predicate to identify geometry type which could be used in rules.

This section suggests a number of ways to accomplish styling by geometry type. They require either data
restructuring or the use of non-standard filter functions.

Restructuring the data

There are a few ways to restructure the data so that it can be styled by geometry type using only standard
SLD constructs.

Split the table

The first and obvious one is to split the original table into a set of separate tables, each one containing a
single geometry type. For example, if table findings has a geometry column that can contain point, lines,
and polygons, three tables can be created, each one containing a single geometry type.

Separate geometry columns

A second way is to use one table and separate geometry columns. So, if the table findings has a geom
column, the restructured table will have point, line and polygon columns, each of them containing just
one geometry type. After the restructuring, the symbolizers will refer to a specific geometry, for example:

<PolygonSymbolizer>
<Geometry><ogc:PropertyName>polygon</ogc:PropertyName></Geometry>

</PolygonSymbolizer>

This way each symbolizer will match only the geometry types it is supposed to render, and skip over the
rows that contain a null value.

Add a geometry type column

A third way is to add a geometry type column allowing standard filtering constructs to be used, and then
build a separate rule per geometry type. In the example above a new attribute, gtype will be added
containing the values Point, Line and Polygon. The following SLD template can be used after the
change:

<Rule>
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Point</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
<PointSymbolizer>

...
</PointSymbolizer>

</Rule>
<Rule>

<ogc:Filter>
<ogc:PropertyIsEqualTo>

<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Line</ogc:Literal>

</ogc:PropertyIsEqualTo>

410 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

</ogc:Filter>
<LineSymbolizer>

...
</LineSymbolizer>

</Rule>
<Rule>

<ogc:Filter>
<ogc:PropertyIsEqualTo>

<ogc:PropertyName>gtype</ogc:PropertyName>
<ogc:Literal>Polygon</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
<PolygonSymbolizer>

...
</PolygonSymbolizer>

</Rule>

The above suggestions assume that restructuring the data is technically possible. This is usually true in
spatial databases that provide functions that allow determining the geometry type.

Create views

A less invasive way to get the same results without changing the structure of the table is to create views
that have the required structure. This allows the original data to be kept intact, and the views may be used
for rendering.

Using SLD rules and filter functions

SLD 1.0 uses the OGC Filter 1.0 specification for filtering out the data to be styled by each rule. Filters can
contain Filter functions to compute properties of geometric values. In GeoServer, filtering by geometry type
can be done using the geometryType or dimension filter functions.

Note: The Filter Encoding specification provides a standard syntax for filter functions, but does not man-
date a specific set of functions. SLDs using these functions may not be portable to other styling software.

geometryType function

The geometryType function takes a geometry property and returns a string, which (currently) is
one of the values Point, LineString, LinearRing, Polygon, MultiPoint, MultiLineString,
MultiPolygon and GeometryCollection.

Using this function, a Rule matching only single points can be written as:

<Rule>
<ogc:PropertyIsEqualTo>

<ogc:Function name="geometryType">
<ogc:PropertyName>geom</ogc:PropertyName>

</ogc:Function>
<ogc:Literal>Point</ogc:Literal>

</ogc:PropertyIsEqualTo>
<PointSymbolizer>

...
</PointSymbolizer>

</Rule>

12.6. SLD Tips and Tricks 411

GeoServer User Manual, Release 2.5.x

The filter is more complex if it has to match all linear geometry types. In this case, it looks like:

<Rule>
<ogc:Filter>

<ogc:PropertyIsEqualTo>
<ogc:Function name="in3">

<ogc:Function name="geometryType">
<ogc:PropertyName>geom</ogc:PropertyName>

</ogc:Function>
<ogc:Literal>LineString</ogc:Literal>
<ogc:Literal>LinearRing</ogc:Literal>
<ogc:Literal>MultiLineString</ogc:Literal>

</ogc:Function>
<ogc:Literal>true</ogc:Literal>

</ogc:PropertyIsEqualTo>
</ogc:Filter>
<LineSymbolizer>

...
</LineSymbolizer>

</Rule>

This filter is read as geometryType(geom) in ("LineString", "LinearRing",
"MultiLineString"). Filter functions in Filter 1.0 have a fixed number of arguments, so there is
a series of in functions whose names correspond to the number of arguments they accept: in2, in3, ...,
in10.

dimension function

A slightly simpler alternative is to use the geometry dimension function to select geometries of a desired
dimension. Dimension 0 selects Points and MultiPoints, dimension 1 selects LineStrings, LinearRings and
MultiLineStrings, and dimension 2 selects Polygons and MultiPolygons. The following example shows
how to select linear geometries:

<Rule>
<ogc:PropertyIsEqualTo>

<ogc:Function name="dimension">
<ogc:PropertyName>geom</ogc:PropertyName>

</ogc:Function>
<ogc:Literal>1</ogc:Literal>

</ogc:PropertyIsEqualTo>
<LineSymbolizer>

...
</LineSymbolizer>

</Rule>

12.6.2 Styling using Transformation Functions

The Symbology Encoding 1.1 specification defines the following transformation functions:

• Recode transforms a set of discrete attribute values into another set of values

• Categorize transforms a continuous-valued attribute into a set of discrete values

• Interpolate transforms a continuous-valued attribute into another continuous range of values

These functions provide a concise way to compute styling parameters from feature attribute values.
Geoserver implements them as Filter functions with the same names.

412 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

Note: The GeoServer function syntax is slightly different to the SE 1.1 definition, since the specification
defines extra syntax elements which are not available in GeoServer functions.

These functions can make style documents more concise, since they express logic which would otherwise
require many separate rules or complex Filter expressions, They even allow logic which is impossible to
express any other way. A further advantage is that they often provide superior performance to explicit
rules.

One disadvantage of using these functions for styling is that they are not displayed in WMS legend graph-
ics.

Recode

The Recode filter function transforms a set of discrete values for an attribute into another set of values. The
function can be used within SLD styling parameters to convert the value of a feature attribute into specific
values for a parameter such as color, size, width, opacity, etc.

The recoding is defined by a set of (input, output) value pairs.

Example

Consider a chloropleth map of the US states dataset using the fill color to indicate the topographic regions
for the states. The dataset has an attribute SUB_REGION containing the region code for each state. The
Recode function is used to map each region code into a different color.

The symbolizer for this style is:

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill">
<ogc:Function name="Recode">
<!-- Value to transform -->
<ogc:Function name="strTrim">

<ogc:PropertyName>SUB_REGION</ogc:PropertyName>
</ogc:Function>

<!-- Map of input to output values -->
<ogc:Literal>N Eng</ogc:Literal>
<ogc:Literal>#6495ED</ogc:Literal>

<ogc:Literal>Mid Atl</ogc:Literal>
<ogc:Literal>#B0C4DE</ogc:Literal>

<ogc:Literal>S Atl</ogc:Literal>
<ogc:Literal>#00FFFF</ogc:Literal>

<ogc:Literal>E N Cen</ogc:Literal>
<ogc:Literal>#9ACD32</ogc:Literal>

<ogc:Literal>E S Cen</ogc:Literal>
<ogc:Literal>#00FA9A</ogc:Literal>

<ogc:Literal>W N Cen</ogc:Literal>
<ogc:Literal>#FFF8DC</ogc:Literal>

12.6. SLD Tips and Tricks 413

GeoServer User Manual, Release 2.5.x

<ogc:Literal>W S Cen</ogc:Literal>
<ogc:Literal>#F5DEB3</ogc:Literal>

<ogc:Literal>Mtn</ogc:Literal>
<ogc:Literal>#F4A460</ogc:Literal>

<ogc:Literal>Pacific</ogc:Literal>
<ogc:Literal>#87CEEB</ogc:Literal>

</ogc:Function>
</CssParameter>

</Fill>
</PolygonSymbolizer>

This style produces the following output:

Categorize

The Categorize filter function transforms a continuous-valued attribute into a set of discrete values. The
function can be used within SLD styling parameters to convert the value of a feature attribute into specific
values for a parameter such as color, size, width, opacity, etc.

The categorization is defined by a list of alternating output values and data thresholds. The threshold
values define the breaks between the input ranges. Inputs are converted into output values depending on
which range they fall in.

Example

Consider a chloropleth map of the US states dataset using the fill color to indicate a categorization of the
states by population. The dataset has attributes PERSONS and LAND_KM from which the population density
is computed using the Div operator. This value is input to the Categorize function, which is used to
assign different colors to the density ranges [<= 20], [20 - 100], and [> 100].

The symbolizer for this style is:

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill">
<ogc:Function name="Categorize">
<!-- Value to transform -->
<ogc:Div>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:PropertyName>LAND_KM</ogc:PropertyName>

414 Chapter 12. Styling

GeoServer User Manual, Release 2.5.x

</ogc:Div>

<!-- Output values and thresholds -->
<ogc:Literal>#87CEEB</ogc:Literal>
<ogc:Literal>20</ogc:Literal>
<ogc:Literal>#FFFACD</ogc:Literal>
<ogc:Literal>100</ogc:Literal>
<ogc:Literal>#F08080</ogc:Literal>

</ogc:Function>
</CssParameter>

</Fill>
</PolygonSymbolizer>

This style produces the following output:

Interpolate

The Interpolate filter function transforms a continuous-valued attribute into another continuous range
of values. The function can be used within SLD styling parameters to convert the value of a feature attribute
into a continuous-valued parameter such as color, size, width, opacity, etc.

The transformation is defined by a set of (input, output) control points chosen along a desired mapping
curve. Piecewise interpolation along the curve is used to compute an output value for any input value.

The function is able to compute either numeric or color values as output. This is known as the interpolation
method, and is specified by an optional parameter with a value of numeric (the default) or color.

The shape of the mapping curve between control points is specified by the interpolation mode, which is an
optional parameter with values of linear (the default), cubic, or cosine.

Example

Interpolating over color ranges allows concise definition of continuously-varying colors for chloropleth
(thematic) maps. As an example, consider a map of the US states dataset using the fill color to indicate
the population of the states. The dataset has an attribute PERSONS containing the population of each state.
The population values lie in the range 0 to around 30,000,000. The interpolation curve is defined by three
control points which assign colors to the population levels 0, 9,000,000 and 23,000,000. The colors for pop-
ulation values are computed by piecewise linear interpolation along this curve. For example, a state with
a population of 16,000,000 is displayed with a color midway between the ones for the middle and upper
control points. States with populations greater than 23,000,000 are displayed with the last color.

12.6. SLD Tips and Tricks 415

GeoServer User Manual, Release 2.5.x

Because the interpolation is being performed over color values, the method parameter is supplied, with a
value of color. Since the default linear interpolation is used, no interpolation mode is supplied,

The symbolizer for this style is:

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill">
<ogc:Function name="Interpolate">
<!-- Property to transform -->
<ogc:PropertyName>PERSONS</ogc:PropertyName>

<!-- Mapping curve definition pairs (input, output) -->
<ogc:Literal>0</ogc:Literal>
<ogc:Literal>#fefeee</ogc:Literal>

<ogc:Literal>9000000</ogc:Literal>
<ogc:Literal>#00ff00</ogc:Literal>

<ogc:Literal>23000000</ogc:Literal>
<ogc:Literal>#ff0000</ogc:Literal>

<!-- Interpolation method -->
<ogc:Literal>color</ogc:Literal>

<!-- Interpolation mode - defaults to linear -->
</ogc:Function>

</CssParameter>
</Fill>

</PolygonSymbolizer>

This symbolizer produces the following output:

416 Chapter 12. Styling

CHAPTER 13

Services

GeoServer serves data using standard protocols established by the Open Geospatial Consortium:

• The Web Feature Service (WFS) supports requests for geographical feature data (with vector geome-
try and attributes).

• The Web Map Service (WMS) supports requests for map images (and other formats) generated from
geographical data.

• The Web Coverage Service (WCS) supports requests for coverage data (rasters).

These services are the primary way that GeoServer supplies geospatial information.

13.1 Web Feature Service

This section describes the Web Feature Service.

13.1.1 WFS basics

GeoServer provides support for the Open Geospatial Consortium (OGC) Web Feature Service (WFS) speci-
fication, versions 1.0.0, 1.1.0, and 2.0.0. WFS defines a standard for exchanging vector data over the Internet.
With a compliant WFS, clients can query both the data structure and the source data. Advanced WFS oper-
ations also support feature locking and edit operations.

GeoServer is the reference implementation of all three versions of the standard, completely implementing
every part of the protocol. This includes the basic operations of GetCapabilities, DescribeFeatureType, and
GetFeature, as well as more advanced options such as Transaction. GeoServer WFS is also integrated with
its Security system to limit access to data and transactions, and supports a variety of WFS output formats,
making the raw data more widely available.

Differences between WFS versions

The major differences between the WFS versions are:

• WFS 1.1.0 and 2.0.0 return GML3 as the default GML, whereas in WFS 1.0.0, the default is GML2.
GML3 adopts marginally different ways of specifying a geometry. GeoServer supports requests in
both GML3 and GML2 formats.

• In WFS 1.1.0 and 2.0.0, the SRS (Spatial Reference System, or projection) is specified
with urn:x-ogc:def:crs:EPSG:XXXX, whereas in WFS 1.0.0 the specification was

417

http://www.opengeospatial.org
http://www.opengeospatial.org
http://www.opengeospatial.org/standards/wms

GeoServer User Manual, Release 2.5.x

http://www.opengis.net/gml/srs/epsg.xml#XXXX. This change has implications for
the axis order of the returned data.

• WFS 1.1.0 and 2.0.0 support on-the-fly reprojection of data, which supports returning the data in a
SRS other than the native SRS.

• WFS 2.0.0 introduces a new version of the filter encoding specification, adding support for temporal
filters.

• WFS 2.0.0 supports joins via a GetFeature request.

• WFS 2.0.0 adds the ability to page results of a GetFeature request via the startIndex and count
parameters. GeoServer now supports this functionality in WFS 1.0.0 and 1.1.0.

• WFS 2.0.0 supports stored queries, which are regular WFS queries stored on the server such that they
may be invoked by passing the appropriate identifier with a WFS request.

• WFS 2.0.0 supports SOAP (Simple Object Access Protocol) as an alternative to the OGC interface.

Note: There are also two changes to parameter names which can cause confusion. WFS 2.0.0 uses the
count parameter to limit the number of features returned rather than the maxFeatures parameter used
in previous versions. It also changed typeName to typeNames although GeoServer will accept either.

Axis ordering

WFS 1.0.0 servers return geographic coordinates in longitude/latitude (x/y) order, the most common way
to distribute data. For example, most shapefiles adopt this order by default.

However, the traditional axis order for geographic and cartographic systems is the oppo-
site—latitude/longitude (y/x)—and the later WFS specifications respect this. The default axis ordering
support is:

• Latitude/longitude—WFS 1.1.0 and WFS 2.0.0

• Longitude/latitude—WFS 1.0.0

This may cause difficulties when switching between servers with different WFS versions, or when upgrad-
ing your WFS. To minimize confusion and increase interoperability, GeoServer has adopted the following
assumptions when specifying projections in the following formats:

Representation Assumed axis order
EPSG:xxxx longitude/latitude (x/y)
http://www.opengis.net/gml/srs/epsg.xml#xxxx longitude/latitude (x/y)
urn:x-ogc:def:crs:EPSG:xxxx latitude/longitude (y/x)

13.1.2 WFS reference

The Web Feature Service (WFS) is a standard created by the Open Geospatial Consortium (OGC) for creat-
ing, modifying and exchanging vector format geographic information on the Internet using HTTP. A WFS
encodes and transfers information in Geography Markup Language (GML), a subset of XML.

The current version of WFS is 2.0.0. GeoServer supports versions 2.0.0, 1.1.0, and 1.0.0. Although there are
some important differences between the versions, the request syntax often remains the same.

A related OGC specification, the Web Map Service, defines the standard for exchanging geographic informa-
tion in digital image format.

418 Chapter 13. Services

http://www.opengeospatial.org/standards/wfs

GeoServer User Manual, Release 2.5.x

Benefits of WFS

The WFS standard defines the framework for providing access to, and supporting transactions on, discrete
geographic features in a manner that is independent of the underlying data source. Through a combination
of discovery, query, locking, and transaction operations, users have access to the source spatial and attribute
data in a manner that allows them to interrogate, style, edit (create, update, and delete), and download
individual features. The transactional capabilities of WFS also support the development and deployment
of collaborative mapping applications.

Operations

All versions of WFS support the these operations:

Operation Description
GetCapabilitiesGenerates a metadata document describing a WFS service provided by server as

well as valid WFS operations and parameters
DescribeFeatureTypeReturns a description of feature types supported by a WFS service
GetFeature Returns a selection of features from a data source including geometry and attribute

values
LockFeature Prevents a feature from being edited through a persistent feature lock
Transaction Edits existing feature types by creating, updating, and deleting

The following operations are available in version 2.0.0 only:

Operation Description
GetPropertyValueRetrieves the value of a feature property or part of the value of a complex feature

property from the data store for a set of features identified using a query expression
GetFeatureWithLockReturns a selection of features and also applies a lock on those features
CreateStoredQueryCreate a stored query on the WFS server
DropStoredQueryDeletes a stored query from the WFS server
ListStoredQueriesReturns a list of the stored queries on a WFS server
DescribeStoredQueriesReturns a metadata document describing the stored queries on a WFS server

The following operations are available in version 1.1.0 only:

Operation Description
GetGMLObject Retrieves features and elements by ID from a WFS

Note: In the examples that follow, the fictional URL http://example.com/geoserver/wfs is used for
illustration. To test the examples, substitute the address of a valid WFS. Also, although the request would
normally be defined on one line with no breaks, breaks are added for clarity in the examples provided.

Exceptions

WFS also supports a number of formats for reporting exceptions. The supported values for exception
reporting are:

For-
mat

Syntax Description

XML exceptions=text/xml(default) XML output
JSON exceptions=application/jsonSimple JSON
JSONPexceptions=text/javascriptReturn a JsonP in the form: parseResponse(...jsonp...). See WMS vendor

parameters to change the callback name. Note that this format is disabled by
default (See Global variables affecting WMS).

13.1. Web Feature Service 419

GeoServer User Manual, Release 2.5.x

GetCapabilities

The GetCapabilities operation is a request to a WFS server for a list of the operations and services, or
capabilities, supported by that server.

To issue a GET request using HTTP:

http://example.com/geoserver/wfs?
service=wfs&
version=1.1.0&
request=GetCapabilities

The equivalent request using POST:

<GetCapabilities
service="WFS"
xmlns="http://www.opengis.net/wfs"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs
http://schemas.opengis.net/wfs/1.1.0/wfs.xsd"/>

GET requests are simplest to decode, but the POST requests are equivalent.

The parameters for GetCapabilities are:

Pa-
rame-
ter

Re-
quired?

Description

serviceYes Service name—Value is WFS
versionYes Service version—Value is the current version number. The full version number must

be supplied (“1.1.0”, “1.0.0”), not the abbreviated form (“1” or “1.1”).
requestYes Operation name—Value is GetCapabilities

Although all of the above parameters are technically required as per the specification, GeoServer will pro-
vide default values if any parameters are omitted from a request.

The GetCapabilities response is a lengthy XML document, the format of which is different for each of the
supported versions. There are five main components in a GetCapabilities document:

Component Description
ServiceIdentificationContains basic header information for the request such as the Title and

ServiceType. The ServiceType indicates which version(s) of WFS are supported.
ServiceProviderProvides contact information about the company publishing the WFS service,

including telephone, website, and email.
OperationsMetadataDescribes the operations that the WFS server supports and the parameters for each

operation. A WFS server may be configured not to respond to the operations listed
above.

FeatureTypeListLists the feature types published by a WFS server. Feature types are listed in the
form namespace:featuretype. The default projection of the feature type is also
listed, along with the bounding box for the data in the stated projection.

Filter_CapabilitiesLists the filters, or expressions, that are available to form query predicates, for
example, SpatialOperators (such as Equals, Touches) and
ComparisonOperators (such as LessThan, GreaterThan). The filters
themselves are not included in the GetCapabilities document.

420 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

DescribeFeatureType

DescribeFeatureType requests information about an individual feature type before requesting the actual
data. Specifically, the operation will request a list of features and attributes for the given feature type, or list
the feature types available.

The parameters for DescribeFeatureType are:

Parameter Re-
quired?

Description

service Yes Service name—Value is WFS
version Yes Service version—Value is the current version number
request Yes Operation name—Value is DescribeFeatureType
typeNames Yes Name of the feature type to describe (typeName for WFS 1.1.0 and earlier)
exceptions No Format for reporting exceptions—default value is

application/vnd.ogc.se_xml
outputFormat No Defines the scheme description language used to describe feature types

To return a list of feature types, the GET request would be as follows. This request will return the list of
feature types, sorted by namespace:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=DescribeFeatureType

To list information about a specific feature type called namespace:featuretype, the GET request would
be:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=DescribeFeatureType&
typeNames=namespace:featuretype

GetFeature

The GetFeature operation returns a selection of features from the data source.

This request will execute a GetFeature request for a given layer namespace:featuretype:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype

Executing this command will return the geometries for all features in given a feature type, potentially a
large amount of data. To limit the output you can restrict the GetFeature request to a single feature by
including an additional parameter, featureID and providing the ID of a specific feature. In this case, the
GET request would be:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
featureID=feature

13.1. Web Feature Service 421

GeoServer User Manual, Release 2.5.x

If the ID of the feature is unknown but you still want to limit the amount of features returned, use the
count parameter for WFS 2.0.0 or the maxFeatures parameter for earlier WFS versions. In the examples
below, N represents the number of features to return:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
count=N

http://example.com/geoserver/wfs?
service=wfs&
version=1.1.0&
request=GetFeature&
typeName=namespace:featuretype&
maxFeatures=N

Exactly which N features will be returned depends in the internal structure of the data. However, you can
sort the returned selection based on an attribute value. In the following example, an attribute is included
in the request using the sortBy=attribute parameter (replace attribute with the attribute you wish
to sort by):

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
count=N&
sortBy=attribute

The default sort operation is to sort in ascending order. Some WFS servers require the sort order to be
specified, even if an ascending order sort if required. In this case, append a +A to the request. Conversely,
add a +D to the request to sort in descending order as follows:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
count=N&
sortBy=attribute+D

There is no obligation to use sortBy with count in a GetFeature request, but they can be used together to
manage the returned selection of features more effectively.

To restrict a GetFeature request by attribute rather than feature, use the propertyName key in the form
propertyName=attribute. You can specify a single attribute, or multiple attributes separated by com-
mas. To search for a single attribute in all features, the following request would be required:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
propertyName=attribute

For a single property from just one feature, use both featureID and propertyName:

422 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
featureID=feature&
propertyName=attribute

For more than one property from a single feature, use a comma-seaprated list of values for propertyName:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
featureID=feature&
propertyName=attribute1,attribute2

While the above permutations for a GetFeature request focused on non-spatial parameters, it is also possible
to query for features based on geometry. While there are limited options available in a GET request for
spatial queries (more are available in POST requests using filters), filtering by bounding box (BBOX) is
supported.

The BBOX parameter allows you to search for features that are contained (or partially contained) inside
a box of user-defined coordinates. The format of the BBOX parameter is bbox=a1,b1,a2,b2‘‘where
‘‘a1, b1, a2, and b2 represent the coordinate values. The order of coordinates passed to the BBOX pa-
rameter depends on the coordinate system used. (This is why the coordinate syntax isn’t represented with
x or y.) To specify the coordinate system, append srsName=CRS to the WFS request, where CRS is the
Coordinate Reference System you wish to use.

As for which corners of the bounding box to specify, the only requirement is for a bottom corner (left or
right) to be provided first. For example, bottom left and top right, or bottom right and top left.

An example request involving returning features based on bounding box would be in the following format:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetFeature&
typeNames=namespace:featuretype&
srsName=CRS
bbox=a1,b1,a2,b2

LockFeature

A LockFeature operation provides a long-term feature locking mechanism to ensure consistency in edit
transactions. If one client fetches a feature and makes some changes before submitting it back to the WFS,
locks prevent other clients from making any changes to the same feature, ensuring a transaction that can
be serialized. If a WFS server supports this operation, it will be reported in the server’s GetCapabilities
response.

In practice, few clients support this operation.

13.1. Web Feature Service 423

GeoServer User Manual, Release 2.5.x

Transaction

The Transaction operation can create, modify, and delete features published by a WFS. Each transaction
will consist of zero or more Insert, Update, and Delete elements, with each transaction element performed
in order. Every GeoServer transaction is atomic, meaning that if any of the elements fail, the transaction is
abandoned and the data is unaltered. A WFS server that supports transactions is sometimes known as a
WFS-T server. GeoServer fully supports transactions.

More information on the syntax of transactions can be found in the WFS specification and in the GeoServer
sample requests.

GetGMLObject

Note: This operation is valid for WFS version 1.1.0 only.

A GetGMLObject operation accepts the identifier of a GML object (feature or geometry) and returns that
object. This operation is relevant only in situations that require Complex Features by allowing clients to
extract just a portion of the nested properties of a complex feature. As a result, this operation is not widely
used by client applications.

GetPropertyValue

Note: This operation is valid for WFS version 2.0.0 only.

A GetPropertyValue operation retrieves the value of a feature property, or part of the value of a complex
feature property, from a data source for a given set of features identified by a query.

This example retrieves the geographic content only of the features in the topp:states layer:

http://example.com/geoserver/wfs?
service=wfs&
version=2.0.0&
request=GetPropertyValue&
typeNames=topp:states&
valueReference=the_geom

The same example in a POST request:

<wfs:GetPropertyValue service=’WFS’ version=’2.0.0’
xmlns:topp=’http://www.openplans.org/topp’
xmlns:fes=’http://www.opengis.net/fes/2.0’
xmlns:wfs=’http://www.opengis.net/wfs/2.0’
valueReference=’the_geom’>
<wfs:Query typeNames=’topp:states’/>

</wfs:GetPropertyValue>

To retrieve value for a different attribute, alter the valueReference parameter.

GetFeatureWithLock

Note: This operation is valid for WFS version 2.0.0 only.

424 Chapter 13. Services

http://www.opengeospatial.org/standards/wfs

GeoServer User Manual, Release 2.5.x

A GetFeatureWithLock operation is similar to a GetFeature operation, except that when the set of features
are returned from the WFS server, the features are also locked in anticipation of a subsequent transaction
operation.

This POST example retrieves the features of the topp:states layer, but in addition locks those features
for five minutes.

<wfs:GetFeatureWithLock service=’WFS’ version=’2.0.0’
handle=’GetFeatureWithLock-tc1’ expiry=’5’ resultType=’results’
xmlns:topp=’http://www.openplans.org/topp’
xmlns:fes=’http://www.opengis.net/fes/2.0’
xmlns:wfs=’http://www.opengis.net/wfs/2.0’
valueReference=’the_geom’>
<wfs:Query typeNames=’topp:states’/>

</wfs:GetFeatureWithLock>

To adjust the lock time, alter the expiry parameter.

CreateStoredQuery

Note: This operation is valid for WFS version 2.0.0 only.

A CreateStoredQuery operation creates a stored query on the WFS server. The definition of the stored
query is encoded in the StoredQueryDefinition parameter and is given an ID for a reference.

This POST example creates a new stored query (called “myStoredQuery”) that filters the topp:states
layer to those features that are within a given area of interest (${AreaOfInterest}):

<wfs:CreateStoredQuery service=’WFS’ version=’2.0.0’
xmlns:wfs=’http://www.opengis.net/wfs/2.0’
xmlns:fes=’http://www.opengis.org/fes/2.0’
xmlns:gml=’http://www.opengis.net/gml/3.2’
xmlns:myns=’http://www.someserver.com/myns’
xmlns:topp=’http://www.openplans.org/topp’>
<wfs:StoredQueryDefinition id=’myStoredQuery’>
<wfs:Parameter name=’AreaOfInterest’ type=’gml:Polygon’/>
<wfs:QueryExpressionText
returnFeatureTypes=’topp:states’
language=’urn:ogc:def:queryLanguage:OGC-WFS::WFS_QueryExpression’
isPrivate=’false’>
<wfs:Query typeNames=’topp:states’>

<fes:Filter>
<fes:Within>
<fes:ValueReference>the_geom</fes:ValueReference>
${AreaOfInterest}

</fes:Within>
</fes:Filter>

</wfs:Query>
</wfs:QueryExpressionText>

</wfs:StoredQueryDefinition>
</wfs:CreateStoredQuery>

DropStoredQuery

Note: This operation is valid for WFS version 2.0.0 only.

13.1. Web Feature Service 425

GeoServer User Manual, Release 2.5.x

A DropStoredQuery operation drops a stored query previous created by a CreateStoredQuery operation.
The request accepts the ID of the query to drop.

This example will drop a stored query with an ID of myStoredQuery:

http://example.com/geoserver/wfs?
request=DropStoredQuery&
storedQuery_Id=myStoredQuery

The same example in a POST request:

<wfs:DropStoredQuery
xmlns:wfs=’http://www.opengis.net/wfs/2.0’
service=’WFS’ id=’myStoredQuery’/>

ListStoredQueries

Note: This operation is valid for WFS version 2.0.0 only.

A ListStoredQueries operation returns a list of the stored queries currently maintained by the WFS server.

This example lists all stored queries on the server:

http://example.com/geoserver/wfs?
request=ListStoredQueries&
service=wfs&
version=2.0.0

The same example in a POST request:

<wfs:ListStoredQueries service=’WFS’
version=’2.0.0’
xmlns:wfs=’http://www.opengis.net/wfs/2.0’/>

DescribeStoredQueries

Note: This operation is valid for WFS version 2.0.0 only.

A DescribeStoredQuery operation returns detailed metadata about each stored query maintained by the
WFS server. A description of an individual query may be requested by providing the ID of the specific
query. If no ID is provided, all queries are described.

This example describes the exsting stored query with an ID of urn:ogc:def:query:OGC-WFS::GetFeatureById:

http://example.com/geoserver/wfs?
request=DescribeStoredQueries&
storedQuery_Id=urn:ogc:def:query:OGC-WFS::GetFeatureById

The same example in a POST request:

<wfs:DescribeStoredQueries
xmlns:wfs=’http://www.opengis.net/wfs/2.0’
service=’WFS’>
<wfs:StoredQueryId>urn:ogc:def:query:OGC-WFS::GetFeatureById</wfs:StoredQueryId>

</wfs:DescribeStoredQueries>

426 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

13.1.3 WFS output formats

WFS returns features and feature information in a number of formats. The syntax for specifying an output
format is:

outputFormat=<format>

where <format> is one of the following options:

For-
mat

Syntax Notes

GML2 outputFormat=GML2Default option for WFS 1.0.0
GML3 outputFormat=GML3Default option for WFS 1.1.0 and 2.0.0
Shape-
file

outputFormat=shape-zipZIP archive will be generated containing the shapefile (see Shapefile output
customization below)

JSON outputFormat=application/jsonReturns a GeoJSON or a JSON output. Note outputFormat=json is
only supported for getFeature (for backward compatibility).

JSONPoutputFormat=text/javascriptReturns a JSONP in the form: parseResponse(...json...). See
WMS vendor parameters to change the callback name. Note that this format
is disabled by default (See Global variables affecting WMS).

CSV outputFormat=csvReturns a CSV (comma-separated values) file

Note: Some additional output formats (such as Excel) are available with the use of an extension. The full
list of output formats supported by a particular GeoServer instance can be found by performing a WFS
GetCapabilities request.

Shapefile output customization

The shapefile output format output can be customized by preparing a Freemarker template which will con-
figure the file name of the archive (ZIP file) and the files it contains. The default template is:

zip=${typename}
shp=${typename}${geometryType}
txt=wfsrequest

The zip property is the name of the archive, the shp property is the name of the shapefile for a given
feature type, and txt is the dump of the actual WFS request.

The properties available in the template are:

• typename—Feature type name (for the zip property this will be the first feature type if the request
contains many feature types)

• geometryType—Type of geometry contained in the shapefile. This is only used if the output geom-
etry type is generic and the various geometries are stored in one shapefile per type.

• workspace—Workspace of the feature type

• timestamp—Date object with the request timestamp

• iso_timestamp—String (ISO timestamp of the request at GMT) in yyyyMMdd_HHmmss format

Format options as parameter in WFS requests

GeoServer provides the format_options vendor-specific parameter to specify parameters that are spe-
cific to each format. The syntax is:

13.1. Web Feature Service 427

http://en.wikipedia.org/wiki/JSONP

GeoServer User Manual, Release 2.5.x

format-options=param1:value1;param2:value2;...

The currently supported format option in WFS output is:

• filename—Applies only to the SHAPE-ZIP output format. If a file name is provided, the name
is used as the output file name. For example, format_options=filename:roads.zip. If a file
name is not specified, the output file name is inferred from the requested feature type name.

13.1.4 WFS vendor parameters

WFS vendor parameters are non-standard request parameters defined by an implementation to provide
enhanced capabilities. GeoServer supports a variety of vendor-specific WFS parameters.

CQL filters

In WFS GetFeature GET requests, the cql_filter parameter can be used to specify a filter in ECQL (Ex-
tended Common Query Language) format. ECQL provides a more compact and readable syntax compared
to OGC XML filters.

For full details see the ECQL Reference and CQL and ECQL tutorial.

The following example illustrates a GET request OGC filter:

filter=%3CFilter%20xmlns:gml=%22http://www.opengis.net/gml%22%3E%3CIntersects%3E%3CPropertyName%3Ethe_geom%3C/PropertyName%3E%3Cgml:Point%20srsName=%224326%22%3E%3Cgml:coordinates%3E-74.817265,40.5296504%3C/gml:coordinates%3E%3C/gml:Point%3E%3C/Intersects%3E%3C/Filter%3E

Using ECQL, the identical filter would be defined as follows:

cql_filter=INTERSECT(the_geom,%20POINT%20(-74.817265%2040.5296504))

Format options

The format_options parameter is a container for other parameters that are format-specific. The syntax
is:

format_options=param1:value1;param2:value2;...

The supported format option is:

• callback (default is parseResponse)—Specifies the callback function name for the JSONP re-
sponse format

Reprojection

As WFS 1.1.0 and 2.0.0 both support data reprojection, GeoServer can store the data in one projection and
return GML in another projection. While not part of the specification, GeoServer supports this using WFS
1.0.0 as well. When submitting a WFS GetFeature GET request, you can add this parameter to specify the
reprojection SRS as follows:

srsName=<srsName>

The code for the projection is represented by <srsName>, for example EPSG:4326. For POST requests,
you can add the same code to the Query element.

428 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

XML request validation

GeoServer is less strict than the WFS specification when it comes to the validity of an XML request. To force
incoming XML requests to be valid, use the following parameter:

strict=[true|false]

The default option for this parameter is false.

For example, the following request is invalid:

<wfs:GetFeature service="WFS" version="1.0.0"
xmlns:wfs="http://www.opengis.net/wfs">
<Query typeName="topp:states"/>

</wfs:GetFeature>

The request is invalid for two reasons:

• The Query element should be prefixed with wfs:.

• The namespace prefix has not been mapped to a namespace URI.

That said, the request would still be processed by default. Executing the above command with the
strict=true parameter, however, would result in an error. The correct syntax should be:

<wfs:GetFeature service="WFS" version="1.0.0"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:topp="http://www.openplans.org/topp">
<wfs:Query typeName="topp:states"/>

</wfs:GetFeature>

GetCapabilities namespace filter

WFS GetCapabilities requests may be filtered to return only those layers that correspond to a particular
namespace by adding the <namespace> parameter to the request.

Note: This parameter only affects GetCapabilities requests.

To apply this filter, add the following code to your request:

namespace=<namespace>

Although providing an invalid namespace will not result in any errors, the GetCapabilities document re-
turned will not contain any layer information.

Warning: Using this parameter may result your GetCapabilities document becoming invalid, as the
WFS specification requires the document to return at least one layer.

Note: This filter is related to Virtual OWS Services.

13.1.5 WFS schema mapping

One of the functions of the GeoServer WFS is to automatically map the internal schema of a dataset to a
feature type schema. This mapping is performed according to the following rules:

• The name of the feature element maps to the name of the dataset.

13.1. Web Feature Service 429

GeoServer User Manual, Release 2.5.x

• The name of the feature type maps to the name of the dataset with the string “Type” appended to it.

• The name of each attribute of the dataset maps to the name of an element particle contained in the
feature type.

• The type of each attribute of the dataset maps to the appropriate XML schema type (xsd:int,
xsd:double, and so on).

For example, a dataset has the following schema:

myDataset(intProperty:Integer, stringProperty:String, floatProperty:Float, geometry:Point)

This schema would be mapped to the following XML schema, available via a DescribeFeatureType
request for the topp:myDataset type:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:topp="http://www.openplans.org/topp"
targetNamespace="http://www.openplans.org/topp"
elementFormDefault="qualified">

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://localhost:8080/geoserver/schemas/gml/3.1.1/base/gml.xsd"/>

<xsd:complexType name="myDatasetType">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="floatProperty" nillable="true" type="xsd:double"/>
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="myDataset" substitutionGroup="gml:_Feature" type="topp:myDatasetType"/>

</xsd:schema>

Schema customization

The GeoServer WFS supports a limited amount of schema output customization. A custom schema may be
useful for the following:

• Limiting the attributes which are exposed in the feature type schema

• Changing the types of attributes in the schema

• Changing the structure of the schema (for example, changing the base feature type)

For example, it may be useful to limit the exposed attributes in the example dataset described above. Start
by retrieving the default output as a benchmark of the complete schema. With the feature type schema
listed above, the GetFeature request would be as follows:

<topp:myDataset gml:id="myDataset.1">
<topp:intProperty>1</topp:intProperty>
<topp:stringProperty>one</topp:stringProperty>
<topp:floatProperty>1.1</topp:floatProperty>

430 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

<topp:geometry>
<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">

<gml:pos>1.0 1.0</gml:pos>
</gml:Point>

</topp:geometry>
</topp:myDataset>

To remove floatProperty from the list of attributes, the following steps would be required:

1. The original schema is modified to remove the floatProperty, resulting in the following type
definition:

<xsd:complexType name="myDatasetType">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<!-- remove the floatProperty element
<xsd:element maxOccurs="1" minOccurs="0" name="floatProperty" nillable="true" type="xsd:double"/>
-->
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2. The modification is saved in a file named schema.xsd.

3. The schema.xsd file is copied into the feature type directory for the topp:myDataset which is:

$GEOSERVER_DATA_DIR/workspaces/<workspace>/<datastore>/myDataset/

where <workspace> is the name of the workspace containing your data store and <datastore> is
the name of the data store which contains myDataset

The modified schema will only be available to GeoServer when the configuration is reloaded or GeoServer
is restarted.

A subsequent DescribeFeatureType request for topp:myDataset confirms the floatProperty ele-
ment is absent:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:gml="http://www.opengis.net/gml"
xmlns:topp="http://www.openplans.org/topp"
targetNamespace="http://www.openplans.org/topp"
elementFormDefault="qualified">

<xsd:import namespace="http://www.opengis.net/gml"
schemaLocation="http://localhost:8080/geoserver/schemas/gml/3.1.1/base/gml.xsd"/>

<xsd:complexType name="myDatasetType">
<xsd:complexContent>

<xsd:extension base="gml:AbstractFeatureType">
<xsd:sequence>
<xsd:element maxOccurs="1" minOccurs="0" name="intProperty" nillable="true" type="xsd:int"/>
<xsd:element maxOccurs="1" minOccurs="0" name="stringProperty" nillable="true" type="xsd:string"/>
<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

</xsd:sequence>
</xsd:extension>

13.1. Web Feature Service 431

GeoServer User Manual, Release 2.5.x

</xsd:complexContent>
</xsd:complexType>

<xsd:element name="myDataset" substitutionGroup="gml:_Feature" type="topp:myDatasetType"/>

</xsd:schema>

A GetFeature request will now return features that don’t include the floatProperty attribute:

<topp:myDataset gml:id="myDataset.1">
<topp:intProperty>1</topp:intProperty>
<topp:stringProperty>one</topp:stringProperty>
<topp:geometry>
<gml:Point srsName="urn:x-ogc:def:crs:EPSG:4326">
<gml:pos>1.0 1.0</gml:pos>

</gml:Point>
</topp:geometry>

</topp:myDataset>

Type changing

Schema customization may be used to perform some type changing, although this is limited by the fact
that a changed type must be in the same domain as the original type. For example, integer types must be
changed to integer types, temporal types to temporal types, and so on.

The most common change type requirement is for geometry attributes. In many cases the underlying data
set does not have the necessary metadata to report the specific geometry type of a geometry attribute. The
automatic schema mapping would result in an element definition similar to the following:

<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:GeometryPropertyType"/>

However if the specific type of the geometry is known, the element definition above could be altered. For
point geometry, the element definition could be altered to :

<xsd:element maxOccurs="1" minOccurs="0" name="geometry" nillable="true" type="gml:PointPropertyType"/>

13.2 Web Map Service

13.2.1 WMS basics

GeoServer provides support for Open Geospatial Consortium (OGC) Web Map Service (WMS) versions
1.1.1 and 1.3.0. This is the most widely used standard for generating maps on the web, and it is the primary
interface to request map products from GeoServer. Using WMS makes it possible for clients to overlay
maps from several different sources in a seamless way.

GeoServer’s WMS implementation fully supports the standard, and is certified compliant against the
OGC’s test suite. It includes a wide variety of rendering and labeling options, and is one of the fastest
WMS Servers for both raster and vector data.

GeoServer WMS supports reprojection to any coordinate reference system in the EPSG database. It is
possible to add additional coordinate systems if the Well Known Text definition is known. See Coordinate
Reference System Handling for details.

GeoServer fully supports the Styled Layer Descriptor (SLD) standard, and uses SLD files as its native
styling language. For more information on how to style data in GeoServer see the section Styling

432 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

Differences between WMS versions

The major differences between versions 1.1.1 and 1.3.0 are:

• In 1.1.1 geographic coordinate systems specified with the EPSG namespace are defined to have an axis
ordering of longitude/latitude. In 1.3.0 the ordering is latitude/longitude. See Axis Ordering below
for more details.

• In the GetMap operation the srs parameter is called crs in 1.3.0. GeoServer supports both keys
regardless of version.

• In the GetFeatureInfo operation the x and y parameters are called i and j in 1.3.0. GeoServer supports
both keys regardless of version, except when in CITE-compliance mode.

Axis Ordering

The WMS 1.3 specification mandates that the axis ordering for geographic coordinate systems defined in
the EPSG database be latitude/longitude, or y/x. This is contrary to the fact that most spatial data is usually
in longitude/latitude, or x/y. This requires that the coordinate order in the BBOX parameter be reversed for
SRS values which are geographic coordinate systems.

For example, consider the WMS 1.1 request using the WGS84 SRS (EPSG:4326):

geoserver/wms?VERSION=1.1.1&REQUEST=GetMap&SRS=epsg:4326&BBOX=-180,-90.180,90&...

The equivalent WMS 1.3 request is:

geoserver/wms?VERSION=1.1.1&REQUEST=GetMap&CRS=epsg:4326&BBOX=-90,-180,90,180&...

Note that the coordinates specified in the BBOX parameter are reversed.

13.2.2 WMS reference

Introduction

The OGC Web Map Service (WMS) specification defines an HTTP interface for requesting georeferenced
map images from a server. GeoServer supports WMS 1.1.1, the most widely used version of WMS, as well
as WMS 1.3.0.

The relevant OGC WMS specifications are:

• OGC Web Map Service Implementation Specification, Version 1.1.1

• OGC Web Map Service Implementation Specification, Version 1.3.0

GeoServer also supports some extensions to the WMS specification made by the Styled Layer Descriptor
(SLD) standard to control the styling of the map output. These are defined in:

• OpenGIS Styled Layer Descriptor Profile of the Web Map Service Implementation Specification, Ver-
sion 1.1.0

Benefits of WMS

WMS provides a standard interface for requesting a geospatial map image. The benefit of this is that WMS
clients can request images from multiple WMS servers, and then combine them into a single view for the
user. The standard guarantees that these images can all be overlaid on one another as they actually would
be in reality. Numerous servers and clients support WMS.

13.2. Web Map Service 433

http://www.opengeospatial.org/standards/wms
http://portal.opengeospatial.org/files/?artifact_id=1081&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=14416
http://portal.opengeospatial.org/files/?artifact_id=22364
http://portal.opengeospatial.org/files/?artifact_id=22364

GeoServer User Manual, Release 2.5.x

Operations

WMS requests can perform the following operations:

Operation Description
Exceptions If an exception occur
GetCapabilities Retrieves metadata about the service, including supported operations and

parameters, and a list of the available layers
GetMap Retrieves a map image for a specified area and content
GetFeatureInfo
(optional)

Retrieves the underlying data, including geometry and attribute values, for a
pixel location on a map

DescribeLayer
(optional)

Indicates the WFS or WCS to retrieve additional information about the layer.

GetLegendGraphic
(optional)

Retrieves a generated legend for a map

Exceptions

Formats in which WMS can report exceptions. The supported values for exceptions are:

For-
mat

Syntax Notes

XML EXCEPTIONS=application/vnd.ogc.se_xmlXml output. (The default format)
PNG EXCEPTIONS=application/vnd.ogc.se_inimageGenerates an image
BlankEXCEPTIONS=application/vnd.ogc.se_blankGenerates a blank image
JSON EXCEPTIONS=application/jsonSimple Json representation.
JSONPEXCEPTIONS=text/javascriptReturn a JsonP in the form: paddingOutput(...jsonp...). See WMS

vendor parameters to change the callback name. Note that this format
is disabled by default (See Global variables affecting WMS).

GetCapabilities

The GetCapabilities operation requests metadata about the operations, services, and data (“capabilities”)
that are offered by a WMS server.

The parameters for the GetCapabilities operation are:

Parameter Required? Description
service Yes Service name. Value is WMS.
version Yes Service version. Value is one of 1.0.0, 1.1.0, 1.1.1, 1.3.
request Yes Operation name. Value is GetCapabilities.

GeoServer provides the following vendor-specific parameters for the GetCapabilities operation. They are
fully documented in the WMS vendor parameters section.

Parameter Required? Description
namespace No limits response to layers in a given namespace

A example GetCapabilities request is:

http://localhost:8080/geoserver/wms?
service=wms&
version=1.1.1&
request=GetCapabilities

434 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

There are three parameters being passed to the WMS server, service=wms, version=1.1.1, and
request=GetCapabilities. The service parameter tells the WMS server that a WMS request is forth-
coming. The version parameter refers to which version of WMS is being requested. The request pa-
rameter specifies the GetCapabilities operation. The WMS standard requires that requests always includes
these three parameters. GeoServer relaxes these requirements (by setting the default version if omitted),
but for standard-compliance they should always be specified.

The response is a Capabilities XML document that is a detailed description of the WMS service. It contains
three main sections:

Ser-
vice

Contains service metadata such as the service name, keywords, and contact information for the
organization operating the server.

Re-
quest

Describes the operations the WMS service provides and the parameters and output formats for
each operation. If desired GeoServer can be configured to disable support for certain WMS
operations.

Layer Lists the available coordinate systems and layers. In GeoServer layers are named in the form
“namespace:layer”. Each layer provides service metadata such as title, abstract and keywords.

GetMap

The GetMap operation requests that the server generate a map. The core parameters specify one or more
layers and styles to appear on the map, a bounding box for the map extent, a target spatial reference system,
and a width, height, and format for the output. The information needed to specify values for parameters
such as layers, styles and srs can be obtained from the Capabilities document.

The response is a map image, or other map output artifact, depending on the format requested. GeoServer
provides a wide variety of output formats, described in WMS output formats.

The standard parameters for the GetMap operation are:

13.2. Web Map Service 435

GeoServer User Manual, Release 2.5.x

Param-
eter

Re-
quired?

Description

service Yes Service name. Value is WMS.
version Yes Service version. Value is one of 1.0.0, 1.1.0, 1.1.1, 1.3.
request Yes Operation name. Value is GetMap.
layers Yes Layers to display on map. Value is a comma-separated list of layer names.
styles Yes Styles in which layers are to be rendered. Value is a comma-separated list of style

names, or empty if default styling is required. Style names may be empty in the list,
to use default layer styling.

srs or
crs

Yes Spatial Reference System for map output. Value is in form EPSG:nnn. crs is the
parameter key used in WMS 1.3.0.

bbox Yes Bounding box for map extent. Value is minx,miny,maxx,maxy in units of the SRS.
width Yes Width of map output, in pixels.
height Yes Height of map output, in pixels.
format Yes Format for the map output. See WMS output formats for supported values.
transparentNo Whether the map background should be transparent. Values are true or false.

Default is false
bgcolor No Background color for the map image. Value is in the form RRGGBB. Default is

FFFFFF (white).
exceptionsNo Format in which to report exceptions. Default value is

application/vnd.ogc.se_xml.
time No Time value or range for map data. See Time Support in Geoserver WMS for more

information.
sld No A URL referencing a StyledLayerDescriptor XML file which controls or enhances map

layers and styling
sld_bodyNo A URL-encoded StyledLayerDescriptor XML document which controls or enhances

map layers and styling

GeoServer provides a number of useful vendor-specific parameters for the GetMap operation. These are
documented in the WMS vendor parameters section.

Example WMS request for topp:states layer to be output as a PNG map image in SRS EPGS:4326 and
using default styling is:

http://localhost:8080/geoserver/wms?
request=GetMap
&service=WMS
&version=1.1.1
&layers=topp%3Astates
&styles=population
&srs=EPSG%3A4326
&bbox=-145.15104058007,21.731919794922,-57.154894212888,58.961058642578&
&width=780
&height=330
&format=image%2Fpng

The standard specifies many of the parameters as being mandatory, GeoServer provides the WMS Reflector
to allow many of them to be optionally specified.

Experimenting with this feature is a good way to get to know the GetMap parameters.

Example WMS request using a GetMap XML document is:

<?xml version="1.0" encoding="UTF-8"?>
<ogc:GetMap xmlns:ogc="http://www.opengis.net/ows"

xmlns:gml="http://www.opengis.net/gml"
version="1.1.1" service="WMS">
<StyledLayerDescriptor version="1.0.0">

436 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

<NamedLayer>
<Name>topp:states</Name>
<NamedStyle><Name>population</Name></NamedStyle>

</NamedLayer>
</StyledLayerDescriptor>
<BoundingBox srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:coord><gml:X>-130</gml:X><gml:Y>24</gml:Y></gml:coord>
<gml:coord><gml:X>-55</gml:X><gml:Y>50</gml:Y></gml:coord>

</BoundingBox>
<Output>

<Format>image/png</Format>
<Size><Width>550</Width><Height>250</Height></Size>

</Output>
</ogc:GetMap>

Time

As of GeoServer 2.2.0, GeoServer supports a TIME attribute for WMS GetMap requests as described in
version 1.3 of the WMS specification. This parameter allows filtering a dataset by temporal slices as well as
spatial tiles for rendering. See Time Support in Geoserver WMS for information on its use.

GetFeatureInfo

The GetFeatureInfo operation requests the spatial and attribute data for the features at a given location
on a map. It is similar to the WFS GetFeature operation, but less flexible in both input and output. Since
GeoServer provides a WFS service we recommend using it instead of GetFeatureInfo whenever possi-
ble.

The one advantage of GetFeatureInfo is that the request uses an (x,y) pixel value from a returned WMS
image. This is easier to use for a naive client that is not able to perform true geographic referencing.

The standard parameters for the GetFeatureInfo operation are:

Parameter Re-
quired?

Description

service Yes Service name. Value is WMS.
version Yes Service version. Value is one of 1.0.0, 1.1.0, 1.1.1, 1.3.
request Yes Operation name. Value is GetFeatureInfo.
layers Yes See GetMap
styles Yes See GetMap
srs or crs Yes See GetMap
bbox Yes See GetMap
width Yes See GetMap
height Yes See GetMap
query_layersYes Comma-separated list of one or more layers to query.
info_format No Format for the feature information response. See below for values.
feature_countNo Maximum number of features to return. Default is 1.
x or i Yes X ordinate of query point on map, in pixels. 0 is left side. i is the parameter

key used in WMS 1.3.0.
y or j Yes Y ordinate of query point on map, in pixels. 0 is the top. j is the parameter

key used in WMS 1.3.0.
exceptions No Format in which to report exceptions. The default value is

application/vnd.ogc.se_xml.

13.2. Web Map Service 437

GeoServer User Manual, Release 2.5.x

Geoserver supports a number of output formats for the GetFeatureInfo response. Server-styled HTML
is the most commonly-used format. For maximum control and customisation the client should use GML3
and style the raw data itself. The supported formats are:

For-
mat

Syntax Notes

TEXT info_format=text/plainSimple text output. (The default format)
GML
2

info_format=application/vnd.ogc.gmlWorks only for Simple Features (see Complex Features)

GML
3

info_format=application/vnd.ogc.gml/3.1.1Works for both Simple and Complex Features (see Complex Features)

HTMLinfo_format=text/htmlUses HTML templates that are defined on the server. See
GetFeatureInfo Templates for information on how to template HTML
output.

JSON info_format=application/jsonSimple Json representation.
JSONPinfo_format=text/javascriptReturns a JsonP in the form: parseResponse(...json...). See

WMS vendor parameters to change the callback name. Note that this
format is disabled by default (See Global variables affecting WMS).

GeoServer provides the following vendor-specific parameters for the GetFeatureInfo operation. They are
fully documented in the WMS vendor parameters section.

Parameter Required? Description
buffer No width of search radius around query point.
cql_filter No Filter for returned data, in ECQL format
filter No Filter for returned data, in OGC Filter format
propertyName No Feature properties to be returned

An example request for feature information from the topp:states layer in HTML format is:

http://localhost:8080/geoserver/wms?
request=GetFeatureInfo
&service=WMS
&version=1.1.1
&layers=topp%3Astates
&styles=
&srs=EPSG%3A4326
&format=image%2Fpng
&bbox=-145.151041%2C21.73192%2C-57.154894%2C58.961059
&width=780
&height=330
&query_layers=topp%3Astates
&info_format=text%2Fhtml
&feature_count=50
&x=353
&y=145
&exceptions=application%2Fvnd.ogc.se_xml

An example request for feature information in GeoJSON format is:

http://localhost:8080/geoserver/wms?
&INFO_FORMAT=application/json
&REQUEST=GetFeatureInfo
&EXCEPTIONS=application/vnd.ogc.se_xml
&SERVICE=WMS
&VERSION=1.1.1
&WIDTH=970&HEIGHT=485&X=486&Y=165&BBOX=-180,-90,180,90
&LAYERS=COUNTRYPROFILES:grp_administrative_map

438 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

&QUERY_LAYERS=COUNTRYPROFILES:grp_administrative_map
&TYPENAME=COUNTRYPROFILES:grp_administrative_map

The result will be:

{
"type":"FeatureCollection",
"features":[

{
"type":"Feature",
"id":"dt_gaul_geom.fid-138e3070879",
"geometry":{

"type":"MultiPolygon",
"coordinates":[

[
[

[
XXXXXXXXXX,
XXXXXXXXXX

],
...
[

XXXXXXXXXX,
XXXXXXXXXX

]
]

]
]

},
"geometry_name":"at_geom",
"properties":{

"bk_gaul":X,
"at_admlevel":0,
"at_iso3":"XXX",
"ia_name":"XXXX",
"at_gaul_l0":X,
"bbox":[

XXXX,
XXXX,
XXXX,
XXXX

]
}

}
],
"crs":{

"type":"EPSG",
"properties":{

"code":"4326"
}

},
"bbox":[

XXXX,
XXXX,
XXXX,
XXXX

]
}

13.2. Web Map Service 439

GeoServer User Manual, Release 2.5.x

DescribeLayer

The DescribeLayer operation is used primarily by clients that understand SLD-based WMS. In order to
make an SLD one needs to know the structure of the data. WMS and WFS both have operations to do this,
so the DescribeLayer operation just routes the client to the appropriate service.

The standard parameters for the DescribeLayer operation are:

Parameter Re-
quired?

Description

service Yes Service name. Value is WMS.
version Yes Service version. Value is 1.1.1.
request Yes Operation name. Value is DescribeLayer.
layers Yes See GetMap
exceptions No Format in which to report exceptions. The default value is

application/vnd.ogc.se_xml.

Geoserver supports a number of output formats for the DescribeLayer response. Server-styled HTML is
the most commonly-used format. The supported formats are:

For-
mat

Syntax Notes

TEXT output_format=text/xmlSame as default.
GML
2

output_format=application/vnd.ogc.wms_xmlThe default format.

JSON output_format=application/jsonSimple Json representation.
JSONPoutput_format=text/javascriptReturn a JsonP in the form: paddingOutput(...jsonp...). See WMS

vendor parameters to change the callback name. Note that this format
is disabled by default (See Global variables affecting WMS).

An example request in XML (default) format on a layer is:

http://localhost:8080/geoserver/topp/wms?service=WMS
&version=1.1.1
&request=DescribeLayer
&layers=topp:coverage

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE WMS_DescribeLayerResponse SYSTEM "http://localhost:8080/geoserver/schemas/wms/1.1.1/WMS_DescribeLayerResponse.dtd">
<WMS_DescribeLayerResponse version="1.1.1">

<LayerDescription name="topp:coverage" owsURL="http://localhost:8080/geoserver/topp/wcs?" owsType="WCS">
<Query typeName="topp:coverage"/>

</LayerDescription>
</WMS_DescribeLayerResponse>

An example request for feature description in JSON format on a layer group is:

http://localhost:8080/geoserver/wms?service=WMS
&version=1.1.1
&request=DescribeLayer
&layers=sf:roads,topp:tasmania_roads,nurc:mosaic
&outputFormat=application/json

The result will be:

{
version: "1.1.1",
layerDescriptions: [
{

440 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

layerName: "sf:roads",
owsURL: "http://localhost:8080/geoserver/wfs/WfsDispatcher?",
owsType: "WFS",
typeName: "sf:roads"

},
{

layerName: "topp:tasmania_roads",
owsURL: "http://localhost:8080/geoserver/wfs/WfsDispatcher?",
owsType: "WFS",
typeName: "topp:tasmania_roads"

},
{

layerName: "nurc:mosaic",
owsURL: "http://localhost:8080/geoserver/wcs?",
owsType: "WCS",
typeName: "nurc:mosaic"

}
]
}

GetLegendGraphic

The GetLegendGraphic operation provides a mechanism for generating legend graphics as images, beyond
the LegendURL reference of WMS Capabilities. It generates a legend based on the style defined on the
server, or alternatively based on a user-supplied SLD. For more information on this operation and the
various options that GeoServer supports see GetLegendGraphic.

13.2.3 Time Support in Geoserver WMS

For layers that are properly configured with a TIME dimension, GeoServer supports a TIME attribute in
GetMap requests to specify a temporal subset for rendering. For example, you might have a single dataset
with weather observations collected over time and choose to plot a single day’s worth of observations.

Specifying a Time

The format used for specifying a time in the WMS TIME parameter is based on ISO-8601. Times may be
specified to a precision of 1 millisecond; GeoServer does not represent time queries with more precision
than this. Times follow the general format:

yyyy-MM-ddThh:mm:ss.SSSZ

That is, a day specified by a 4-digit year, 2-digit month, and 2-digit day-of-month field, and an instant on
that day specified by 2-digit hour, minute, and second fields, with an arbitrary number of decimal digits
after the seconds field. The day and instant seconds are separated with a capital ‘T’, and the entire thing
is suffixed with a ‘Z’ (indicating ‘Zulu’ or UTC <http://en.wikipedia.org/wiki/Coordinated_Universal_Time> for
the time zone. The WMS specification does not provide for other time zones.)

GeoServer will apply the TIME value to all temporally enabled layers in the LAYERS parameter of the
GetMap request. Layers without a temporal component will be served normally - allowing clients to in-
clude reference information like political boundaries along with temporal data.

13.2. Web Map Service 441

http://en.wikipedia.org/wiki/ISO_8601

GeoServer User Manual, Release 2.5.x

Examples

• December 12, 2001 at 6:00 PM would be represented as:

TIME=2001-12-12T18:00:00.0Z

• May 5, 1993 at 11:34 PM would be represented as:

TIME=1993-05-05T11:34:00.0Z

Specifying a Periodicity

The periodicity is also specified in ISO-8601 format: a capital P followed by one or more interval lengths,
each consisting of a number and a letter identifying a time unit:

Unit Abbreviation
Years Y
Months M
Days D
Hours H
Minutes M
Seconds S

The Year/Month/Day group of values must be separated from the Hours/Minutes/Seconds group by a T
character. Additionally, fields which contain a 0 may be omitted entirely, and the T may be omitted if hours,
minutes, and seconds are all omitted. Fractional values are permitted, but only for the most specific value
that is included.

The period must divide evenly into the interval defined by the start/end times.

Examples of Periods

• One hour:

P0Y0M0DT1H0M0S

PT1H0M0S

PT1H

• 90 minutes (equivalent to 1 hour, 30 minutes):

P0Y0M0DT1H30M0S

PT1H30M

P90M

• 18 months:

P1Y6M0DT0H0M0S

P1Y6M0D

P0Y18M0DT0H0M0S

P18M

442 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

But not ‘‘ P1.25Y3M

Specifying an Interval

A client may request information over a continuous interval instead of a single instant by specifying a start
and end time, separated by a / character. In this scenario the start and end are both inclusive; that is,
samples from exactly the endpoints of the specified range will be included in the rendered tile.

Examples

Description Time specification
The month of September 2002 2002-09-01T00:00:00.0Z/2002-10-01T23:59:59.999Z
The entire day of December 25, 2010 2010-12-25T00:00:00.0Z/2010-12-25T23:59:59.999Z

Note: Because the time interval is inclusive, we cannot precisely specify a concept such as “all times
within day x”. We must choose between incorrectly accepting observations that occur at the end point,
and incorrectly excluding some fraction of the final second of the interval. In practice, GeoServer and
many data storage engines have limited resolution in their representations, so approximating a range to the
nearest millisecond is ‘as good as we can do.’ It is possible that this technical constraint may be lifted at
some point in the future.

Reduced Accuracy Times

The WMS specification also allows time specifications to be truncated, by omitting some suffix of the time
string. In this case, GeoServer treats the time as a range whose length is equal to one of the most precise
unit specified in the time string. If time specification omits all fields except year, it identifies a range one
year long starting at the beginning of that year, etc.

GeoServer implements this by adding the appropriate unit, then subtracting 1 millisecond. This avoids
surprising results when using an interval that aligns with the actual sampling frequency of the data - for
example, if yearly data is natively stored with dates like 2001-01-01T00:00:00.0Z, 2002-01-01T00:00:00Z, etc.
then a request for 2001 would include the samples for both 2001 and 2002 otherwise.

Examples

Description Reduced Accuracy
Time

Equivalent Range

The month of September
2002

2002-09 2002-09-01T00:00:00.0Z/2002-10-01T23:59:59.999Z

The day of December 25,
2010

2010-12-25 2010-12-25T00:00:00.0Z/2010-12-25T23:59:59.999Z

Ranges with Reduced Accuracy Times

Reduced accuracy times are also allowed when specifying ranges. In this case, GeoServer effectively ex-
pands the start and end times as described above, and then includes any samples from after the beginning
of the start interval and before the end of the end interval.

13.2. Web Map Service 443

GeoServer User Manual, Release 2.5.x

Description Reduced Accuracy
Time

Equivalent Range

The months of September
through December 2002

2002-09/2002-12 2002-09-01T00:00:00.0Z/2002-12-31T23:59:59.999Z

12pm through 6pm, December
25, 2010

2010-12-25T12/2010-12-25T182010-12-25T12:00:00.0Z/2010-12-25T18:59:59.999Z

Specifying a List of Times

For some formats, GeoServer can generate an animation. In this case, the client must specify multiple times,
one for each frame. When multiple times are needed, the client should simply format each time as described
above, and separate them with commas.

If the list is evenly spaced (for example, daily or hourly samples) then the list may be specified as a range,
using a start time, end time, and period separated by slashes.

Examples

Description List notation Range notation
Noon every day for
the week of August
12-18, 2012

TIME=2012-08-12T12:00:00.0Z,2012-08-13T12:00:00.0Z,2012-08-14T12:00:00.0Z,2012-08-15T12:00:00.0Z,2012-08-16T12:00:00.0Z,2012-08-17T12:00:00.0Z,2012-08-18T12:00:00.0ZTIME=2012-08-12T12:00:00.0Z/2012-08-18:T12:00:00.0Z/P1D

Midnight on the first
of September,
October, and
November 1999

TIME=1999-09-01T00:00:00.0Z,1999-10-01T00:00:00.0Z,1999-11-01T00:00:00.0ZTIME=1999-09-01T00:00:00.0Z/1999-11-01T00:00:00.0Z/P1M

Note: GeoServer currently does not support lists of ranges, so all list queries effectively have a resolu-
tion of 1 millisecond. If you use reduced accuracy notation when specifying a range, each range will be
automatically converted to the instant at the beginning of the range.

13.2.4 WMS output formats

WMS returns images in a number of possible formats. This page shows a list of the output formats. The
syntax for setting an output format is:

format=<format>

where <format> is any of the options below.

Note: The list of output formats supported by a GeoServer instance can be found by a WMS GetCapabilities
request.

444 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

For-
mat

Syntax Notes

PNG format=image/png Default
PNG8 format=image/png8Same as PNG, but computes an optimal 256 color (8 bit) palette, so the

image size is usually smaller
JPEG format=image/jpeg
GIF format=image/gif
TIFF format=image/tiff
TIFF8 format=image/tiff8Same as TIFF, but computes an optimal 256 color (8 bit) palette, so the

image size is usually smaller
Geo-
TIFF

format=image/geotiffSame as TIFF, but includes extra GeoTIFF metadata

Geo-
TIFF8

format=image/geotiff8Same as TIFF, but includes extra GeoTIFF metadata and computes an
optimal 256 color (8 bit) palette, so the image size is usually smaller

SVG format=image/svg
PDF format=application/pdf
GeoRSS format=rss
KML format=kml
KMZ format=kmz
Open-
Lay-
ers

format=application/openlayersGenerates an OpenLayers HTML application.

13.2.5 WMS vendor parameters

WMS vendor parameters are non-standard request parameters that are defined by an implementation to
provide enhanced capabilities. GeoServer supports a variety of vendor-specific WMS parameters.

angle

The angle parameter rotates the output map clockwise around its center. The syntax is:

angle=<x>

where <x> is the number of degrees to rotate by.

Map rotation is supported in all raster formats, PDF, and SVG when using the Batik producer (which is the
default).

buffer

The buffer parameter specifies the number of additional border pixels that are used in the GetMap and
GetFeatureInfo operations. The syntax is:

buffer=<bufferwidth>

where <bufferwidth> is the width of the buffer in pixels.

In the GetMap operation, buffering includes features that lie outside the request bounding box, but whose
styling is thick enough to be visible inside the map area.

In the GetFeatureInfo operation, buffering creates a “search radius” around the location of the request. Fea-
ture info is returned for features intersecting the search area. This is useful when working with an Open-
Layers map (such as those generated by the Layer Preview page) since it relaxes the need to click precisely
on a point for the appropriate feature info to be returned.

13.2. Web Map Service 445

GeoServer User Manual, Release 2.5.x

In both operations GeoServer attempts to compute the buffer value automatically by inspecting the styles
for each layer. All active symbolizers are evaluated, and the size of the largest is used (i.e. largest point
symbolizer, thickest line symbolizer). Automatic buffer sizing cannot be computed if:

• the SLD contains sizes that are specified as feature attribute values

• the SLD contains external graphics and does not specify their size explicitly

In this event, the following defaults are used:

• 0 pixels for GetMap requests

• 5 pixels for GetFeatureInfo requests (a different min value can be set via the
org.geoserver.wms.featureinfo.minBuffer system variable, e.g., add
-Dorg.geoserver.wms.featureinfo.minBuffer=10 to make the min buffer be 10 pixels)

If these are not sufficiently large, the explicit parameter can be used.

cql_filter

The cql_filter parameter is similar to the standard filter parameter, but the filter is expressed us-
ing ECQL (Extended Common Query Language). ECQL provides a more compact and readable syntax
compared to OGC XML filters. For full details see the ECQL Reference and CQL and ECQL tutorial.

If more than one layer is specified in the layers parameter, then a separate filter can be specified for each
layer, separated by semicolons. The syntax is:

cql_filter=filter1;filter2...

An example of a simple CQL filter is:

cql_filter=INTERSECT(the_geom,%20POINT%20(-74.817265%2040.5296504))

env

The env parameter defines the set of substitution values that can be used in SLD variable substitution. The
syntax is:

env=param1:value1;param2:value2;...

See Variable substitution in SLD for more information.

featureid

The featureid parameter filters by feature ID, a unique value given to all features. Multiple features can
be selected by separating the featureids by comma, as in this example:

featureid=states.1,states.45

filter

The WMS specification allows only limited filtering of data. GeoServer enhances the WMS filter capability
to match that provided by WFS. The filter parameter can specify a list of OGC XML filters. The list is
enclosed in parentheses: (). When used in a GET request, the XML tag brackets must be URL-encoded.

If more than one layer is specified in the layers parameter then a separate filter can be specified for each
layer.

446 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

An example of an OGC filter encoded in a GET request is:

filter=%3CFilter%20xmlns:gml=%22http://www.opengis.net/gml%22%3E%3CIntersects%3E%3CPropertyName%3Ethe_geom%3C/PropertyName%3E%3Cgml:Point%20srsName=%224326%22%3E%3Cgml:coordinates%3E-74.817265,40.5296504%3C/gml:coordinates%3E%3C/gml:Point%3E%3C/Intersects%3E%3C/Filter%3E

format_options

The format_options is a container for parameters that are format-specific. The syntax is:

format_options=param1:value1;param2:value2;...

The supported format options are:

• antialiasing (values = on, off, text): controls the use of antialiased rendering in raster output.

• callback: specifies the callback function name for the jsonp response format (default is
parseResponse).

• dpi: sets the rendering DPI (dots-per-inch) for raster outputs. The OGC standard output resolu-
tion is 90 DPI. If you need to create high resolution images (e.g for printing) it is advisable to re-
quest a larger image size and specify a higher DPI. In general, the image size should be increased
by a factor equal to targetDPI/90, with the target dpi set in the format options. For exam-
ple, to print a 100x100 image at 300 DPI request a 333x333 image with the DPI value set to 300:
&width=333&height=333&format_options=dpi:300

• layout: specifies a layout name to use. Layouts are used to add decorators such as compasses and
legends. This capability is discussed further in the WMS Decorations section.

• quantizer ((values = octree, mediancut): controls the color quantizer used to produce PNG8
images. GeoServer 2.2.0 provides two quantizers, a fast RGB quantizer called octree that does not
handle translucency and a slower but more accurate RGBA quantizer called mediancut. By default
the first is used on opaque images, whilst the second is enabled if the client asks for a transparent
image (transparent=true). This vendor parameter can be used to manually force the usage of a
particular quantizer.

• kmattr ((values = true,‘‘false‘‘)): determines whether the KML returned by GeoServer should in-
clude clickable attributes or not. This parameter primarily affects Google Earth rendering.

• legend ((values = true,‘‘false‘‘)): KML may add the legend.

• kmscore ((values = between 0 to force raster output and 100 to force vector output)): parameter
sets whether GeoServer should render KML data as vector or raster. This parameter primarily affects
Google Earth rendering.

• kmltitle: parameter sets the KML title.

maxFeatures and startIndex

The parameters maxFeatures and startIndex can be used together to provide “paging” support. Pag-
ing is helpful in situations such as KML crawling, where it is desirable to be able to retrieve the map in
sections when there are a large number of features.

The startindex=n parameter specifies the index from which to start rendering in an ordered list of fea-
tures. n must be a positive integer.

The maxfeatures=n parameter sets a limit on the amount of features rendered. n must be a positive
integer. When used with startindex, the features rendered will be the ones starting at the startindex
value.

13.2. Web Map Service 447

GeoServer User Manual, Release 2.5.x

Note that not all layers support paging. For a layer to be queried in this way, the underlying feature source
must support paging. This is usually the case for databases (such as PostGIS).

namespace

The namespace parameter causes WMS GetCapabilities responses to be filtered to only contain layers in to
a particular namespace. The syntax is:

namespace=<namespace>

where <namespace> is the namespace prefix.

Warning: Using an invalid namespace prefix will not cause an error, but the capabilities document
returned will contain no layers, only layer groups.

Note: This affects the capabilities document only, not other requests. Other WMS operations will still
process all layers, even when a namespace is specified.

palette

It is sometimes advisable (for speed and bandwidth reasons) to downsample the bit depth of returned
maps. The way to do this is to create an image with a limited color palette, and save it in the palettes
directory inside your GeoServer Data Directory. It is then possible to specify the palette parameter of the
form:

palette=<image>

where <image> is the filename of the palette image (without the extension). To force a web-safe palette,
use the syntax palette=safe. For more information see the tutorial on Paletted Images

propertyName

The propertyName parameter specifies which properties are included in the response of the
GetFeatureInfo operation. The syntax is the same as in the WFS GetFeature operation. For a request
for a single layer the syntax is:

propertyName=name1,...,nameN

For multiple layers the syntax is:

propertyName=(nameLayer11,...,nameLayer1N)...(name1LayerN,...,nameNLayerN)

The nature of the properties depends on the layer type:

• For vector layers the names specify the feature attributes.

• For raster layers the names specify the bands.

• For cascaded WMS layers the names specify the GML properties to be returned by the remote server.

448 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

tiled

Meta-tiling prevents issues with duplicated labels when using a tiled client such as OpenLayers. When
meta-tiling is used, images are rendered and then split into smaller tiles (by default in a 3x3 pattern) before
being served. In order for meta-tiling to work, the tile size must be set to 256x256 pixels, and the tiled and
tilesorigin parameters must be specified.

The tiled parameter controls whether meta-tiling is used. The syntax is:

tiled=[yes|no]

To invoke meta-tiling use tiled=yes.

tilesorigin

The tilesorigin parameter is also required for meta-tiling. The syntax is:

tilesorigin=x,y

where x and y are the coordinates of the lower left corner (the “origin”) of the tile grid system.

OpenLayers example

In OpenLayers, a good way to specify the tilesorigin is to reference the map extents directly.

Warning: If the map extents are modified dynamically, the tilesorigin of each meta-tiled layer must
be updated accordingly.

The following code shows how to specify the meta-tiling parameters:

1 var options = {
2 ...
3 maxExtent: new OpenLayers.Bounds(-180, -90, 180, 90),
4 ...
5 };
6 map = new OpenLayers.Map(’map’, options);
7

8 tiled = new OpenLayers.Layer.WMS(
9 "Layer name", "http://localhost:8080/geoserver/wms",

10 {
11 srs: ’EPSG:4326’,
12 width: 391,
13 styles: ’’,
14 height: 550,
15 layers: ’layerName’,
16 format: ’image/png’,
17 tiled: true,
18 tilesorigin: [map.maxExtent.left, map.maxExtent.bottom]
19 },
20 {buffer: 0}
21);

13.2. Web Map Service 449

GeoServer User Manual, Release 2.5.x

13.2.6 WMS configuration

Layer Groups

A Layer Group is a group of layers that can be referred to by one layer name. For example, if you put
three layers (call them layer_A, layer_B, and layer_C) under the one “Layer Group” layer, then when a user
makes a WMS getMap request for that group name, they will get a map of those three layers.

For information on configuring Layer Groups in the Web Administration Interface see Layer Groups

Request limits

The request limit options allow the administrator to limit the resources consumed by each WMS GetMap
request.

The following table shows the option names, a description, and the minimum GeoServer version at which
the option is available (older versions will ignore it if set).

Option Description Ver-
sion

maxRe-
quest-
Memory

Sets the maximum amount of memory a single GetMap request is allowed to use
(in kilobytes). The limit is checked before request execution by estimating how
much memory would be required to produce the output in the format requested.
For example, for an image format the estimate is based on the size of the required
rendering memory (which is determined by the image size, the pixel bit depth,
and the number of active FeatureTypeStyles at the requested scale). If the
estimated memory size is below the limit, the request is executed; otherwise it is
cancelled.

1.7.5

maxRen-
dering-
Time

Sets the maximum amount of time GeoServer will spend processing a request (in
seconds). This time limits the “blind processing” portion of the request, that is,
the time taken to read data and compute the output result (which may occur
concurrently). If the execution time reaches the limit, the request is cancelled. The
time required to write results back to the client is not limited by this parameter,
since this is determined by the (unknown) network latency between the server
and the client. For example, in the case of PNG/JPEG image generation, this
option limits the data reading and rendering time, but not the time taken to write
the image out.

1.7.5

maxRen-
deringEr-
rors

Sets the maximum amount of rendering errors tolerated by a GetMap request. By
default GetMap makes a best-effort attempt to serve the result, ignoring invalid
features, reprojection errors and the like. Setting a limit on the number of errors
ignored can make it easier to notice issues, and conserves CPU cycles by reducing
the errors which must be handled and logged

1.7.5

The default value of each limit is 0, which specifies that the limit is not applied.

If any of the request limits is exceeded, the GetMap operation is cancelled and a ServiceException is
returned to the client.

When setting the above limits it is suggested that peak conditions be taken into consideration. For example,
under normal circumstances a GetMap request may take less than a second. Under high load it is acceptable
for it to take longer, but it’s usually not desirable to allow a request to go on for 30 minutes.

The following table shows examples of reasonable values for the request limits:

450 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

Option ValueRationale
maxRe-
questMem-
ory

16384 16MB are sufficient to render a 2048x2048 image at 4 bytes per pixel (full color and
transparency), or a 8x8 meta-tile when using GeoWebCache or TileCache. Note that
the rendering process uses a separate memory buffer for each FeatureTypeStyle in
an SLD, so this also affects the maximum image size. For example, if an SLD
contains two FeatureTypeStyle elements in order to draw cased lines for a highway,
the maximum image size will be limited to 1448x1448 (the memory requirement
increases with the product of the image dimensions, so halving the memory
decreases image dimensions by only about 30%)

maxRen-
dering-
Time

120 A request that processes for a full two minutes is probably rendering too many
features, regardless of the current server load. This may be caused by a request
against a big layer using a style that does not have suitable scale dependencies

maxRen-
deringEr-
rors

100 Encountering 100 errors is probably the result of a request trying to reproject a big
data set into a projection that is not appropriate for the output extent, resulting in
many reprojection failures.

13.2.7 Global variables affecting WMS

This document details the set of global variables that can affect WMS behaviour. Each global variable can
be set as an environment variable, as a servlet context variable, or as a Java system property, just like the
well known GEOSERVER_DATA_DIRECTORY setting. Refer to Setting the Data Directory for details on how
a global variable can be specified.

MAX_FILTER_RULES

A integer number (defaults to 20) When drawing a style containing multiple active rules the renderer com-
bines the filters of the rules in OR and adds them to the standard bounding box filter. This behaviour is
active up until the maximum number of filter rules is reached, past that the rule filters are no more added
to avoid huge queries. By default up to 20 rules are combined, past 20 rules only the bounding box filter is
used. Turning it off (setting it to 0) can be useful if the styles are mostly classifications, detrimental if the
rule filters are actually filtering a good amount of data out.

OPTIMIZE_LINE_WIDTH

Can be true or false (defaults to: false). When true any stroke whose width is less than 1.5 pixels gets
slimmed down to “zero”, which is actually not zero, but a very thin line. That was the behaviour GeoServer
used to default to before the 2.0 series. When false the stroke width is not modified and it’s possible to
specify widths less than one pixel. This is the default behaviour starting from the 2.0.0 release

USE_STREAMING_RENDERER

Can be true or false (defaults to: false). When true the StreamingRenderer is used for all data. The
StreamingRenderer is the one used by default for all data sources by shapefiles, it is usually faster at rendering
styles with multiple FeatureTypeStyle elements but slower at rendering high amount of data.

ENABLE_JSONP

Can be true or false (defaults to: false). When true the JSONP (text/javascript) output format is
enabled.

13.2. Web Map Service 451

GeoServer User Manual, Release 2.5.x

13.2.8 GetLegendGraphic

This chapter describes whether to use the GetLegendGraphics request. The SLD Specifications 1.0.0 gives
a good description about GetLegendGraphic requests:

The GetLegendGraphic operation itself is optional for an SLD-enabled WMS. It provides a general mechanism for
acquiring legend symbols, beyond the LegendURL reference of WMS Capabilities. Servers supporting the GetLe-
gendGraphic call might code LegendURL references as GetLegendGraphic for interface consistency. Vendor-specific
parameters may be added to GetLegendGraphic requests and all of the usual OGC-interface options and rules apply.
No XML-POST method for GetLegendGraphic is presently defined.

Here is an example invocation:

http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=20&HEIGHT=20&LAYER=topp:states

which would produce four 20x20 icons that graphically represent the rules of the default style of the
topp:states layer.

Figure 13.1: Sample legend

In the following table the whole set of GetLegendGraphic parameters that can be used.

452 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

Parame-
ter

Re-
quired

Description

RE-
QUEST

Re-
quired

Value must be “GetLegendRequest”.

LAYER Re-
quired

Layer for which to produce legend graphic.

STYLE Op-
tional

Style of layer for which to produce legend graphic. If not present, the default style
is selected. The style may be any valid style available for a layer, including non-SLD
internally-defined styles.

FEA-
TURE-
TYPE

Op-
tional

Feature type for which to produce the legend graphic. This is not needed if the
layer has only a single feature type.

RULE Op-
tional

Rule of style to produce legend graphic for, if applicable. In the case that a style has
multiple rules but no specific rule is selected, then the map server is obligated to
produce a graphic that is representative of all of the rules of the style.

SCALE Op-
tional

In the case that a RULE is not specified for a style, this parameter may assist the
server in selecting a more appropriate representative graphic by eliminating
internal rules that are out-of-scope. This value is a standardized scale denominator,
defined in Section 10.2. Specifying the scale will also make the symbolizers using
Unit Of Measure resize according to the specified scale.

SLD Op-
tional

This parameter specifies a reference to an external SLD document. It works in the
same way as the SLD= parameter of the WMS GetMap operation.

SLD_BODYOp-
tional

This parameter allows an SLD document to be included directly in an HTTP-GET
request. It works in the same way as the SLD_BODY= parameter of the WMS
GetMap operation.

FOR-
MAT

Re-
quired

This gives the MIME type of the file format in which to return the legend graphic.
Allowed values are the same as for the FORMAT= parameter of the WMS GetMap
request.

WIDTH Op-
tional

This gives a hint for the width of the returned graphic in pixels. Vector-graphics can
use this value as a hint for the level of detail to include.

HEIGHT Op-
tional

This gives a hint for the height of the returned graphic in pixels.

EXCEP-
TIONS

Op-
tional

This gives the MIME type of the format in which to return exceptions. Allowed
values are the same as for the EXCEPTIONS= parameter of the WMS GetMap
request.

Controlling legend appearance with LEGEND_OPTIONS

GeoServer allows finer control over the legend appearance via the vendor parameter LEGEND_OPTIONS.
The general format of LEGEND_OPTIONS is the same as FORMAT_OPTIONS, that is:

...&LEGEND_OPTIONS=key1:v1;key2:v2;...;keyn:vn

Here is a description of the various parameters that can be used in LEGEND_OPTIONS:

• fontName (string) the name of the font to be used when generating rule titles. The font must be
available on the server

• fontStyle (string) can be set to italic or bold to control the text style. Other combination are not
allowed right now but we could implement that as well.

• fontSize (integer) allows us to set the Font size for the various text elements. Notice that default size
is 12.

• fontColor (hex) allows us to set the color for the text of rules and labels (see above for recommenda-
tion on how to create values). Values are expressed in 0xRRGGBB format

13.2. Web Map Service 453

GeoServer User Manual, Release 2.5.x

• fontAntiAliasing (true/false) when true enables antialiasing for rule titles

• bgColor (hex) background color for the generated legend, values are expressed in 0xRRGGBB format

• dpi (integer) sets the DPI for the current request, in the same way as it is supported by GetMap.
Setting a DPI larger than 91 (the default) makes all fonts, symbols and line widths grow without
changing the current scale, making it possible to get a high resolution version of the legend suitable
for inclusion in printouts

• forceLabels “on” means labels will always be drawn, even if only one rule is available. “off” means
labels will never be drawn, even if multiple rules are available. Off by default.

Here is a sample request sporting all the options:

http://localhost:8080/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=20&HEIGHT=20&LAYER=topp:states&legend_options=fontName:Times%20New%20Roman;fontAntiAliasing:true;fontColor:0x000033;fontSize:14;bgColor:0xFFFFEE;dpi:180

Figure 13.2: Using LEGEND_OPTIONS to control the output

Raster Legends Explained

This chapter aim to briefly describe the work that I have performed in order to support legends for raster
data that draw information taken from the various bits of the SLD 1.0 RasterSymbolizer element. Recall,
that up to now there was no way to create legends for raster data, therefore we have tried to fill the gap
by providing an implementation of the getLegendGraphic request that would work with the ColorMap
element of the SLD 1.0 RasterSymbolizer. Notice that some “debug” info about the style, like colormap
type and band used are printed out as well.

What’s a raster legend

Here below I have drawn the structure of a typical legend, where some elements of interests are parame-
terized.

Take as an instance one of the SLD files attached to this page, each row in the above table draws its essence
from the ColorMapEntry element as shown here below:

<ColorMapEntry color="#732600" quantity="9888" opacity="1.0" label="<-70 mm"/>

The producer for the raster legend will make use of this elements in order to build the legend, with this
regards, notice that:

• the width of the Color element is driven by the requested width for the GetLegendGraphic request

• the width and height of label and rules is computed accordingly to the used Font and Font size for
the prepared text (no new line management for the moment)

• the height of the Color element is driven by the requested width for the GetLegendGraphic request,
but notice that for ramps we expand this a little since the goal is to turn the various Color elements
into a single long strip

454 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

Figure 13.3: The structure of a typical legend

• the height of each row is set to the maximum height of the single elements

• the width of each row is set to the sum of the width of the various elements plus the various paddings

• dx,dy the spaces between elements and rows are set to the 15% of the requested width and height.
Notice that dy is ignored for the colormaps of type ramp since they must create a continous color
strip.

• mx,my the margins from the border of the legends are set to the 1.5% of the total size of the legend

Just to jump right to the conclusions (which is a bad practice I know, but no one is perfect), here below I
am adding an image of a sample legend with all the various options at work. The request that generated it
is the following:

http://localhost:8081/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=100&HEIGHT=20&LAYER=it.geosolutions:di08031_da&LEGEND_OPTIONS=forceRule:True;dx:0.2;dy:0.2;mx:0.2;my:0.2;fontStyle:bold;borderColor:0000ff;border:true;fontColor:ff0000;fontSize:18

Do not worry if it seems like something written in ancient dead language, I am going to explain the various
params here below. Nevertheless it is important to point out that basic info on how to create and set params
can be found in this page.

Raster legends’ types

As you may know (well, actually you might not since I never wrote any real docs about the RasterSymbol-
izer work I did) GeoServer supports three types of ColorMaps:

• ramp this is what SLD 1.0 dictates, which means a linear interpolation weighted on values between
the colors of the various ColorMapEntries.

• values this is an extensions that allows link quantities to colors as specified by the ColorMapEntries
quantities. Values not specified are translated into transparent pixels.

• classes this is an extensions that allows pure classifications based o intervals created from the Col-
orMapEntries quantities. Values not specified are translated into transparent pixels.

Here below I am going to list various examples that use the attached styles on a rainfall floating point
geotiff.

ColorMap type is VALUES

Refer to the SLD rainfall.sld in attachment.

13.2. Web Map Service 455

http://geoserver.org/display/GEOSDOC/GetLegendGraphic+Improvements

GeoServer User Manual, Release 2.5.x

Figure 13.4: Example of a raster legend

Figure 13.5: Raster legend - VALUES type

456 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

ColorMap type is CLASSES

Refer to the SLD rainfall_classes.sld in attachment.

Figure 13.6: Raster legend - CLASSES type

ColorMap type is RAMP

Refer to the SLD rainfall_classes.sld in attachment. Notice that the first legend show the default border
behavior while the second has been force to draw a border for the breakpoint color of the the colormap
entry quantity described by the rendered text. Notice that each color element has a part that show the fixed
color from the colormap entry it depicts (the lowest part of it, the one that has been outlined by the boder in
the second legend here below) while the upper part of the element has a gradient tha connects each element
to the previous one to point out the fact that we are using linear interpolation.

Figure 13.7: Raster legend - RAMP type

13.2. Web Map Service 457

GeoServer User Manual, Release 2.5.x

The various control parameters and how to set them

I am now going to briefly explain the various parameters tht we can use to control the layout and content
of the legend (refer also to this page). Here below I have put a request that puts all the various options at
tow:

http://localhost:8081/geoserver/wms?REQUEST=GetLegendGraphic&VERSION=1.0.0&FORMAT=image/png&WIDTH=100&HEIGHT=20&LAYER=it.geosolutions:di08031_da&LEGEND_OPTIONS=forceRule:True;dx:0.2;dy:0.2;mx:0.2;my:0.2;fontStyle:bold;borderColor:0000ff;border:true;fontColor:ff0000;fontSize:18

Let’s now examine all the interesting elements, one by one. Notice that I am not going to discuss the
mechanics of the GetLegendGraphic operation, for that you may want to refer to the SLD 1.0 spec, my goal
is to briefly discuss the LEGEND_OPTIONS parameter.

• forceRule (boolean) by defaul rules for a ColorMapEntry are not drawn to keep the legend small and
compact, unless there are not labels at all. You can change this behaviour by setting this parameter to
true.

• dx,dy,mx,my (double) can be used to set the margin and the buffers between elements

• border (boolean) activates or deactivates the boder on the color elements in order to make the sepa-
rations cleare. Notice that I decided to always have a line that would split the various color elements
for the ramp type of colormap.

• borderColor (hex) allows us to set the color for the border in 0xRRGGBB format

13.3 Web Coverage Service

13.3.1 WCS basics

GeoServer provides support for Open Geospatial Consortium (OGC) Web Map Service (WCS) versions
1.0 and 1.1. One can think of WCS as the equivalent of Web Feature Service, but for raster data instead of
vector data. It lets you get at the raw coverage information, not just the image. GeoServer is the reference
implementation for WCS 1.1.

13.3.2 WCS reference

Introduction

The Web Coverage Service (WCS) is a standard created by the OGC that refers to the receiving of geospatial
information as ‘coverages’: digital geospatial information representing space-varying phenomena. One can
think of it as Web Feature Service for raster data. It gets the ‘source code’ of the map, but in this case its not
raw vectors but raw imagery.

An important distinction must be made between WCS and Web Map Service. They are similar, and can
return similar formats, but a WCS is able to return more information, including valuable metadata and
more formats. It additionally allows more precise queries, potentially against multi-dimensional backend
formats.

Benefits of WCS

WCS provides a standard interface for how to request the raster source of a geospatial image. While a WMS
can return an image it is generally only useful as an image. The results of a WCS can be used for complex
modeling and analysis, as it often contains more information. It also allows more complex querying - clients
can extract just the portion of the coverage that they need.

458 Chapter 13. Services

http://geoserver.org/display/GEOSDOC/GetLegendGraphic+Improvements
http://www.opengeospatial.org/standards/wcs

GeoServer User Manual, Release 2.5.x

Operations

WCS can perform the following operations:

Operation Description
GetCapabilitiesRetrieves a list of the server’s data, as well as valid WCS operations and parameters
DescribeCoverageRetrieves an XML document that fully describes the request coverages.
GetCoverage Returns a coverage in a well known format. Like a WMS GetMap request, but with

several extensions to support the retrieval of coverages.

GetCapabilities

The GetCapabilities operation is a request to a WCS server for a list of what operations and services (“ca-
pabilities”) are being offered by that server.

A typical GetCapabilities request would look like this (at URL http://www.example.com/wcs):

Using a GET request (standard HTTP):

http://www.example.com/wcs?
service=wcs&
AcceptVersions=1.1.0&
request=GetCapabilities

Here there are three parameters being passed to our WCS server, service=wcs,
AcceptVersions=1.1.0, and request=GetCapabilities. At a bare minimum, it is required
that a WCS request have the service and request parameters. GeoServer relaxes these requirements (setting
the default version if omitted), but “officially” they are mandatory, so they should always be included.
The service key tells the WCS server that a WCS request is forthcoming. The AcceptsVersion key refers to
which version of WCS is being requested. The request key is where the actual GetCapabilities operation is
specified.

WCS additionally supports the Sections parameter that lets a client only request a specific section of the
Capabilities Document.

DescribeCoverage

The purpose of the DescribeCoverage request is to additional information about a Coverage a client wants
to query. It returns information about the crs, the metadata, the domain, the range and the formats it is
available in. A client generally will need to issue a DescribeCoverage request before being sure it can make
the proper GetCoverage request.

GetCoverage

The GetCoverage operation requests the actual spatial data. It can retrieve subsets of coverages, and the
result can be either the coverage itself or a reference to it. The most powerful thing about a GetCoverage
request is its ability to subset domains (height and time) and ranges. It can also do resampling, encode in
different data formats, and return the resulting file in different ways.

13.3.3 WCS output formats

WCS output formats are configured coverage by coverage. The current list of output formats follows:

Images:

13.3. Web Coverage Service 459

GeoServer User Manual, Release 2.5.x

• JPEG - (format=jpeg)

• GIF - (format=gif)

• PNG - (format=png)

• Tiff - (format=tif)

• BMP - (format=bmp)

Georeferenced formats:

• GeoTiff - (format=geotiff)

• GTopo30 - (format=gtopo30)

• ArcGrid - (format=ArcGrid)

• GZipped ArcGrid - (format=ArcGrid-GZIP)

Beware, in the case of ArcGrid, the GetCoverage request must make sure the x and y resolution are equal,
otherwise an exception will be thrown (ArcGrid is designed to have square cells).

13.3.4 WCS Vendor Parameters

Requests to the WCS GetCapabilities operation can be filtered to only return layers corresponding to a
particular namespace.

Sample code:

http://example.com/geoserver/wcs?
service=wcs&
version=1.0.0&
request=GetCapabilities&
namespace=topp

Using an invalid namespace prefix will not cause any errors, but the document returned will not contain
information on any layers.

13.3.5 WCS configuration

Coverage processing

The WCS processing chain can be tuned in respect of how raster overviews and read subsampling are used.

The overview policy has four possible values:

Option Description Ver-
sion

Lower resolution
overview

Looks up the two overviews with a resolution closest to the one requested
and chooses the one at the lower resolution.

2.0.3

Don’t use
overviews

Overviews will be ignored, the data at its native resolution will be used
instead. This is the default value.

2.0.3

Higher
resolution
overview

Looks up the two overviews with a resolution closest to the one requested
and chooses the one at the higher resolution.

2.0.3

Closest overview Looks up the overview closest to the one requested 2.0.3

460 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

While reading coverage data at a resolution lower than the one available on persistent storage its common
to use subsampling, that is, read one every N pixels as a way to reduce the resolution of the data read in
memory. Use subsampling controls wheter subsampling is enabled or not.

Request limits

The request limit options allow the administrator to limit the resources consumed by each WCS
GetCoverage request.

The request limits limit the size of the image read from the source and the size of the image returned to the
client. Both of these limits are to be considered a worst case scenario and are setup to make sure the server
never gets asked to deal with too much data.

Option Description Ver-
sion

Maximum
input
memory

Sets the maximum amount of memory, in kilobytes, a GetCovearge request
might use, at most, to read a coverage from the data source. The memory is
computed as rw * rh * pixelsize, where rw and rh are the size of the
raster to be read and pixelsize is the dimension or a pixel (e.g., a RGBA
image will have 32bit pixels, a batimetry might have 16bit signed int ones)

2.0.3

Maximum
output
memory

Sets the maximum amount of memory, in kilobytes, a GetCoverage request
might use, at most, to host the resulting raster. The memory is computed as ow
* oh * pixelsize, where ow and oh are the size of the raster to be
generated in output.

2.0.3

To understand the limits let’s consider a very simplified examle in which no tiles and overviews enter the
game:

• The request hits a certain area of the original raster. Reading it at full resolution requires grabbing a
raster of size rw * rh, which has a certain number of bands, each with a certain size. The amount of
memory used for the read will be rw * rh * pixelsize. This is the value measured by the input
memory limit

• The WCS performs the necessary processing: band selection, resolution change (downsampling or
upsampling), reprojection

• The resuling raster will have size ow * oh and will have a certain number of bands, possibly less
than the input data, each with a certain size. The amount of memory used for the final raster will be
ow * oh * pixelsize. This is the value measured by the output memory limit.

• Finally the resulting raster will be encoded in the output format. Depending on the output format
structure the size of the result might be higher than the in memory size (ArcGrid case) or smaller (for
example in the case of GeoTIFF output, which is normally LZW compressed)

In fact reality is a bit more complicated:

• The input source might be tiled, which means there is no need to fully read in memory the region, but
it is sufficient to do so one tile at a time. The input limits won’t consider inner tiling when computing
the limits, but if all the input coverages are tiled the input limits should be designed considering the
amount of data to be read from the persistent storage as opposed to the amount of data to be stored
in memory

• The reader might be using overviews or performing subsampling during the read to avoid actually
reading all the data at the native resolution should the output be subsampled

• The output format might be tile aware as well (GeoTIFF is), meaning it might be able to write out one
tile at a time. In this case not even the output raster will be stored in memory fully at any given time.

13.3. Web Coverage Service 461

GeoServer User Manual, Release 2.5.x

Only a few input formats are so badly structure that they force the reader to read the whole input data in
one shot, and should be avoided. Examples are: * JPEG or PNG images with world file * Single tiled and
JPEG compressed GeoTIFF files

13.4 Virtual OWS Services

The different types of services in GeoServer include WFS, WMS, and WCS, commonly referred to as “OWS”
services. These services are global in that each service publishes ever layer configured on the server. WFS
publishes all vector layer (feature types), WCS publishes all raster layers (coverages), and WMS publishes
everything.

A virtual service is a view of the global service that consists only of a subset of the layers. Virtual services
are based on GeoServer workspaces. For each workspace that exists a virtual service exists along with it.
The virtual service publishes only those layers that fall under the corresponding workspace.

Warning: Virtual services only apply to the core OWS services, and not OWS services accessed through
GeoWebCache. It also does not apply to other subsystems such as REST.

When a client accesses a virtual service that client only has access to those layers published by that virtual
service. Access to layers in the global service via the virtual service will result in an exception. This makes
virtual services ideal for compartmentalizing access to layers. A service provider may wish to create multi-
ple services for different clients handing one service url to one client, and a different service url to another
client. Virtual services allow the service provider to achieve this with a single GeoServer instance.

13.4.1 Filtering by workspace

Consider the following snippets of the WFS capabilities document from the GeoServer release configuration
that list all the feature types:

http://localhost:8080/geoserver/wfs?request=GetCapabilities

<wfs:WFS_Capabilities>

<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:poly_landmarks</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:poi</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:tiger_roads</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:archsites</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:bugsites</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:restricted</Name>

--
<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:roads</Name>

--

462 Chapter 13. Services

GeoServer User Manual, Release 2.5.x

<FeatureType xmlns:sf="http://www.openplans.org/spearfish">
<Name>sf:streams</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_cities</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_roads</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_state_boundaries</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_water_bodies</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

--
<FeatureType xmlns:tiger="http://www.census.gov">
<Name>tiger:giant_polygon</Name>

</wfs:WFS_Capabilities>

The above document lists every feature type configured on the server. Now consider the following capa-
bilities request:

http://localhost:8080/geoserver/topp/wfs?request=GetCapabilities

The part of interest in the above request is the “topp” prefix to the wfs service. The above url results in the
following feature types in the capabilities document:

<wfs:WFS_Capabilities>

<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_cities</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_roads</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_state_boundaries</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:tasmania_water_bodies</Name>

--
<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

</wfs:WFS_Capabilities>

The above feature types correspond to those configured on the server as part of the “topp” workspace.

The consequence of a virtual service is not only limited to the capabilities document of the service. When a
client accesses a virtual service it is restricted to only those layers for all operations. For instance, consider
the following WFS feature request:

http://localhost:8080/geoserver/topp/wfs?request=GetFeature&typename=tiger:roads

The above request results in an exception. Since the request feature type “tiger:roads” is not in the “topp”

13.4. Virtual OWS Services 463

GeoServer User Manual, Release 2.5.x

workspace the client will receive an error stating that the requested feature type does not exist.

13.4.2 Filtering by layer

It is possible to further filter a global service by specifying the name of layer as part of the virtual service.
For instance consider the following capabilities document:

http://localhost:8080/geoserver/topp/states/wfs?request=GetCapabilities

The part of interest is the “states” prefix to the wfs service. The above url results in the following capabilities
document that contains a single feature type:

<wfs:WFS_Capabilities>

<FeatureType xmlns:topp="http://www.openplans.org/topp">
<Name>topp:states</Name>

<wfs:WFS_Capabilities>

13.4.3 Turning off global services

It is possible to completely restrict access to the global OWS services by setting a configuration flag. When
global access is disabled OWS services may only occur through a virtual service. Any client that tries to
access a service globally will receive an exception.

To disable global services log into the GeoServer web administration interface and navigate to “Global
Settings”. Uncheck the “Enable Global Services” check box.

464 Chapter 13. Services

CHAPTER 14

REST configuration

GeoServer provides a RESTful interface through which clients can retrieve information about an instance
and make configuration changes. Using the REST interface’s simple HTTP calls, clients can configure
GeoServer without needing to use the Web Administration Interface.

REST is an acronym for “REpresentational State Transfer”. REST adopts a fixed set of operations on named
resources, where the representation of each resource is the same for retrieving and setting information. In
other words, you can retrieve (read) data in an XML format and also send data back to the server in similar
XML format in order to set (write) changes to the system.

Operations on resources are implemented with the standard primitives of HTTP: GET to read; and
PUT, POST, and DELETE to write changes. Each resource is represented as a URL, such as
http://GEOSERVER_HOME/rest/workspaces/topp.

For further information about the REST API, refer to the REST configuration API reference section. For prac-
tical examples, refer to the REST configuration examples section.

14.1 REST configuration API reference

This section describes the GeoServer REST configuration API.

14.1.1 API details

This page contains information on the REST API architecture.

Authentication

REST requires that the client be authenticated. By default, the method of authentication used is Basic
authentication. See the Security section for how to change the authentication method.

Status codes

An HTTP request uses a status code to relay the outcome of the request to the client. Different status codes
are used for various purposes throughout this document. These codes are described in detail by the HTTP
specification.

The most common status codes are listed below, along with their descriptions:

465

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

GeoServer User Manual, Release 2.5.x

Status
code

Description Notes

200 OK The request was successful
201 Created A new resource was successfully created, such as a new feature type or data

store
403 Forbidden Often denotes a permissions mismatch
404 Not Found Endpoint or resource was not at the indicated location
405 Method Not

Allowed
Often denotes an endpoint accessed with an incorrect operation (for
example, a GET request where a PUT/POST is indicated)

500 Internal
Server Error

Often denotes a syntax error in the request

Formats and representations

A format specifies how a particular resource should be represented. A format is used:

• In an operation to specify what representation should be returned to the client

• In a POST or PUT operation to specify the representation being sent to the server

In a GET operation the format can be specified in two ways.

There are two ways to specify the format for a GET operation. The first option uses the Accept header.
For example, with the header set to "Accept: text/xml" the resource would be returned as XML. The
second option of setting the format is via a file extension. For example, given a resource foo, to request
a representation of foo as XML, the request URI would end with /foo.xml. To request a representation
as JSON, the request URI would end with /foo.json. When no format is specified the server will use its
own internal format, usually HTML. When the response format is specified both by the header and by the
extension, the format specified by the extension takes precedence.

In a POST or PUT operation, the format of content being sent to the server is specified with
the Content-type header. For example, to send a representation in XML, use "Content-type:
text/xml" or "Content-type: application/xml". As with GET requests, the representation of
the content returned from the server is specified by the Accept header or by the format.

The following table defines the Content-type values for each format:

Format Content-type
XML application/xml
JSON application/json
HTML application/html
SLD application/vnd.ogc.sld+xml
ZIP application/zip

14.1.2 Global settings

Allows access to GeoServer’s global settings.

/settings[.<format>]

Controls all global settings.

466 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

Method Action Status code Formats Default Format
GET List all global settings 200 HTML, XML, JSON HTML
POST 405
PUT Update global settings 200 XML, JSON
DELETE 405

/settings/contact[.<format>]

Controls global contact information only.

Method Action Status code Formats Default Format
GET List global contact information 200 HTML, XML, JSON HTML
POST 405
PUT Update global contact 200 XML, JSON
DELETE 405

14.1.3 Workspaces

A workspace is a grouping of data stores. Similar to a namespace, it is used to group data that is related
in some way.

/workspaces[.<format>]

Controls all workspaces.

Method Action Status code Formats Default Format
GET List all workspaces 200 HTML, XML, JSON HTML
POST Create a new workspace 201 with Location header XML, JSON
PUT 405
DELETE 405

/workspaces/<ws>[.<format>]

Controls a specific workspace.

Method Action Status code Formats Default Format Parameters
GET Return workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT 200 Modify workspace ws XML, JSON
DELETE 200 Delete workspace ws XML, JSON recurse

Exceptions

Exception Status code
GET for a workspace that does not exist 404
PUT that changes name of workspace 403
DELETE against a workspace that is non-empty 403

14.1. REST configuration API reference 467

GeoServer User Manual, Release 2.5.x

Parameters

recurse The recurse parameter recursively deletes all layers referenced by the specified workspace,
including data stores, coverage stores, feature types, and so on. Allowed values for this parameter are
“true” or “false”. The default value is “false”.

/workspaces/default[.<format>]

Controls the default workspace.

Method Action Status code Formats Default Format
GET Returns default workspace 200 HTML, XML, JSON HTML
POST 405
PUT 200 Set default workspace XML, JSON
DELETE 405

/workspaces/<ws>/settings[.<format>]

Controls settings on a specific workspace.

Method Action Status code Formats Default Format
GET Returns workspace settings 200 HTML, XML, JSON HTML
POST 405
PUT Creates or updates workspace settings 200 XML, JSON
DELETE Deletes workspace settings 200 XML, JSON

14.1.4 Namespaces

A namespace is a uniquely identifiable grouping of feature types. It is identified by a prefix and a URI.

/namespaces[.<format>]

Controls all namespaces.

Method Action Status code Formats Default Format
GET List all namespaces 200 HTML, XML, JSON HTML
POST Create a new namespace 201 with Location header XML, JSON
PUT 405
DELETE 405

/namespaces/<ns>[.<format>]

Controls a particular namespace.

Method Action Status code Formats Default Format
GET Return namespace ns 200 HTML, XML, JSON HTML
POST 405
PUT 200 Modify namespace ns XML, JSON
DELETE 200 Delete namespace ns XML, JSON

468 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

Exceptions

Exception Status code
GET for a namespace that does not exist 404
PUT that changes prefix of namespace 403
DELETE against a namespace whose corresponding workspace is non-empty 403

/namespaces/default[.<format>]

Controls the default namespace.

Method Action Status code Formats Default Format
GET Return default namespace 200 HTML, XML, JSON HTML
POST 405
PUT 200 Set default namespace XML, JSON
DELETE 405

14.1.5 Data stores

A data store contains vector format spatial data. It can be a file (such as a shapefile), a database (such as
PostGIS), or a server (such as a remote Web Feature Service).

/workspaces/<ws>/datastores[.<format>]

Controls all data stores in a given workspace.

Method Action Status code Formats Default Format
GET List all data stores in workspace ws 200 HTML, XML, JSON HTML
POST Create a new data store 201 with Location header XML, JSON
PUT 405
DELETE 405

/workspaces/<ws>/datastores/<ds>[.<format>]

Controls a particular data store in a given workspace.

Method Action Status code Formats Default Format Parameters
GET Return data store ds 200 HTML, XML, JSON HTML
POST 405
PUT Modify data store ds
DELETE Delete data store ds recurse

Exceptions

Exception Status code
GET for a data store that does not exist 404
PUT that changes name of data store 403
PUT that changes workspace of data store 403
DELETE against a data store that contains configured feature types 403

14.1. REST configuration API reference 469

GeoServer User Manual, Release 2.5.x

Parameters

recurse The recurse parameter recursively deletes all layers referenced by the specified data store.
Allowed values for this parameter are “true” or “false”. The default value is “false”.

/workspaces/<ws>/datastores/<ds>/[file|url|external][.<extension>]

These endpoints (file, url, and external) allow a file containing spatial data to be added (via a POST
or PUT) into an existing data store, or will create a new data store if it doesn’t already exist. The three
endpoints are used to specify the method that is used to upload the file:

• file—Uploads a file from a local source. The body of the request is the file itself.

• url—Uploads a file from an remote source. The body of the request is a URL pointing to the file to
upload. This URL must be visible from the server.

• external—Uses an existing file on the server. The body of the request is the absolute path to the
existing file.

MethodAction Sta-
tus
code

For-
mats

Default
Format

Parameters

GET Deprecated. Retrieve the underlying files for the
data store as a zip file with MIME type
application/zip

200

POST 405
PUT Uploads files to the data store ds, creating it if

necessary
200 See

note
below

configure,
target, update,
charset

DELETE 405

Exceptions

Exception Status code
GET for a data store that does not exist 404
GET for a data store that is not file based 404

Parameters

extension The extension parameter specifies the type of data being uploaded. The following exten-
sions are supported:

Extension Datastore
shp Shapefile
properties Property file
h2 H2 Database
spatialite SpatiaLite Database

Note: A file can be PUT to a data store as a standalone or zipped archive file. Standalone files are only
suitable for data stores that work with a single file such as a GML store. Data stores that work with multiple
files, such as the shapefile store, must be sent as a zip archive.

When uploading a standalone file, set the Content-type appropriately based on the file type. If you are
loading a zip archive, set the Content-type to application/zip.

470 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

configure The configure parameter controls how the data store is configured upon file upload. It can
take one of the three values:

• first—(Default) Only setup the first feature type available in the data store.

• none—Do not configure any feature types.

• all—Configure all feature types.

target The target parameter determines what format or storage engine will be used when a new data
store is created on the server for uploaded data. When importing data into an existing data store, it is
ignored. The allowed values for this parameter are the same as for the extension parameter.

update The update parameter controls how existing data is handled when the file is PUT into a data
store that already exists and already contains a schema that matches the content of the file. The parameter
accepts one of the following values:

• append—Data being uploaded is appended to the existing data. This is the default.

• overwrite—Data being uploaded replaces any existing data.

charset The charset parameter specifies the character encoding of the file being uploaded (such as
“ISO-8559-1”).

14.1.6 Feature types

A feature type is a vector based spatial resource or data set that originates from a data store. In some
cases, such as with a shapefile, a feature type has a one-to-one relationship with its data store. In other cases,
such as PostGIS, the relationship of feature type to data store is many-to-one, feature types corresponding
to a table in the database.

/workspaces/<ws>/datastores/<ds>/featuretypes[.<format>]

Controls all feature types in a given data store / workspace.

Method Action Status code Formats Default
Format

Param-
eters

GET List all feature types in data
store ds

200 HTML, XML,
JSON

HTML list

POST Create a new feature type,
see note below

201 with Location
header

XML, JSON

PUT 405
DELETE 405

Note: When creating a new feature type via POST, if no underlying dataset with the specified name exists
an attempt will be made to create it. This will work only in cases where the underlying data format supports
the creation of new types (such as a database). When creating a feature type in this manner the client should
include all attribute information in the feature type representation.

14.1. REST configuration API reference 471

GeoServer User Manual, Release 2.5.x

Exceptions

Exception Status code
GET for a feature type that does not exist 404
PUT that changes name of feature type 403
PUT that changes data store of feature type 403

Parameters

list The list parameter is used to control the category of feature types that are returned. It can take
one of the following values:

• configured—Only configured feature types are returned. This is the default value.

• available—Only feature types that haven’t been configured but are available from the specified
data store will be returned.

• available_with_geom—Same as available but only includes feature types that have a geometry
attribute.

• all—The union of configured and available.

/workspaces/<ws>/datastores/<ds>/featuretypes/<ft>[.<format>]

Controls a particular feature type in a given data store and workspace.

Method Action Status code Formats Default Format Parameters
GET Return feature type ft 200 HTML, XML, JSON HTML
POST 405
PUT Modify feature type ft 200 XML,JSON recalculate
DELETE Delete feature type ft 200 recurse

Exceptions

Exception Status code
GET for a feature type that does not exist 404
PUT that changes name of feature type 403
PUT that changes data store of feature type 403

Parameters

recurse The recurse parameter recursively deletes all layers referenced by the specified featuretype.
Allowed values for this parameter are “true” or “false”. The default value is “false”. A DELETE request
with recurse=false will fail if any layers reference the featuretype.

recalculate The recalculate parameter specifies whether to recalculate any bounding boxes for a
feature type. Some properties of feature types are automatically recalculated when necessary. In particu-
lar, the native bounding box is recalculated when the projection or projection policy are changed, and the
lat/long bounding box is recalculated when the native bounding box is recalculated, or when a new na-
tive bounding box is explicitly provided in the request. (The native and lat/long bounding boxes are not
automatically recalculated when they are explicitly included in the request.) In addition, the client may

472 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

explicitly request a fixed set of fields to calculate, by including a comma-separated list of their names in the
recalculate parameter. For example:

• recalculate= (empty parameter): Do not calculate any fields, regardless of the projection, pro-
jection policy, etc. This might be useful to avoid slow recalculation when operating against large
datasets.

• recalculate=nativebbox: Recalculate the native bounding box, but do not recalculate the
lat/long bounding box.

• recalculate=nativebbox,latlonbbox: Recalculate both the native bounding box and the
lat/long bounding box.

14.1.7 Coverage stores

A coverage store contains raster format spatial data.

/workspaces/<ws>/coveragestores[.<format>]

Controls all coverage stores in a given workspace.

Method Action Status code Formats Default
Format

GET List all coverage stores in
workspace ws

200 HTML, XML,
JSON

HTML

POST Create a new coverage store 201 with Location
header

XML, JSON

PUT 405
DELETE 405

/workspaces/<ws>/coveragestores/<cs>[.<format>]

Controls a particular coverage store in a given workspace.

Method Action Status code Formats Default Format Parameters
GET Return coverage store cs 200 HTML, XML, JSON HTML
POST 405
PUT Modify coverage store cs
DELETE Delete coverage store cs recurse

Exceptions

Exception Status code
GET for a coverage store that does not exist 404
PUT that changes name of coverage store 403
PUT that changes workspace of coverage store 403
DELETE against a coverage store that contains configured coverage 403

Parameters

recurse The recurse parameter recursively deletes all layers referenced by the coverage store. Al-
lowed values for this parameter are “true” or “false”. The default value is “false”.

14.1. REST configuration API reference 473

GeoServer User Manual, Release 2.5.x

/workspaces/<ws>/coveragestores/<cs>/file[.<extension>]

This end point allows a file containing spatial data to be added (via a POST or PUT) into an existing
coverage store, or will create a new coverage store if it doesn’t already exist. In case of coverage stores
containing multiple coverages (e.g., mosaic of NetCDF files) all the coverages will be configured unless
configure=false is specified as a parameter.

MethodAction Status code For-
mats

Default
Format

Pa-
rame-
ters

GET Deprecated. Get the underlying files for the
coverage store as a zip file with MIME type
application/zip.

200

POSTIf the coverage store is a simple one (e.g.
GeoTiff) it will return a 405, if the coverage
store is a structured one (e.g., mosaic) it
will harvest the specified files into it, which
in turn will integrate the files into the store.
Harvest meaning is store dependent, for
mosaic the new files will be added as new
granules of the mosaic, and existing files
will get their attribute updated, other
stores might have a different behavior.

405 if the coverage store is
a simple one, 200 if
structured and the
harvest operation
succeded

recal-
culate

PUT Creates or overwrites the files for coverage
store cs

200 See
note
be-
low

:set
spell
spell-
lang=en_us

config-
ure,
cover-
age-
Name

DELETE 405

Note: A file can be PUT to a coverage store as a standalone or zipped archive file. Standalone files are only
suitable for coverage stores that work with a single file such as GeoTIFF store. Coverage stores that work
with multiple files, such as the ImageMosaic store, must be sent as a zip archive.

When uploading a standalone file, set the Content-type appropriately based on the file type. If you are
loading a zip archive, set the Content-type to application/zip.

Exceptions

Exception Status code
GET for a data store that does not exist 404
GET for a data store that is not file based 404

Parameters

extension The extension parameter specifies the type of coverage store. The following extensions are
supported:

Extension Coverage store
geotiff GeoTIFF
worldimage Georeferenced image (JPEG, PNG, TIFF)
imagemosaic Image mosaic

474 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

configure The configure parameter controls how the coverage store is configured upon file upload.
It can take one of the three values:

• first—(Default) Only setup the first feature type available in the coverage store.

• none—Do not configure any feature types.

• all—Configure all feature types.

coverageName The coverageName parameter specifies the name of the coverage within the coverage
store. This parameter is only relevant if the configure parameter is not equal to “none”. If not specified
the resulting coverage will receive the same name as its containing coverage store.

Note: At present a one-to-one relationship exists between a coverage store and a coverage. However, there
are plans to support multidimensional coverages, so this parameter may change.

recalculate The recalculate parameter specifies whether to recalculate any bounding boxes for
a coverage. Some properties of coverages are automatically recalculated when necessary. In particular,
the native bounding box is recalculated when the projection or projection policy is changed. The lat/long
bounding box is recalculated when the native bounding box is recalculated or when a new native bounding
box is explicitly provided in the request. (The native and lat/long bounding boxes are not automatically
recalculated when they are explicitly included in the request.) In addition, the client may explicitly request
a fixed set of fields to calculate by including a comma-separated list of their names in the recalculate
parameter. For example:

• recalculate= (empty parameter)—Do not calculate any fields, regardless of the projection, pro-
jection policy, etc. This might be useful to avoid slow recalculation when operating against large
datasets.

• recalculate=nativebbox—Recalculate the native bounding box, but do not recalculate the
lat/long bounding box.

• recalculate=nativebbox,latlonbbox—Recalculate both the native bounding box and the
lat/long bounding box.

14.1.8 Coverages

A coverage is a raster data set which originates from a coverage store.

/workspaces/<ws>/coveragestores/<cs>/coverages[.<format>]

Controls all coverages in a given coverage store and workspace.

Method Action Status code Formats Default
Format

GET List all coverages in coverage
store cs

200 HTML, XML,
JSON

HTML

POST Create a new coverage 201 with Location
header

XML, JSON

PUT 405
DELETE 405

14.1. REST configuration API reference 475

GeoServer User Manual, Release 2.5.x

/workspaces/<ws>/coveragestores/<cs>/coverages/<c>[.<format>]

Controls a particular coverage in a given coverage store and workspace.

Method Action Status code Formats Default Format Parameters
GET Return coverage c 200 HTML, XML, JSON HTML
POST 405
PUT Modify coverage c 200 XML,JSON
DELETE Delete coverage c 200 recurse

Exceptions

Exception Status code
GET for a coverage that does not exist 404
PUT that changes name of coverage 403
PUT that changes coverage store of coverage 403

Parameters

recurse The recurse parameter recursively deletes all layers referenced by the specified coverage.
Permitted values for this parameter are “true” or “false”. The default value is “false”.

14.1.9 Structured coverages

Structured coverages are the ones whose content is made of granules, normally associated to attributes,
often used to represent time, elevation and other custom dimensions attached to the granules themselves.
Image mosaic is an example of a writable structured coverage reader, in which each of the mosaic granules
is associated with attributes. NetCDF is an example of a read only one, in which the multidimensional grid
contained in the file is exposed as a set of 2D slices, each associated with a different set of variable values.

The following API applies exclusively to structured coverage readers.

/workspaces/<ws>/coveragestores/<cs>/coverages/<coverage>/index[.<format>]

Declares the set of attributes associated to the specified coverage, their name, type and min/max occur-
rences.

Method Action Status
code

Formats Default
Format

Parame-
ters

GET Returns the attributes, their names and
their types

200 XML,
JSON

XML

POST 405
PUT 405
DELETE 405

/workspaces/<ws>/coveragestores/<cs>/coverages/<coverage>/index/granules.<format>

Returns the full list of granules, each with its attributes vales and geometry, and allows to selectively remove
them

476 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

MethodAction Sta-
tus
code

For-
mats

Default
Format

Param-
eters

GET Returns the list of granules and their attributes, either in
GML (when XML is used) or GeoJSON (when JSON is
used)

200 XML,
JSON

XML offset,
limit,
filter

POST 405
PUT 405
DELETEDeletes the granules (all, or just the ones selected via the

filter parameter)
200 filter

Parameters

offset The offset parameter instructs GeoServer to skip the specified number of first granules when
returning the data.

limit The limit parameter instructs GeoServer to return at most the specified number of granules
when returining the data.

filter The filter parameter is a CQL filter that allows to select which granules will be returned based
on their attribute values.

/workspaces/<ws>/coveragestores/<cs>/coverages/<mosaic>/index/granules/<granuleId>.<format>

Returns a single granule and allows for its removal.

MethodAction Sta-
tus
code

For-
mats

Default
Format

Pa-
ram-
eters

GET Returns the specified of granules and its attributes, either in
GML (when XML is used) or GeoJSON (when JSON is
used)

200 XML,
JSON

XML

POST 405
PUT 405
DELETEDeletes the granule 200

14.1.10 Styles

A style describes how a resource (feature type or coverage) should be symbolized or rendered by the Web
Map Service. In GeoServer styles are specified with SLD.

/styles[.<format>]

Controls all styles.

14.1. REST configuration API reference 477

GeoServer User Manual, Release 2.5.x

Method Action Status code Formats Default
Format

Parame-
ters

GET Return all
styles

200 HTML, XML, JSON HTML

POST Create a new
style

201 with Location
header

SLD, XML, JSON See
note below

name

PUT 405
DELETE 405 purge

When executing a POST or PUT request with an SLD style, the Content-type header should be set to
application/vnd.ogc.sld+xml.

Parameters

name The name parameter specifies the name to be given to the style. This option is most useful when
executing a POST request with a style in SLD format, and an appropriate name can be not be inferred from
the SLD itself.

/styles/<s>[.<format>]

Controls a given style.

Method Action Status code Formats Default Format
GET Return style s 200 SLD, HTML, XML, JSON HTML
POST 405
PUT Modify style s 200 SLD, XML, JSON, See note above
DELETE Delete style s 200

Exceptions

Exception Status code
GET for a style that does not exist 404
PUT that changes name of style 403
DELETE against style which is referenced by existing layers 403

Parameters

purge The purge parameter specifies whether the underlying SLD file for the style should be deleted on
disk. Allowable values for this parameter are “true” or “false”. When set to “true” the underlying file will
be deleted.

/workspaces/<ws>/styles[.<format>]

Controls all styles in a given workspace.

478 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

Method Action Status code Formats Default
Format

Param-
eters

GET Return all styles within
workspace ws

200 HTML, XML, JSON HTML

POST Create a new style within
workspace ws

201 with
Location
header

SLD, XML, JSON,
See note above

name

PUT 405
DELETE 405 purge

/workspaces/<ws>/styles/<s>[.<format>]

Controls a particular style in a given workspace.

Method Action Status code Formats Default Format
GET Return style s within workspace ws 200 SLD, HTML, XML, JSON HTML
POST 405
PUT Modify style s within workspace ws 200 SLD, XML, JSON See note above
DELETE Delete style s within workspace ws 200

14.1.11 Layers

A layer is a published resource (feature type or coverage).

/layers[.<format>]

Controls all layers.

Method Action Status code Formats Default Format
GET Return all layers 200 HTML, XML, JSON HTML
POST 405
PUT 405
DELETE 405

/layers/<l>[.<format>]

Controls a particular layer.

Method Action Status code Formats Default Format Parameters
GET Return layer l 200 HTML, XML, JSON HTML
POST 405
PUT Modify layer l 200 XML,JSON
DELETE Delete layer l 200 recurse

Exceptions

Exception Status code
GET for a layer that does not exist 404
PUT that changes name of layer 403
PUT that changes resource of layer 403

14.1. REST configuration API reference 479

GeoServer User Manual, Release 2.5.x

Parameters

recurse The recurse parameter recursively deletes all styles referenced by the specified layer. Allowed
values for this parameter are “true” or “false”. The default value is “false”.

/layers/<l>/styles[.<format>]

Controls all styles in a given layer.

Method Action Status code Formats Default Format
GET Return all styles for layer l 200 SLD, HTML, XML, JSON HTML
POST Add a new style to layer l 201, with Location header XML, JSON
PUT 405
DELETE 405

14.1.12 Layer groups

A layer group is a grouping of layers and styles that can be accessed as a single layer in a WMS GetMap
request. A layer group is sometimes referred to as a “base map”.

/layergroups[.<format>]

Controls all layer groups.

Method Action Status code Formats Default Format
GET Return all layer groups 200 HTML, XML, JSON HTML
POST Add a new layer group 201, with Location header XML,JSON
PUT 405
DELETE 405

/layergroups/<lg>[.<format>]

Controls a particular layer group.

Method Action Status code Formats Default Format
GET Return layer group lg 200 HTML, XML, JSON HTML
POST 405
PUT Modify layer group lg 200 XML,JSON
DELETE Delete layer group lg 200

Exceptions

Exception Status code
GET for a layer group that does not exist 404
POST that specifies layer group with no layers 400
PUT that changes name of layer group 403

480 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

/workspaces/<ws>/layergroups[.<format>]

Controls all layer groups in a given workspace.

Method Action Status code Formats Default
Format

GET Return all layer groups within
workspace ws

200 HTML, XML,
JSON

HTML

POST Add a new layer group within
workspace ws

201, with Location
header

XML,JSON

PUT 405
DELETE 405

/workspaces/<ws>/layergroups/<lg>[.<format>]

Controls a particular layer group in a given workspace.

Method Action Status code Formats Default Format
GET Return layer group lg within workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT Modify layer group lg within workspace ws 200 XML,JSON
DELETE Delete layer group lg within workspace ws 200

14.1.13 Fonts

This operation provides the list of fonts available in GeoServer. It can be useful to use this operation to
verify if a font used in a SLD file is available before uploading the SLD.

/fonts[.<format>]

Method Action Status code Formats Default Format
GET Return the fonts available in GeoServer 200 XML, JSON XML
POST 405
PUT 405
DELETE 405

14.1.14 Freemarker templates

Freemarker is a simple yet powerful template engine that GeoServer emplys for user customization of
outputs.

It is possible to use the GeoServer REST API to manage Freemarker templates for catalog resources.

/templates/<template>.ftl

This endpoint manages a template that is global to the entire catalog.

Method Action Status Code Formats Default Format
GET Return a template 200
PUT Insert or update a template 405
DELETE Delete a template 405

14.1. REST configuration API reference 481

http://freemarker.sourceforge.net/

GeoServer User Manual, Release 2.5.x

Identical operations apply to the following endpoints:

• Workspace templates—/workspaces/<ws>/templates/<template>.ftl

• Vector store templates—/workspaces/<ws>/datastores/<ds>/templates/<template>.ftl

• Feature type templates—/workspaces/<ws>/datastores/<ds>/featuretypes/<f>/templates/<template>.ftl

• Raster store templates—/workspaces/<ws>/coveragestores/<cs>/templates/<template>.ftl

• Coverage templates—/workspaces/<ws>/coveragestores/<cs>/coverages/<c>/templates/<template>.ftl

/templates[.<format>]

This endpoint manages all global templates.

Method Action Status Code Formats Default Format
GET Return templates 200 HTML, XML, JSON HTML

Identical operations apply to the following endpoints:

• Workspace templates—/workspaces/<ws>/templates[.<format>]

• Vector store templates—/workspaces/<ws>/datastores/<ds>/templates[.<format>]

• Feature type templates—/workspaces/<ws>/datastores/<ds>/featuretypes/<f>/templates[.<format>]

• Raster store templates—/workspaces/<ws>/coveragestores/<cs>/templates[.<format>]

• Coverage templates—/workspaces/<ws>/coveragestores/<cs>/coverages/<c>/templates[.<format>]

14.1.15 OWS Services

GeoServer includes several types of OGC services like WCS, WFS and WMS, commonly referred to as
“OWS” services. These services can be global for the whole GeoServer instance or local to a particular
workspace. In this last case, they are called virtual services.

/services/wcs/settings[.<format>]

Controls Web Coverage Service settings.

Method Action Status code Formats Default Format
GET Return global WCS settings 200 XML, JSON HTML
POST 405
PUT Modify global WCS settings 200
DELETE 405

/services/wcs/workspaces/<ws>/settings[.<format>]

Controls Web Coverage Service settings for a given workspace.

Method Action Status code Formats Default Format
GET Return WCS settings for workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT Create or modify WCS settings for workspace ws 200 XML,JSON
DELETE Delete WCS settings for workspace ws 200

482 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

/services/wfs/settings[.<format>]

Controls Web Feature Service settings.

Method Action Status code Formats Default Format
GET Return global WFS settings 200 HTML, XML, JSON HTML
POST 405
PUT Modify global WFS settings 200 XML,JSON
DELETE 405

/services/wfs/workspaces/<ws>/settings[.<format>]

Controls Web Feature Service settings for a given workspace.

Method Action Status code Formats Default Format
GET Return WFS settings for workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT Modify WFS settings for workspace ws 200 XML,JSON
DELETE Delete WFS settings for workspace ws 200

/services/wms/settings[.<format>]

Controls Web Map Service settings.

Method Action Status code Formats Default Format
GET Return global WMS settings 200 HTML, XML, JSON HTML
POST 405
PUT Modify global WMS settings 200 XML,JSON
DELETE 405

/services/wms/workspaces/<ws>/settings[.<format>]

Controls Web Map Service settings for a given workspace.

Method Action Status code Formats Default Format
GET Return WMS settings for workspace ws 200 HTML, XML, JSON HTML
POST 405
PUT Modify WMS settings for workspace ws 200 XML,JSON
DELETE Delete WMS settings for workspace ws 200

14.1.16 Reloading configuration

Reloads the GeoServer catalog and configuration from disk. This operation is used in cases where an
external tool has modified the on-disk configuration. This operation will also force GeoServer to drop any
internal caches and reconnect to all data stores.

14.1. REST configuration API reference 483

GeoServer User Manual, Release 2.5.x

/reload

Method Action Status code Formats Default Format
GET 405
POST Reload the configuration from disk 200
PUT Reload the configuration from disk 200
DELETE 405

14.1.17 Resource reset

Resets all store, raster, and schema caches. This operation is used to force GeoServer to drop all caches and
store connections and reconnect to each of them the next time they are needed by a request. This is useful
in case the stores themselves cache some information about the data structures they manage that may have
changed in the meantime.

/reset

Method Action Status code Formats Default Format
GET 405
POST Reload the configuration from disk 200
PUT Reload the configuration from disk 200
DELETE 405

14.1.18 Manifests

GeoServer provides a REST service to expose a listing of all loaded JARs and resources on the running
instance. This is useful for bug reports and to keep track of extensions deployed into the application. There
are two endpoints for accessing this information:

• about/manifest—Retrieves details on all loaded JARs

• about/version—Retrieves details for the high-level components: GeoSever, GeoTools, and GeoWe-
bCache

/about/manifest[.<format>]

This endpoint retrieves details on all loaded JARs.

All the GeoServer manifest JARs are marked with the property GeoServerModule and classified by type,
so you can use filtering capabilities to search for a set of manifests using regular expressions (see the manifest
parameter) or a type category (see the key and value parameter).

The available types are core, extension, or community. To filter modules by a particular type, append
a request with key=GeoServerModule&value=<type>

Method Action Status
Code

Formats Default
Format

Parameters

GET List all manifests into the
classpath

200 HTML, XML,
JSON

HTML manifest, key,
value

POST 405
PUT 405
DELETE 405

484 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

Usage

The model is very simple and is shared between the version and the resource requests to parse both re-
quests.

<about>
<resource name="{NAME}">
<{KEY}>{VALUE}</{KEY}>
...

</resource>
...

</about>

You can customize the results adding a properties file called manifest.properties into the root of the
data directory. Below is the default implementation that is used when no custom properties file is present:

resourceNameRegex=.+/(.*).(jar|war)
resourceAttributeExclusions=Import-Package,Export-Package,Class-Path,Require-Bundle
versionAttributeInclusions=Project-Version:Version,Build-Timestamp,Git-Revision,

Specification-Version:Version,Implementation-Version:Git-Revision

where:

• resourceNameRegex—Group(1) will be used to match the attribute name of the resource.

• resourceAttributeExclusions—Comma-separated list of properties to exclude (blacklist), used
to exclude parameters that are too verbose such that the resource properties list is left open. Users can
add their JARs (with custom properties) having the complete list of properties.

• versionAttributeInclusions—Comma-separated list of properties to include (whitelist). Also
supports renaming properties (using key:replace) which is used to align the output of the
versions request to the output of the web page. The model uses a map to store attributes, so the last
attribute found in the manifest file will be used.

manifest The manifest parameter is used to filter over resulting resource (manifest) names attribute
using Java regular expressions.

key The key parameter is used to filter over resulting resource (manifest) properties name. It can be
combined with the value parameter.

value The value parameter is used to filter over resulting resource (manifest) properties value. It can
be combined with the key parameter.

/about/version[.<format>]

This endpoint shows only the details for the high-level components: GeoServer, GeoTools, and GeoWeb-
Cache.

Method Action Status
Code

Formats Default
Format

Parameters

GET List GeoServer, GeoWebCache and
GeoTools manifests

200 HTML, XML,
JSON

HTML manifest,
key, value

POST 405
PUT 405
DELETE 405

14.1. REST configuration API reference 485

GeoServer User Manual, Release 2.5.x

14.2 REST configuration examples

This section contains a number of examples which illustrate various uses of the REST configuration API. The
examples are grouped by the language or environment used.

14.2.1 cURL

The examples in this section use cURL, a command line tool for executing HTTP requests and transferring
files, to generate requests to GeoServer’s REST interface. Although the examples are based on cURL, they
could be adapted for any HTTP-capable tool or library.

Adding a new workspace

The following creates a new workspace named “acme” with a POST request:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml"
-d "<workspace><name>acme</name></workspace>"
http://localhost:8080/geoserver/rest/workspaces

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created
...
< Location: http://localhost:8080/geoserver/rest/workspaces/acme

Note the Location response header, which specifies the location (URI) of the newly created workspace.

The workspace information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/workspaces/acme

The response should look like this:

<workspace>
<name>acme</name>
<dataStores>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores.xml"
type="application/xml"/>

</dataStores>
<coverageStores>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme/coveragestores.xml"
type="application/xml"/>

</coverageStores>
<wmsStores>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme/wmsstores.xml"
type="application/xml"/>

</wmsStores>
</workspace>

486 Chapter 14. REST configuration

http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

This shows that the workspace can contain “dataStores” (for vector data), “coverageStores” (for raster
data), and “wmsStores” (for cascaded WMS servers).

Note: The Accept header is optional. The following request omits the Accept header, but will return the
same response as above.

curl -v -u admin:geoserver -XGET http://localhost:8080/geoserver/rest/workspaces/acme.xml

Uploading a shapefile

In this example a new store will be created by uploading a shapefile.

The following request uploads a zipped shapefile named roads.zip and creates a new store named
roads.

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPUT -H "Content-type: application/zip"
--data-binary @roads.zip
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/file.shp

The roads identifier in the URI refers to the name of the store to be
created. To create a store named somethingelse, the URI would be
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/somethingelse/file.shp

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads.xml

The response should look like this:

<dataStore>
<name>roads</name>
<type>Shapefile</type>
<enabled>true</enabled>
<workspace>
<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme.xml" type="application/xml"/>

</workspace>
<connectionParameters>
<entry key="url">file:/C:/path/to/data_dir/data/acme/roads/</entry>
<entry key="namespace">http://acme</entry>

</connectionParameters>
<__default>false</__default>
<featureTypes>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/featuretypes.xml"
type="application/xml"/>

</featureTypes>
</dataStore>

14.2. REST configuration examples 487

GeoServer User Manual, Release 2.5.x

By default when a shapefile is uploaded, a feature type is automatically created. The feature type informa-
tion can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/roads/featuretypes/roads.xml

If executed correctly, the response will be:

<featureType>
<name>roads</name>
<nativeName>roads</nativeName>
<namespace>
<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/namespaces/acme.xml" type="application/xml"/>

</namespace>
...

</featureType>

The remainder of the response consists of layer metadata and configuration information.

Adding an existing shapefile

In the previous example a shapefile was uploaded directly to GeoServer by sending a zip file in the body
of a PUT request. This example shows how to publish a shapefile that already exists on the server.

Consider a directory on the server /data/shapefiles/rivers that contains the shapefile rivers.shp.
The following adds a new store for the shapefile:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain"
-d "file:///data/shapefiles/rivers/rivers.shp"
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/rivers/external.shp

The external.shp part of the request URI indicates that the file is coming from outside the catalog.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

The shapefile will be added to the existing store and published as a layer.

To verify the contents of the store, execute a GET request. Since the XML response only provides details
about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/rivers.html

Adding a directory of existing shapefiles

This example shows how to load and create a store that contains a number of shapefiles, all with a single
operation. This example is very similar to the example above of adding a single shapefile.

Consider a directory on the server /data/shapefiles that contains multiple shapefiles. The following
adds a new store for the directory.

Note: Each code block below contains a single command that may be extended over multiple lines.

488 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

curl -v -u admin:geoserver -XPUT -H "Content-type: text/plain"
-d "file:///data/shapefiles/"
"http://localhost:8080/geoserver/rest/workspaces/acme/datastores/shapefiles/external.shp?configure=all"

Note the configure=all query string parameter, which sets each shapefile in the directory to be loaded
and published.

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

To verify the contents of the store, execute a GET request. Since the XML response only provides details
about the store itself without showing its contents, execute a GET request for HTML:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/shapefiles.html

Creating a layer style

This example will create a new style on the server and populate it the contents of a local SLD file.

The following creates a new style named roads_style:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml"
-d "<style><name>roads_style</name><filename>roads.sld</filename></style>"
http://localhost:8080/geoserver/rest/styles

If executed correctly, the response should contain the following:

< HTTP/1.1 201 Created

This request uploads a file called roads.sld file and populates the roads_style with its contents:

curl -v -u admin:geoserver -XPUT -H "Content-type: application/vnd.ogc.sld+xml"
-d @roads.sld http://localhost:8080/geoserver/rest/styles/roads_style

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The SLD itself can be downloaded through a a GET request:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/styles/roads_style.sld

Changing a layer style

This example will alter a layer style. Prior to making any changes, it is helpful to view the existing config-
uration for a given layer.

Note: Each code block below contains a single command that may be extended over multiple lines.

The following retrieves the “acme:roads” layer information as XML:

14.2. REST configuration examples 489

GeoServer User Manual, Release 2.5.x

curl -v -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/layers/acme:roads.xml"

The response in this case would be:

<layer>
<name>roads</name>
<type>VECTOR</type>
<defaultStyle>
<name>line</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/styles/line.xml" type="application/xml"/>

</defaultStyle>
<resource class="featureType">
<name>roads</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workpaces/acme/datastores/roads/featuretypes/roads.xml"
type="application/xml"/>

</resource>
<enabled>true</enabled>
<attribution>
<logoWidth>0</logoWidth>
<logoHeight>0</logoHeight>

</attribution>
</layer>

When the layer is created, GeoServer assigns a default style to the layer that matches the geometry of the
layer. In this case a style named line is assigned to the layer. This style can viewed with a WMS request:

http://localhost:8080/geoserver/wms/reflect?layers=acme:roads

In this next example a new style will be created called roads_style and assigned to the “acme:roads”
layer:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml"
-d "<layer><defaultStyle><name>roads_style</name></defaultStyle></layer>"
http://localhost:8080/geoserver/rest/layers/acme:roads

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The new style can be viewed with the same WMS request as above:

http://localhost:8080/geoserver/wms/reflect?layers=acme:roads

Note that if you want to upload the style in a workspace (ie, not making it a global style), and then assign
this style to a layer in that workspace, you need first to create the style in the given workspace:

curl -u admin:geoserver -XPOST -H ’Content-type: text/xml’ \
-d ’<style><name>roads_style</name><filename>roads.sld</filename></style>’
http://localhost:8080/geoserver/rest/workspaces/acme/styles

Upload the file within the workspace:

curl -u admin:geoserver -XPUT -H ’Content-type: application/vnd.ogc.sld+xml’ \
-d @roads.sld http://localhost:8080/geoserver/rest/workspaces/acme/styles/roads_style

And finally apply that style to the layer. Note the use of the <workspace> tag in the XML:

490 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

curl -u admin:geoserver -XPUT -H ’Content-type: text/xml’ \
-d ’<layer><defaultStyle><name>roads_style</name><workspace>acme</workspace></defaultStyle></layer>’ \
http://localhost:8080/geoserver/rest/layers/acme:roads

Adding a PostGIS database

In this example a PostGIS database named nyc will be added as a new store. This section assumes that a
PostGIS database named nyc is present on the local system and is accessible by the user bob.

Create a new text file and add the following content to it. This will represent the new store. Save the file as
nycDataStore.xml.

<dataStore>
<name>nyc</name>
<connectionParameters>
<host>localhost</host>
<port>5432</port>
<database>nyc</database>
<user>bob</user>
<passwd>postgres</passwd>
<dbtype>postgis</dbtype>

</connectionParameters>
</dataStore>

The following will add the new PostGIS store to the GeoServer catalog:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T nycDataStore.xml -H "Content-type: text/xml"
http://localhost:8080/geoserver/rest/workspaces/acme/datastores

If executed correctly, the response should contain the following:

< HTTP/1.1 200 OK

The store information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc.xml

The response should look like the following:

<dataStore>
<name>nyc</name>
<type>PostGIS</type>
<enabled>true</enabled>
<workspace>
<name>acme</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme.xml" type="application/xml"/>

</workspace>
<connectionParameters>
<entry key="port">5432</entry>
<entry key="dbtype">postgis</entry>
<entry key="host">localhost</entry>
<entry key="user">bob</entry>
<entry key="database">nyc</entry>
<entry key="namespace">http://acme</entry>

</connectionParameters>

14.2. REST configuration examples 491

GeoServer User Manual, Release 2.5.x

<__default>false</__default>
<featureTypes>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate"
href="http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes.xml"
type="application/xml"/>

</featureTypes>
</dataStore>

Adding a PostGIS table

In this example a table from the PostGIS database created in the previous example will be added as a
featuretypes. This example assumes the table has already been created.

The following adds the table buildings as a new feature type:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml"
-d "<featureType><name>buildings</name></featureType>"
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/buildings.xml

This layer can viewed with a WMS GetMap request:

http://localhost:8080/geoserver/wms/reflect?layers=acme:buildings

Creating a PostGIS table

In the previous example, a new feature type was added based on a PostGIS table that already existed in the
database. The following example will not only create a new feature type in GeoServer, but will also create
the PostGIS table itself.

Create a new text file and add the following content to it. This will represent the definition of the new
feature type and table. Save the file as annotations.xml.

<featureType>
<name>annotations</name>
<nativeName>annotations</nativeName>
<title>Annotations</title>
<srs>EPSG:4326</srs>
<attributes>
<attribute>

<name>the_geom</name>
<binding>com.vividsolutions.jts.geom.Point</binding>

</attribute>
<attribute>

<name>description</name>
<binding>java.lang.String</binding>

</attribute>
<attribute>

<name>timestamp</name>
<binding>java.util.Date</binding>

492 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

</attribute>
</attributes>

</featureType>

This request will perform the feature type creation and add the new table:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -T annotations.xml -H "Content-type: text/xml"
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes

The result is a new, empty table named “annotations” in the “nyc” database, fully configured as a feature
type.

The featuretype information can be retrieved as XML with a GET request:

curl -v -u admin:geoserver -XGET
http://localhost:8080/geoserver/rest/workspaces/acme/datastores/nyc/featuretypes/annotations.xml

Creating a layer group

In this example a layer group will be created, based on layers that already exist on the server.

Create a new text file and add the following content to it. This file will represent the definition of the new
layer group. Save the file as nycLayerGroup.xml.

<layerGroup>
<name>nyc</name>
<layers>
<layer>roads</layer>
<layer>parks</layer>
<layer>buildings</layer>

</layers>
<styles>
<style>roads_style</style>
<style>polygon</style>
<style>polygon</style>

</styles>
</layerGroup>

The following request creates the new layer group:

Note: Each code block below contains a single command that may be extended over multiple lines.

curl -v -u admin:geoserver -XPOST -d @nycLayerGroup.xml -H "Content-type: text/xml"
http://localhost:8080/geoserver/rest/layergroups

Note: The argument -d@filename.xml in this example is used to send a file as the body of an HTTP
request with a POST method. The argument -T filename.xml used in the previous example was used
to send a file as the body of an HTTP request with a PUT method.

This layer group can be viewed with a WMS GetMap request:

http://localhost:8080/geoserver/wms/reflect?layers=nyc

14.2. REST configuration examples 493

GeoServer User Manual, Release 2.5.x

Retrieving component versions

This example shows how to retrieve the versions of the main components: GeoServer, GeoTools, and Ge-
oWebCache:

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/about/version.xml

The response will look something like this:

<about>
<resource name="GeoServer">
<Build-Timestamp>11-Dec-2012 17:55</Build-Timestamp>
<Git-Revision>e66f8da85521f73d0fd00b71331069a5f49f7865</Git-Revision>
<Version>2.3-SNAPSHOT</Version>

</resource>
<resource name="GeoTools">
<Build-Timestamp>04-Dec-2012 02:31</Build-Timestamp>
<Git-Revision>380a2b8545ee9221f1f2d38a4f10ef77a23bccae</Git-Revision>
<Version>9-SNAPSHOT</Version>

</resource>
<resource name="GeoWebCache">
<Git-Revision>2a534f91f6b99e5120a9eaa5db62df771dd01688</Git-Revision>
<Version>1.3-SNAPSHOT</Version>

</resource>
</about>

Retrieving manifests

This collection of examples shows how to retrieve the full manifest and subsets of the manifest as known
to the ClassLoader.

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/about/manifest.xml

The result will be a very long list of manifest information. While this can be useful, it is often desirable to
filter this list.

Filtering over resource name

It is possible to filter over resource names using regular expressions. This example will retrieve only re-
sources where the name attribute matches gwc-.*:

Note: The code block below contains a single command that is extended over multiple lines.

curl -v -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/about/manifest.xml?manifest=gwc-.*

The result will look something like this (edited for brevity):

494 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

<about>
<resource name="gwc-2.3.0">
...

</resource>
<resource name="gwc-core-1.4.0">
...

</resource>
<resource name="gwc-diskquota-core-1.4.0">
...

</resource>
<resource name="gwc-diskquota-jdbc-1.4.0">
...

</resource>
<resource name="gwc-georss-1.4.0">
...

</resource>
<resource name="gwc-gmaps-1.4.0">
...

</resource>
<resource name="gwc-kml-1.4.0">
...

</resource>
<resource name="gwc-rest-1.4.0">
...

</resource>
<resource name="gwc-tms-1.4.0">
...

</resource>
<resource name="gwc-ve-1.4.0">
...

</resource>
<resource name="gwc-wms-1.4.0">
...

</resource>
<resource name="gwc-wmts-1.4.0">
...

</resource>
</about>

Filtering over resource properties

Filtering is also available over resulting resource properties. This example will retrieve only resources with
a property equal to GeoServerModule.

Note: The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/about/manifest.xml?key=GeoServerModule

The result will look something like this (edited for brevity):

<about>
<resource name="control-flow-2.3.0">
<GeoServerModule>extension</GeoServerModule>
...

</resource>

14.2. REST configuration examples 495

GeoServer User Manual, Release 2.5.x

...
<resource name="wms-2.3.0">
<GeoServerModule>core</GeoServerModule>
...

</resource>
</about>

It is also possible to filter against both property and value. To retrieve only resources where a prop-
erty named GeoServerModule has a value equal to extension, append the above request with
&value=extension:

curl -u admin:geoserver -XGET -H "Accept: text/xml"
http://localhost:8080/geoserver/rest/about/manifest.xml?key=GeoServerModule&value=extension

Uploading and modifying a image mosaic

The following command uploads a zip file containing the definition of a mosaic (along with at least one
granule of the mosaic to initialize the resolutions, overviews and the like) and will configure all the cover-
ages in it as new layers.

Note: The code blocks below contain a single command that is extended over multiple lines.

curl -u admin:geoserver -XPUT H "Contenttype:application/zip"--data-binary @polyphemus.zip
http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/polyphemus/file.imagemosaic

The following instead instructs the mosaic to harvest (or re-harvest) a single file into the mosaic, collecting
its properties and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20130302.nc"
"http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

Harvesting can also be directed towards a whole directory, as follows:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/mosaic/folder"
"http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/poly-incremental/external.imagemosaic"

The image mosaic index structure can be retrieved using something like:

curl -v -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index.xml"

which will result in the following:

<Schema>
<attributes>
<Attribute>

<name>the_geom</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>com.vividsolutions.jts.geom.Polygon</binding>

</Attribute>
<Attribute>

<name>location</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.String</binding>

</Attribute>

496 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

<Attribute>
<name>imageindex</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.Integer</binding>

</Attribute>
<Attribute>

<name>time</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
<Attribute>

<name>elevation</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.lang.Double</binding>

</Attribute>
<Attribute>

<name>fileDate</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
<Attribute>

<name>updated</name>
<minOccurs>0</minOccurs>
<maxOccurs>1</maxOccurs>
<nillable>true</nillable>
<binding>java.sql.Timestamp</binding>

</Attribute>
</attributes>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml" type="application/xml"/>

</Schema>

Listing the existing granules can be performed as follows:

curl -v -u admin:geoserver -XGET "http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?limit=2"

This will result in a GML description of the granules, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<wfs:FeatureCollection xmlns:gf="http://www.geoserver.org/rest/granules" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wfs="http://www.opengis.net/wfs" xmlns:gml="http://www.opengis.net/gml">

<gml:boundedBy>
<gml:Box srsName="http://www.opengis.net/gml/srs/epsg.xml#4326">

<gml:coord>
<gml:X>5.0</gml:X>
<gml:Y>45.0</gml:Y>

</gml:coord>
<gml:coord>

<gml:X>14.875</gml:X>
<gml:Y>50.9375</gml:Y>

</gml:coord>
</gml:Box>

</gml:boundedBy>

14.2. REST configuration examples 497

GeoServer User Manual, Release 2.5.x

<gml:featureMember>
<gf:NO2 fid="NO2.1">

<gf:the_geom>
<gml:Polygon>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>
</gf:the_geom>
<gf:location>polyphemus_20130301.nc</gf:location>
<gf:imageindex>336</gf:imageindex>
<gf:time>2013-03-01T00:00:00Z</gf:time>
<gf:elevation>10.0</gf:elevation>
<gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
<gf:updated>2013-04-11T10:54:31Z</gf:updated>

</gf:NO2>
</gml:featureMember>
<gml:featureMember>
<gf:NO2 fid="NO2.2">

<gf:the_geom>
<gml:Polygon>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>5.0,45.0 5.0,50.9375 14.875,50.9375 14.875,45.0 5.0,45.0</gml:coordinates>

</gml:LinearRing>
</gml:outerBoundaryIs>

</gml:Polygon>
</gf:the_geom>
<gf:location>polyphemus_20130301.nc</gf:location>
<gf:imageindex>337</gf:imageindex>
<gf:time>2013-03-01T00:00:00Z</gf:time>
<gf:elevation>35.0</gf:elevation>
<gf:fileDate>2013-03-01T00:00:00Z</gf:fileDate>
<gf:updated>2013-04-11T10:54:31Z</gf:updated>

</gf:NO2>
</gml:featureMember>

</wfs:FeatureCollection>

Removing all the granules originating from a particular file (a NetCDF file can contain many) can be done
as follows:

curl -v -u admin:geoserver -XDELETE "http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/polyphemus-v1/coverages/NO2/index/granules.xml?filter=location=’polyphemus_20130301.nc’"

Creating an empty mosaic and harvest granules

The following command uploads a zip file containing the definition of a mosaic (no granules in this case)

Note: The code blocks below contain a single command that is extended over multiple lines.

Note: the indexer file should contain a CanBeEmpty=true property

Note: The configure=none parameter allows for future configuration after harvesting

498 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

curl -u admin:geoserver -XPUT -H "Content-type:application/zip" --data-binary @empty.zip
http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/empty/file.imagemosaic?configure=none

The following instead instructs the mosaic to harvest a single file into the mosaic, collecting its properties
and updating the mosaic index:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/plain" -d "file:///path/to/the/file/polyphemus_20130302.nc"
"http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/empty/external.imagemosaic"

Once done you can get the list of coverages/granules available on that store.

curl -v -u admin:geoserver -XGET
"http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/empty/coverages.xml?list=all"

which will result in the following:

<list>
<coverageName>NO2</coverageName>
<coverageName>O3</coverageName>
<coverageName>V</coverageName>

</list>

Next step is configuring ONCE for coverage (as an instance NO2), an available coverage.

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xm" -d @"/path/to/coverageconfig.xml" "http://localhost:8080/geoserver/rest/workspaces/topp/coveragestores/empty/coverages"

Where coverageconfig.xml may look like this

<coverage>
<name>NO2</name>

</coverage>

Note: When specifying only the coverage name, the coverage will be automatically configured

14.2.2 PHP

The examples in this section use the server-side scripting language PHP, a popular language for dynamic
webpages. PHP has cURL functions , as well as XML functions, making it a convenient method for perform-
ing batch processing through the Geoserver REST interface. The following scripts execute single requests,
but can be easily modified with looping structures to perform batch processing.

POST with PHP/cURL

The following script attempts to add a new workspace.

<?php
// Open log file
$logfh = fopen("GeoserverPHP.log", ’w’) or die("can’t open log file");

// Initiate cURL session
$service = "http://localhost:8080/geoserver/"; // replace with your URL
$request = "rest/workspaces"; // to add a new workspace
$url = $service . $request;
$ch = curl_init($url);

// Optional settings for debugging

14.2. REST configuration examples 499

http://php.net/index.php/
http://php.net/manual/en/ref.curl.php/
http://www.php.net/manual/en/refs.xml.php/

GeoServer User Manual, Release 2.5.x

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true); //option to return string
curl_setopt($ch, CURLOPT_VERBOSE, true);
curl_setopt($ch, CURLOPT_STDERR, $logfh); // logs curl messages

//Required POST request settings
curl_setopt($ch, CURLOPT_POST, True);
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//POST data
curl_setopt($ch, CURLOPT_HTTPHEADER,

array("Content-type: application/xml"));
$xmlStr = "<workspace><name>test_ws</name></workspace>";
curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlStr);

//POST return code
$successCode = 201;

$buffer = curl_exec($ch); // Execute the curl request

// Check for errors and process results
$info = curl_getinfo($ch);
if ($info[’http_code’] != $successCode) {

$msgStr = "# Unsuccessful cURL request to ";
$msgStr .= $url." [". $info[’http_code’]. "]\n";
fwrite($logfh, $msgStr);

} else {
$msgStr = "# Successful cURL request to ".$url."\n";
fwrite($logfh, $msgStr);

}
fwrite($logfh, $buffer."\n");

curl_close($ch); // free resources if curl handle will not be reused
fclose($logfh); // close logfile

?>

The logfile should look something like:

* About to connect() to www.example.com port 80 (#0)

* Trying 123.456.78.90... * connected

* Connected to www.example.com (123.456.78.90) port 80 (#0)

* Server auth using Basic with user ’admin’
> POST /geoserver/rest/workspaces HTTP/1.1
Authorization: Basic sDsdfjkLDFOIedlsdkfj
Host: www.example.com
Accept: */*
Content-type: application/xml
Content-Length: 43

< HTTP/1.1 201 Created
< Date: Fri, 21 May 2010 15:44:47 GMT
< Server: Apache-Coyote/1.1
< Location: http://www.example.com/geoserver/rest/workspaces/test_ws
< Content-Length: 0
< Content-Type: text/plain
<

* Connection #0 to host www.example.com left intact
Successful cURL request to http://www.example.com/geoserver/rest/workspaces

500 Chapter 14. REST configuration

GeoServer User Manual, Release 2.5.x

* Closing connection #0

If the cURL request fails, a code other than 201 will be returned. Here are some possible values:

Code Meaning
0 Couldn’t resolve host; possibly a typo in host name
201 Successful POST
30x Redirect; possibly a typo in the URL
401 Invalid username or password
405 Method not Allowed: check request syntax
500 Geoserver is unable to process the request, e.g. the workspace already exists, the xml is

malformed, ...

For other codes see cURL Error Codes and HTTP Codes.

GET with PHP/cURL

The script above can be modified to perform a GET request to obtain the names of all workspaces by
replacing the code blocks for required settings, data and return code with the following:

<?php
// Required GET request settings
// curl_setopt($ch, CURLOPT_GET, True); // CURLOPT_GET is True by default

//GET data
curl_setopt($ch, CURLOPT_HTTPHEADER, array("Accept: application/xml"));

//GET return code
$successCode = 200;

?>

The logfile should now include lines like:

> GET /geoserver/rest/workspaces HTTP/1.1

< HTTP/1.1 200 OK

DELETE with PHP/cURL

To delete the (empty) workspace we just created, the script is modified as follows:

<?php
$request = "rest/workspaces/test_ws"; // to delete this workspace

?>

<?php
//Required DELETE request settings
curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");
$passwordStr = "admin:geoserver"; // replace with your username:password
curl_setopt($ch, CURLOPT_USERPWD, $passwordStr);

//DELETE data
curl_setopt($ch, CURLOPT_HTTPHEADER,

array("Content-type: application/atom+xml"));

//DELETE return code

14.2. REST configuration examples 501

http://curl.haxx.se/libcurl/c/libcurl-errors.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

GeoServer User Manual, Release 2.5.x

$successCode = 200;
?>

The log file will include lines like:

> DELETE /geoserver/rest/workspaces/test_ws HTTP/1.1

< HTTP/1.1 200 OK

14.2.3 Python

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do python scripting of the GeoServer REST config API should use
gsconfig.py. It is quite capable, and is used in production as part of GeoNode, so examples can be found in
that codebase. It just currently lacks documentation and examples.

14.2.4 Java

We are looking for volunteers to flesh out this section with examples.

In the meantime, anyone looking to do Java scripting of the GeoServer REST API should use GeoServer
Manager, a REST client library with minimal dependencies on external libraries.

Another option is gsrcj. This project is a GeoServer REST client written in Java with no extra dependencies
on GeoServer/GeoTools, unlike the standard GeoServer REST module. The project has minimal documen-
tation, but does include a Quickstart.

14.2.5 Ruby

The examples in this section use rest-client, a REST client for Ruby. There is also a project to create a
GeoServer-specific REST client in Ruby: RGeoServer.

Once installed on a system, rest-client can be included in a Ruby script by adding require
’rest-client’.

GET and PUT Settings

This example shows how to read the settings using GET, make a change and then use PUT to write the
change to the server.

require ’json’
require ’rest-client’

url = ’http://admin:geoserver@localhost:8080/geoserver/rest/’

get the settings and parse the JSON into a Hash
json_text = RestClient.get(url + ’settings.json’)
settings = JSON.parse(json_text)

settings can be found with the appropriate keys
global_settings = settings["global"]
jai_settings = global_settings["jai"]

502 Chapter 14. REST configuration

https://github.com/dwins/gsconfig.py/wiki
http://geonode.org
https://github.com/geosolutions-it/geoserver-manager/wiki/
https://github.com/geosolutions-it/geoserver-manager/wiki/
http://code.google.com/p/gsrcj/
http://code.google.com/p/gsrcj/wiki/Quickstart
http://github.com/archiloque/rest-client
https://github.com/rnz0/rgeoserver

GeoServer User Manual, Release 2.5.x

change a value
jai_settings["allowInterpolation"] = true

put changes back to the server
RestClient.put(url + ’settings, settings.to_json, :content_type => :json)

14.2. REST configuration examples 503

GeoServer User Manual, Release 2.5.x

504 Chapter 14. REST configuration

CHAPTER 15

Advanced GeoServer Configuration

GeoServer provides a variety of options to customize your service for different situations. While none of the
configuration options discussed in this section are required for a basic GeoServer installation, they allow
you to adapt your GeoServer to your own needs, beyond the options exposed in OGC standard services.

15.1 Coordinate Reference System Handling

This section describes how coordinate reference systems (CRS) are handled in GeoServer, as well as what
can be done to extend GeoServer’s CRS handling abilities.

15.1.1 Coordinate Reference System Configuration

When adding data, GeoServer tries to inspect data headers looking for an EPSG code:

• If the data has a CRS with an explicit EPSG code and the full CRS definition behind the code matches
the one in GeoServer, the CRS will be already set for the data.

• If the data has a CRS but no EPSG code, you can use the Find option on the Layers page to make
GeoServer perform a lookup operation where the data CRS is compared against every other known
CRS. If this succeeds, an EPSG code will be selected. The common case for a CRS that has no EPSG
code is shapefiles whose .PRJ file contains a valid WKT string without the EPSG identifiers (as these
are optional).

If an EPSG code cannot be found, then either the data has no CRS or it is unknown to GeoServer. In this
case, there are a few options:

• Force the declared CRS, ignoring the native one. This is the best solution if the native CRS is known
to be wrong.

• Reproject from the native to the declared CRS. This is the best solution if the native CRS is correct, but
cannot be matched to an EPSG number. (An alternative is to add a custom EPSG code that matches
exactly the native SRS. See the section on Custom CRS Definitions for more information.)

If your data has no native CRS information, the only option is to specify/force an EPSG code.

15.1.2 Custom CRS Definitions

Add a custom CRS

This example shows how to add a custom projection in GeoServer.

505

GeoServer User Manual, Release 2.5.x

1. The projection parameters need to be provided as a WKT (well known text) definition. The code
sample below is just an example:

PROJCS["NAD83 / Austin",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980", 6378137.0, 298.257222101],
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]],

PRIMEM["Greenwich", 0.0],
UNIT["degree", 0.017453292519943295],
AXIS["Lon", EAST],
AXIS["Lat", NORTH]],

PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["central_meridian", -100.333333333333],
PARAMETER["latitude_of_origin", 29.6666666666667],
PARAMETER["standard_parallel_1", 31.883333333333297],
PARAMETER["false_easting", 2296583.333333],
PARAMETER["false_northing", 9842500.0],
PARAMETER["standard_parallel_2", 30.1166666666667],
UNIT["m", 1.0],
AXIS["x", EAST],
AXIS["y", NORTH],
AUTHORITY["EPSG","100002"]]

Note: This code sample has been formatted for readability. The information will need to be provided
on a single line instead, or with backslash characters at the end of every line (except the last one).

2. Go into the user_projections directory inside your data directory, and open the
epsg.properties file. If this file doesn’t exist, you can create it.

3. Insert the code WKT for the projection at the end of the file (on a single line or with backslash charac-
ters):

100002=PROJCS["NAD83 / Austin", \
GEOGCS["NAD83", \

DATUM["North_American_Datum_1983", \
SPHEROID["GRS 1980", 6378137.0, 298.257222101], \
TOWGS84[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]], \

PRIMEM["Greenwich", 0.0], \
UNIT["degree", 0.017453292519943295], \
AXIS["Lon", EAST], \
AXIS["Lat", NORTH]], \

PROJECTION["Lambert_Conformal_Conic_2SP"], \
PARAMETER["central_meridian", -100.333333333333], \
PARAMETER["latitude_of_origin", 29.6666666666667], \
PARAMETER["standard_parallel_1", 31.883333333333297], \
PARAMETER["false_easting", 2296583.333333], \
PARAMETER["false_northing", 9842500.0], \
PARAMETER["standard_parallel_2", 30.1166666666667], \
UNIT["m", 1.0], \
AXIS["x", EAST], \
AXIS["y", NORTH], \
AUTHORITY["EPSG","100002"]]

Note: Note the number that precedes the WKT. This will determine the EPSG code. So in this example, the
EPSG code is 100002.

1. Save the file.

506 Chapter 15. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.5.x

2. Restart GeoServer.

3. Verify that the CRS has been properly parsed by navigating to the SRS page in the Web Administration
Interface.

4. If the projection wasn’t listed, examine the logs for any errors.

Override an official EPSG code

In some situations it is necessary to override an official EPSG code with a custom definition. A common
case is the need to change the TOWGS84 parameters in order to get better reprojection accuracy in specific
areas.

The GeoServer referencing subsystem checks the existence of another property file,
epsg_overrides.properties, whose format is the same as epsg.properties. Any definition
contained in epsg_overrides.properties will override the EPSG code, while definitions stored in
epsg.proeprties can only add to the database.

Special care must be taken when overriding the Datum parameters, in particular the TOWGS84 param-
eters. To make sure the override parameters are actually used the code of the Datum must be removed,
otherwise the referencing subsystem will keep on reading the official database in search of the best Datum
shift method (grid, 7 or 5 parameters transformation, plain affine transform).

For example, if you need to override the official TOWGS84 parameters of EPSG:23031:

PROJCS["ED50 / UTM zone 31N",
GEOGCS["ED50",
DATUM["European Datum 1950",

SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-157.89, -17.16, -78.41, 2.118, 2.697, -1.434, -1.1097046576093785],
AUTHORITY["EPSG","6230"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],
AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH],
AUTHORITY["EPSG","4230"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 3.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","23031"]]

You should write the following (in a single line, here it’s reported formatted over multiple lines for read-
ability):

23031=
PROJCS["ED50 / UTM zone 31N",
GEOGCS["ED50",

DATUM["European Datum 1950",
SPHEROID["International 1924", 6378388.0, 297.0, AUTHORITY["EPSG","7022"]],
TOWGS84[-136.65549, -141.4658, -167.29848, 2.093088, 0.001405, 0.107709, 11.54611],
AUTHORITY["EPSG","6230"]],

PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],
UNIT["degree", 0.017453292519943295],

15.1. Coordinate Reference System Handling 507

GeoServer User Manual, Release 2.5.x

AXIS["Geodetic longitude", EAST],
AXIS["Geodetic latitude", NORTH]],

PROJECTION["Transverse_Mercator"],
PARAMETER["central_meridian", 3.0],
PARAMETER["latitude_of_origin", 0.0],
PARAMETER["scale_factor", 0.9996],
PARAMETER["false_easting", 500000.0],
PARAMETER["false_northing", 0.0],
UNIT["m", 1.0],
AXIS["Easting", EAST],
AXIS["Northing", NORTH],
AUTHORITY["EPSG","23031"]]

The definition has been changed in two places, the TOWGS84 paramerers, and the Datum code,
AUTHORITY["EPSG","4230"], has been removed.

15.1.3 Coordinate Operations

Coordinate operations are used to convert coordinates from a source CRS to a target CRS.

If source and target CRSs are refered to a different datum, a datum transform has to be applied. Datum
transforms are not exact, they are determined empirically. For the same pair of CRS, there can be many
datum transforms and versions, each one with its own domain of validity and an associated transform
error. Given a CRS pair, GeoServer will automatically pick the most accurate datum transform from the
EPSG database, unless a custom operation is declared.

• Coordinate operations can be queried and tested using the Reprojection Console.

• To enable higher accuracy Grid Shift transforms, see Add Grid Shift Transform files.

• See Define a custom Coordinate Operation to declare new operations. Custom operations will take
precedence over the EPSG ones.

Reprojection Console

The reprojection console (in Demos => Reprojection console) lets quickly test coordinate operations. Use it to
convert a single coordinate or WKT geometry, and to see the operation details GeoServer is using. It is also
useful to learn by example when you have to Define a custom Coordinate Operation.

Add Grid Shift Transform files

GeoServer supports NTv2 and NADCON grid shift transforms. Grid files are not shipped out with
GeoServer. They need to be downloaded, usually from yor National Mapping Agency website.

Warning: Grid Shift files are only valid in the specific geographic domain for which they where made;
trying to transform coordinates outside this domain will result in no trasformation at all. Make sure that
the Grid Shift files are valid in the area you want to transform.

1. Search for the Grid File Name(s) int the tables below, which are extracted from EPSG version 7.9.0.
If you need to use a Grid Shift transform not declared in EPSG, you will need to Define a custom
Coordinate Operation.

2. Get the Grid File(s) from your National Mapping Agency (NTv2) or the US National Geodetic Survey
(NADCON).

508 Chapter 15. Advanced GeoServer Configuration

http://www.ngs.noaa.gov/TOOLS/Nadcon/Nadcon.shtml

GeoServer User Manual, Release 2.5.x

Figure 15.1: Reprojection console showing operation details and a transformed coordinate pair.

3. Copy the Grid File(s) in the user_projections directory inside your data directory.

4. Use the Reprojection Console to test the new transform.

List of available Grid Shift transforms

The list of Grid Shift transforms declared in EPSG version 7.9.0 is:

Source CRS Target CRS Grid File Name Source Info
4122 4326 NB7783v2.gsb OGP
4122 4326 NS778301.gsb OGP
4122 4326 PE7783V2.gsb OGP
4122 4617 NB7783v2.gsb New Brunswick Geographic Information Corporation land and water information standards manual.
4122 4617 NS778301.gsb Nova Scotia Geomatics Centre - Contact aflemmin@linux1.nsgc.gov.ns.ca or telephone 902-667-6409
4122 4617 PE7783V2.gsb PEI Department of Transportation & Public Works
4149 4150 CHENYX06.gsb Bundesamt für Landestopographie; www.swisstopo.ch
4171 4275 rgf93_ntf.gsb ESRI
4202 4283 A66 National (13.09.01).gsb GDA Technical Manual. http://www.icsm.gov.au/gda
4202 4283 SEAust_21_06_00.gsb Office of Surveyor General Victoria; http://www.land.vic.gov.au/
4202 4283 nt_0599.gsb GDA Technical Manual. http://www.icsm.gov.au/gda
4202 4283 tas_1098.gsb http://www.delm.tas.gov.au/osg/Geodetic_transform.htm
4202 4283 vic_0799.gsb Office of Surveyor General Victoria; http://www.land.vic.gov.au/
4202 4326 A66 National (13.09.01).gsb OGP
4203 4283 National 84 (02.07.01).gsb GDA Technical Manual. http://www.icsm.gov.au/gda
4203 4283 wa_0400.gsb http://www.dola.wa.gov.au/lotl/survey_geodesy/gda1994/download.html
4203 4283 wa_0700.gsb Department of Land Information, Government of Western Australia; http://www.dola.wa.gov.au/
4203 4326 National 84 (02.07.01).gsb OGP

Continued on next page

15.1. Coordinate Reference System Handling 509

mailto:aflemmin@linux1.nsgc.gov.ns.ca
http://www.icsm.gov.au/gda
http://www.land.vic.gov.au/
http://www.icsm.gov.au/gda
http://www.delm.tas.gov.au/osg/Geodetic_transform.htm
http://www.land.vic.gov.au/
http://www.icsm.gov.au/gda
http://www.dola.wa.gov.au/lotl/survey_geodesy/gda1994/download.html
http://www.dola.wa.gov.au/

GeoServer User Manual, Release 2.5.x

Table 15.1 – continued from previous page
Source CRS Target CRS Grid File Name Source Info

4225 4326 CA7072_003.gsb OGP
4225 4674 CA7072_003.gsb IBGE.
4230 4258 SPED2ETV2.gsb Instituto Geográfico Nacional, www.cnig.es
4230 4258 sped2et.gsb Instituto Geográfico Nacional, www.cnig.es
4230 4326 SPED2ETV2.gsb OGP
4230 4326 sped2et.gsb OGP
4258 4275 rgf93_ntf.gsb OGP
4267 4269 NTv2_0.gsb http://www.geod.nrcan.gc.ca/products/html-public/GSDapps/English/NTv2_Fact_Sheet.html
4267 4269 QUE27-83.gsb Geodetic Service of Quebec. Contact alain.bernard@mrn.gouv.qc.ca
4267 4326 NTv2_0.gsb OGP
4267 4326 QUE27-98.gsb OGP
4267 4326 SK27-98.gsb OGP
4267 4617 QUE27-98.gsb Geodetic Service of Quebec. Contact alain.bernard@mrn.gouv.qc.ca
4267 4617 SK27-98.gsb Dir Geodetic Surveys; SaskGeomatics Div.; Saskatchewan Property Management Company.
4269 4326 AB_CSRS.DAC OGP
4269 4326 NAD83-98.gsb OGP
4269 4326 SK83-98.gsb OGP
4269 4617 AB_CSRS.DAC Geodetic Control Section; Land and Forest Svc; Alberta Environment; http://www3.gov.ab.ca/env/land/dos/
4269 4617 NAD83-98.gsb Geodetic Service of Quebec. Contact alain.bernard@mrn.gouv.qc.ca
4269 4617 SK83-98.gsb Dir Geodetic Surveys; SaskGeomatics Div.; Saskatchewan Property Management Company.
4272 4167 nzgd2kgrid0005.gsb Land Information New Zealand: LINZS25000 Standard for New Zealand Geodetic Datum 2000; 16 November 2007.
4272 4326 nzgd2kgrid0005.gsb OGP
4277 4258 OSTN02_NTv2.gsb Ordnance Survey of Great Britain, http://www.gps.gov.uk
4277 4326 OSTN02_NTv2.gsb OGP
4314 4258 BETA2007.gsb BKG via EuroGeographics http://crs.bkg.bund.de/crs-eu/
4314 4326 BETA2007.gsb OGP
4326 4275 rgf93_ntf.gsb OGP
4608 4269 May76v20.gsb Geodetic Survey of Canada http://www.geod.nrcan.gc.ca/
4608 4326 May76v20.gsb OGP
4609 4269 CGQ77-83.gsb Geodetic Service of Quebec. Contact alain.bernard@mrn.gouv.qc.ca
4609 4326 CGQ77-98.gsb OGP
4609 4617 CGQ77-98.gsb Geodetic Service of Quebec. Contact alain.bernard@mrn.gouv.qc.ca
4618 4326 SAD69_003.gsb OGP
4618 4674 SAD69_003.gsb IBGE.
4745 4326 BETA2007.gsb OGP
4746 4326 BETA2007.gsb OGP
4749 4644 RGNC1991_NEA74Noumea.gsb ESRI
4749 4662 RGNC1991_IGN72GrandeTerre.gsb ESRI
5524 4326 CA61_003.gsb OGP
5524 4674 CA61_003.gsb IBGE.
5527 4326 SAD96_003.gsb OGP
5527 4674 SAD96_003.gsb IBGE.

NTv2

Source CRS Target CRS Version Latitude shift file Longitude shift file
4135 4269 NGS-Usa HI hawaii.las hawaii.los
4136 4269 NGS-Usa AK StL stlrnc.las stlrnc.los
4137 4269 NGS-Usa AK StP stpaul.las stpaul.los

Continued on next page

510 Chapter 15. Advanced GeoServer Configuration

http://www.geod.nrcan.gc.ca/products/html-public/GSDapps/English/NTv2_Fact_Sheet.html
mailto:alain.bernard@mrn.gouv.qc.ca
mailto:alain.bernard@mrn.gouv.qc.ca
http://www3.gov.ab.ca/env/land/dos/
mailto:alain.bernard@mrn.gouv.qc.ca
http://www.gps.gov.uk
http://crs.bkg.bund.de/crs-eu/
http://www.geod.nrcan.gc.ca/
mailto:alain.bernard@mrn.gouv.qc.ca
mailto:alain.bernard@mrn.gouv.qc.ca

GeoServer User Manual, Release 2.5.x

Table 15.2 – continued from previous page
Source CRS Target CRS Version Latitude shift file Longitude shift file

4138 4269 NGS-Usa AK StG stgeorge.las stgeorge.los
4139 4269 NGS-PRVI prvi.las prvi.los
4169 4152 NGS-Asm E eshpgn.las eshpgn.los
4169 4152 NGS-Asm W wshpgn.las wshpgn.los
4267 4269 NGS-Usa AK alaska.las alaska.los
4267 4269 NGS-Usa Conus conus.las conus.los
4269 4152 NGS-Usa AL alhpgn.las alhpgn.los
4269 4152 NGS-Usa AR arhpgn.las arhpgn.los
4269 4152 NGS-Usa AZ azhpgn.las azhpgn.los
4269 4152 NGS-Usa CA n cnhpgn.las cnhpgn.los
4269 4152 NGS-Usa CO cohpgn.las cohpgn.los
4269 4152 NGS-Usa CA s cshpgn.las cshpgn.los
4269 4152 NGS-Usa ID MT e emhpgn.las emhpgn.los
4269 4152 NGS-Usa TX e ethpgn.las ethpgn.los
4269 4152 NGS-Usa FL flhpgn.las flhpgn.los
4269 4152 NGS-Usa GA gahpgn.las gahpgn.los
4269 4152 NGS-Usa HI hihpgn.las hihpgn.los
4269 4152 NGS-Usa IA iahpgn.las iahpgn.los
4269 4152 NGS-Usa IL ilhpgn.las ilhpgn.los
4269 4152 NGS-Usa IN inhpgn.las inhpgn.los
4269 4152 NGS-Usa KS kshpgn.las kshpgn.los
4269 4152 NGS-Usa KY kyhpgn.las kyhpgn.los
4269 4152 NGS-Usa LA lahpgn.las lahpgn.los
4269 4152 NGS-Usa DE MD mdhpgn.las mdhpgn.los
4269 4152 NGS-Usa ME mehpgn.las mehpgn.los
4269 4152 NGS-Usa MI mihpgn.las mihpgn.los
4269 4152 NGS-Usa MN mnhpgn.las mnhpgn.los
4269 4152 NGS-Usa MO mohpgn.las mohpgn.los
4269 4152 NGS-Usa MS mshpgn.las mshpgn.los
4269 4152 NGS-Usa NE nbhpgn.las nbhpgn.los
4269 4152 NGS-Usa NC nchpgn.las nchpgn.los
4269 4152 NGS-Usa ND ndhpgn.las ndhpgn.los
4269 4152 NGS-Usa NewEng nehpgn.las nehpgn.los
4269 4152 NGS-Usa NJ njhpgn.las njhpgn.los
4269 4152 NGS-Usa NM nmhpgn.las nmhpgn.los
4269 4152 NGS-Usa NV nvhpgn.las nvhpgn.los
4269 4152 NGS-Usa NY nyhpgn.las nyhpgn.los
4269 4152 NGS-Usa OH ohhpgn.las ohhpgn.los
4269 4152 NGS-Usa OK okhpgn.las okhpgn.los
4269 4152 NGS-Usa PA pahpgn.las pahpgn.los
4269 4152 NGS-PRVI pvhpgn.las pvhpgn.los
4269 4152 NGS-Usa SC schpgn.las schpgn.los
4269 4152 NGS-Usa SD sdhpgn.las sdhpgn.los
4269 4152 NGS-Usa TN tnhpgn.las tnhpgn.los
4269 4152 NGS-Usa UT uthpgn.las uthpgn.los
4269 4152 NGS-Usa VA vahpgn.las vahpgn.los
4269 4152 NGS-Usa WI wihpgn.las wihpgn.los
4269 4152 NGS-Usa ID MT w wmhpgn.las wmhpgn.los
4269 4152 NGS-Usa OR WA wohpgn.las wohpgn.los
4269 4152 NGS-Usa TX w wthpgn.las wthpgn.los
4269 4152 NGS-Usa WV wvhpgn.las wvhpgn.los

Continued on next page

15.1. Coordinate Reference System Handling 511

GeoServer User Manual, Release 2.5.x

Table 15.2 – continued from previous page
Source CRS Target CRS Version Latitude shift file Longitude shift file

4269 4152 NGS-Usa WY wyhpgn.las wyhpgn.los
4675 4152 NGS-Gum guhpgn.las guhpgn.los

NADCON

Define a custom Coordinate Operation

Custom Coordinate Operations are defined in epsg_operations.properties file. This file has to be
placed into the user_projections directory, inside your data directory (create it if it doesn’t exist).

Each line in epsg_operations.properties will describe a coordinate operation consisting of a source
CRS, a target CRS, and a math transform with its parameter values. Use the following syntax:

<source crs code>,<target crs code>=<WKT math transform>

Math transform is described in Well-Known Text syntax. Parameter names and value ranges are described
in the EPSG Geodetic Parameter Registry.

Note: Use the Reprojection Console to learn from example and to test your custom definitions.

Examples

Custom NTv2 file:

4230,4258=PARAM_MT["NTv2", \
PARAMETER["Latitude and longitude difference file", "100800401.gsb"]]

Geocentric transformation, preceded by an ellipsoid to geocentric conversion, and back geocentric to ellip-
soid. The results is a concatenation of three math transforms:

4230,4258=CONCAT_MT[PARAM_MT["Ellipsoid_To_Geocentric", \
PARAMETER["dim", 2], \
PARAMETER["semi_major", 6378388.0], \
PARAMETER["semi_minor", 6356911.9461279465]], \

PARAM_MT["Position Vector transformation (geog2D domain)", \
PARAMETER["dx", -116.641], \
PARAMETER["dy", -56.931], \
PARAMETER["dz", -110.559], \
PARAMETER["ex", 0.8925078166311858], \
PARAMETER["ey", 0.9207660950870382], \
PARAMETER["ez", -0.9166407989620964], \
PARAMETER["ppm", -3.5200000000346066]], \

PARAM_MT["Geocentric_To_Ellipsoid", \
PARAMETER["dim", 2], \
PARAMETER["semi_major", 6378137.0], \
PARAMETER["semi_minor", 6356752.314140356]]]

Affine 2D transform operating directly in projected coordinates:

23031,25831=PARAM_MT["Affine", \
PARAMETER["num_row", 3], \
PARAMETER["num_col", 3], \
PARAMETER["elt_0_0", 1.0000015503712145], \

512 Chapter 15. Advanced GeoServer Configuration

http://www.geoapi.org/3.0/javadoc/org/opengis/referencing/doc-files/WKT.html
http://www.epsg-registry.org/

GeoServer User Manual, Release 2.5.x

PARAMETER["elt_0_1", 0.00000758753979846734], \
PARAMETER["elt_0_2", -129.549], \
PARAMETER["elt_1_0", -0.00000758753979846734], \
PARAMETER["elt_1_1", 1.0000015503712145], \
PARAMETER["elt_1_2", -208.185]]

Each operation can be described in a single line, or can be split in several lines for readability, adding a
backslash “\” at the end of each line, as in the former examples.

15.1.4 Manually editing the EPSG database

Warning: These instructions are very advanced, and are here mainly for the curious who want to know
details about the EPSG database subsystem.

To define a custom projection, edit the EPSG.sql file, which is used to create the cached EPSG database.

1. Navigate to the WEB-INF/lib directory

2. Uncompress the gt2-epsg-h.jar file. On Linux, the command is:

jar xvf gt2-epsg-h.jar

3. Open org/geotools/referencing/factory/epsg/EPSG.sql with a text editor. To add a cus-
tom projection, these entries are essential:

(a) An entry in the EPSG_COORDINATEREFERENCESYSTEM table:

(41111,’WGC 84 / WRF Lambert’,1324,’projected’,4400,NULL,4326,20000,NULL,NULL,’US Nat. scale mapping.’,’Entered by Alex Petkov’,’Missoula Firelab WRF’,’WRF’,’2000-10-19’,’’,1,0),

where:

• 1324 is the EPSG_AREA code that describes the area covered by my projection

• 4400 is the EPSG_COORDINATESYSTEM code for my projection

• 20000 is the EPSG_COORDOPERATIONPARAMVALUE key for the array that contains my
projection parameters

(b) An entry in the EPSG_COORDOPERATIONPARAMVALUE table:

(20000,9802,8821,40,’’,9102), //latitude of origin
(20000,9802,8822,-97.0,’’,9102), //central meridian
(20000,9802,8823,33,’’,9110), //st parallel 1
(20000,9802,8824,45,’’,9110), //st parallel 2
(20000,9802,8826,0.0,’’,9001), //false easting
(20000,9802,8827,0.0,’’,9001) //false northing

where:

• 9802 is the EPSG_COORDOPERATIONMETHOD key for the Lambert Conic Conformal
(2SP) formula

(c) An entry in the EPSG_COORDOPERATION table:

(20000,’WRF Lambert’,’conversion’,NULL,NULL,’‘,NULL,1324,’Used for weather forecast-
ing.’,0.0,9802,NULL,NULL,’Used with the WRF-Chem model for weather forecasting’,’Firelab
in Missoula, MT’,’EPSG’,‘2005-11-23’,‘2005.01’,1,0)

where:

15.1. Coordinate Reference System Handling 513

GeoServer User Manual, Release 2.5.x

• 1324 is the EPSG_AREA code that describes the area covered by my projection

• 9802 is the EPSG_COORDOPERATIONMETHOD key for the Lambert Conic Conformal
(2SP) formula

Note: Observe the commas. If you enter a line that is at the end of an INSERT statement, the comma is
omitted (make sure the row before that has a comma at the end). Otherwise, add a comma at the end of
your entry.

1. After all edits, save the file and exit.

2. Compress the gt2-epsg-h.jar file. On Linux, the command is:

jar -Mcvf gt2-epsg-h.jar META-INF org

3. Remove the cached copy of the EPSG database, so that can be recreated. On Linux, the command is:

rm -rf /tmp/Geotools/Databases/HSQL

4. Restart GeoServer.

The new projection will be successfully parsed. Verify that the CRS has been properly parsed by navigating
to the SRS page in the Web Administration Interface.

15.2 Advanced log configuration

GeoServer logging subsystem is based on Java logging, which is in turn by default redirected to Log4J and
controlled by the current logging configuration set in the Global Settings.

The standard configuration can be overridden in a number of ways to create custom logging profiles or to
force GeoServer to use another logging library altogheter.

15.2.1 Custom logging profiles

Anyone can write a new logging profile by adding a Log4J configuration file to the list of files already
available in the $GEOSERVER_DATA_DIR/logs folder. The name of the file will become the configuration
name displayed in the admin console and the contents will drive the specific behavior of the logger.

Here is an example, taken from the GEOTOOLS_DEVELOPER_LOGGING configuration, which enables the
geotools log messages to appear in the logs:

log4j.rootLogger=WARN, geoserverlogfile, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{dd MMM HH:mm:ss} %p [%c] - %m%n

log4j.category.log4j=FATAL

log4j.appender.geoserverlogfile=org.apache.log4j.RollingFileAppender
Keep three backup files.
log4j.appender.geoserverlogfile.MaxBackupIndex=3
Pattern to output: date priority [category] - message
log4j.appender.geoserverlogfile.layout=org.apache.log4j.PatternLayout
log4j.appender.geoserverlogfile.layout.ConversionPattern=%d %p [%c] - %m%n

514 Chapter 15. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.5.x

log4j.category.org.geotools=TRACE
Some more geotools loggers you may be interest in tweaking
log4j.category.org.geotools.factory=TRACE
log4j.category.org.geotools.renderer=DEBUG
log4j.category.org.geotools.data=TRACE
log4j.category.org.geotools.feature=TRACE
log4j.category.org.geotools.filter=TRACE
log4j.category.org.geotools.factory=TRACE

log4j.category.org.geoserver=INFO
log4j.category.org.vfny.geoserver=INFO

log4j.category.org.springframework=WARN

Any custom configuration can be setup to enable specific packages to emit logs at the desired logging level.
There are however a few rules to follow:

• the configuration should always include a geoserverlogfile appender that GeoServer will con-
figure to work against the location configured in the Global Settings

• a logger writing to the standard output should be called stdout and again GeoServer will en-
able/disable it according to the configuration set in the Global Settings

• it is advisable, but not require, to setup log rolling for the geoserverlogfile appender

15.2.2 Overriding the log location setup in the GeoServer configuration

When setting up a cluster of GeoServer machines it is common to share a single data directory among all
the cluster nodes. There is however a gotcha, all nodes would end up writing the logs in the same file,
which would cause various kinds of troubles depending on the operating system file locking rules (a single
server might be able to write, or all togheter in an uncontrolled manner resulting in an unreadable log file).

In this case it is convenient to set a separate log location for each GeoServer node by setting the following
parameter among the JVM system variables, enviroment variables, or servlet context parameters:

GEOSERVER_LOG_LOCATION=<the location of the file>

A common choice could be to use the machine name as a distinction, setting values such as
logs/geoserver_node1.log, logs/geoserver_node2.log and so on: in this case all the log files
would still be contained in the data directory and properly rotated, but each server would have its own
separate log file to write on.

15.2.3 Forcing GeoServer to relinquish Log4J control

GeoServer internally overrides the Log4J configuration by using the current logging configuration as a
template and appling the log location and standard output settings configured by the administrator.

If you wish GeoServer not to override the normal Log4J behavior you can set the following parameter
among the JVM system variables, enviroment variables, or servlet context parameters:

RELINQUISH_LOG4J_CONTROL=true

15.2. Advanced log configuration 515

GeoServer User Manual, Release 2.5.x

15.2.4 Forcing GeoServer to use an alternate logging redirection

GeoServer uses the GeoTools logging framework, which in turn is based on Java Logging, but allowing to
redirect all message to an alternate framework of users choice.

By default GeoServer setups a Log4J redirection, but it is possible to configure GeoServer to use plain
Java Logging or Commons Logging instead (support for other loggers is also possible by using some extra
programming).

If you wish to force GeoServer to use a different logging mechanism set the following parameters among
the JVM system variables, enviroment variables, or servlet context parameters:

GT2_LOGGING_REDIRECTION=[JavaLogging,CommonsLogging,Log4J]
RELINQUISH_LOG4J_CONTROL=true

As noted in the example you’ll also have to demand that GeoServer does not exert control over the Log4J
configuration

15.3 WMS Decorations

WMS Decorations provide a framework for visually annotating images from WMS with absolute, rather
than spatial, positioning. Examples of decorations include compasses, legends, and watermarks.

15.3.1 Configuration

To use decorations in a GetMap request, the administrator must first configure a decoration layout. These
layouts are stored in a subdirectory called layouts in the GeoServer Data Directory as XML files, one file
per layout. Each layout file must have the extension .xml. Once a layout foo.xml is defined, users can
request it by adding &format_options=layout:foo to the request parameters.

Layout files follow a very simple XML structure; a root node named layout containing any number of
decoration elements. Each decoration element has several attributes:

At-
tribute

Meaning

type the type of decoration to use (see Decoration Types)
affinity the region of the map image to which the decoration is anchored
offset how far from the anchor point the decoration is drawn
size the maximum size to render the decoration. Note that some decorations may dynamically

resize themselves.

Each decoration element may also contain an arbitrary number of option elements providing a parameter
name and value:

<option name="foo" value="bar"/>

Option interpretation depends on the type of decoration in use.

15.3.2 Decoration Types

While GeoServer allows for decorations to be added via extension, there is a core set of decorations included
in the default installation. These decorations include:

The image decoration (type="image") overlays a static image file onto the document. If height and width
are specified, the image will be scaled to fit, otherwise the image is displayed at full size.

516 Chapter 15. Advanced GeoServer Configuration

GeoServer User Manual, Release 2.5.x

Option Name Meaning
url provides the URL or file path to the image to draw (relative to the GeoServer data directory)
opacity a number from 0 to 100 indicating how opaque the image should be.

The scaleratio decoration (type="scaleratio") overlays a text description of the map’s scale ratio onto
the document.

Option Name Meaning
bgcolor the background color for the text. supports RGB or RGBA colors specified as hex values.
fgcolor the color for the text and border. follows the color specification from bgcolor.

The scaleline decoration (type="scaleline") overlays a graphic showing the scale of the map in world
units.

Option Name Meaning
bgcolor the background color, as used in scaleratio
fgcolor the foreground color, as used in scaleratio
fontsize the size of the font to use
transparent if set to true, the background and border won’t be painted (false by default)

The legend decoration (type="legend") overlays a graphic containing legends for the layers in the map.

The text decoration (type="text") overlays a parametric, single line text message on top of the map. The
parameter values can be fed via the the env request parameter, just like SLD enviroment parameters.

Option
Name

Meaning

message the message to be displayed, as plain text or Freemarker template that can use the env
map contents to expand variables

font-familythe name of the font used to display the message, e.g., Arial, defaults to Serif
font-size the size of the font to use (can have decimals), defaults to 12
font-italicit true the font will be italic, defaults to false
font-bold if true the font will be bold, defaults to false
font-color the color of the message, in #RRGGBB or #RRGGBBAA format, defaults to black
halo-radiusthe radius of a halo around the message, can have decimals, defaults to 0
halo-color the halo fill color, in #RRGGBB or #RRGGBBAA format, defaults to white

15.3.3 Example

A layout configuration file might look like this:

<layout>
<decoration type="image" affinity="bottom,right" offset="6,6" size="80,31">

<option name="url" value="pbGS_80x31glow.png"/>
</decoration>

<decoration type="scaleline" affinity="bottom,left" offset="36,6"/>

<decoration type="legend" affinity="top,left" offset="6,6" size="auto"/>
</layout>

Used against the states layer from the default GeoServer data, this layout produces an image like the fol-
lowing.

15.3. WMS Decorations 517

GeoServer User Manual, Release 2.5.x

Figure 15.2: The default states layer, drawn with the decoration layout above.

518 Chapter 15. Advanced GeoServer Configuration

CHAPTER 16

Security

This section details the security subsystem in GeoServer, which is based on Spring Security. For web-based
configuration, please see the section on Security in the Web Administration Interface.

As of GeoServer 2.2.0, the security subsystem has been completely re-engineered, providing a more secure
and flexible authentication framework. This rework is largely based on a Christian Müeller’s masters thesis
entitled Flexible Authentication for Stateless Web Services. It is good reading to help understanding many
of the new concepts introduced.

16.1 Role system

Security in GeoServer is based on a role-based system, with roles created to serve particular functions.
Examples of roles sporting a particular function are those accessing the Web Feature Service (WFS), ad-
ministering the Web Administration Interface, and reading a specific layer. Roles are assigned to users and
groups of users, and determine what actions those users or groups are permitted to do. A user is authorized
through Authentication.

16.1.1 Users and Groups

The definition of a GeoServer user is similar to most security systems. Although the correct Java term
is principle—a principle being a human being, computer, software system, and so on—the term user is
adopted throughout the GeoServer documentation. For each user the following information is maintained:

• User name

• Password (optionally stored encrypted)

• A flag indicating if the user is enabled (this is the default). A disabled user is prevented from logging
on. Existing user sessions are not affected.

• Set of key/value pairs

Key/value pairs are implementation-specific and may be configured by the user/group service the user or
group belongs to. For example, a user/group service that maintains information about a user such as
Name, Email address, and so on, may wish to associate those attributes with the user object.

A GeoServer group is simply a set of users. For each group the following information is maintained:

• Group name

• A flag indicating if the group is enabled (this is the default). A disabled group does not contribute to
the role calculation for all users contained in this group.

519

http://static.springsource.org/spring-security/site/
http://geoserver.org/display/GEOS/Flexible+Authentication+for+Stateless+Web+Services

GeoServer User Manual, Release 2.5.x

• List of users who belong to the group

16.1.2 User/group services

A user/group service provides the following information for users and groups:

• Listing of users

• Listing of groups, including users affiliated with each group

• User passwords

Many authentication providers will make use of a user/group service to perform authentication. In this
case, the user/group service would be the database against which users and passwords are authenticated.
Depending on how the Authentication chain is configured, there may be zero, one, or multiple user/group
services active at any given time.

A user/group service may be read-only, providing access to user information but not allowing new users
and groups to be added or altered. This may occur if a user/group service was configured to delegate to an
external service for the users and groups database. An example of this would be an external LDAP server.

By default, GeoServer support two types of user/group services:

• XML—(Default) User/group service persisted as XML

• JDBC—User/group service persisted in database via JDBC

XML user/group service

The XML user/group service persists the user/group database in an XML file. This is the default behavior
in GeoServer. This service represents the user database as XML, and corresponds to this XML schema.

Note: The XML user/group file, users.xml, is located in the GeoServer data directory,
security/usergroup/<name>/users.xml, where <name> is the name of the user/group service.

The following is the contents of users.xml that ships with the default GeoServer configuration:

<userRegistry version="1.0" xmlns="http://www.geoserver.org/security/users">
<users>
<user enabled="true" name="admin" password="crypt1:5WK8hBrtrte9wtImg5i5fjnd8VeqCjDB"/>

</users>
<groups/>

</userRegistry>

This particular configuration defines a single user, admin, and no groups. By default, stored user pass-
words are encrypted using the weak PBE method.

For further information, please refer to configuring a user/group service in the Web Administration Interface.

JDBC user/group service

The JDBC user/group service persists the user/group database via JDBC, managing the user information
in multiple tables. The user/group database schema is as follows:

520 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Table 16.1: Table: users

Field Type Null Key
name varchar(128) NO PRI
password varchar(254) YES
enabled char(1) NO

Table 16.2: Table: user_props

Field Type Null Key
username varchar(128) NO PRI
propname varchar(64) NO PRI
propvalue varchar(2048) YES

Table 16.3: Table: groups

Field Type Null Key
name varchar(128) NO PRI
enabled char(1) NO

Table 16.4: Table: group_members

Field Type Null Key
groupname varchar(128) NO PRI
username varchar(128) NO PRI

The users table is the primary table and contains the list of users with associated passwords. The
user_props table maps additional properties to a user. (See Users and Groups for more details.) The
groups table lists all available groups, and the group_members table maps which users belong to which
groups.

The default GeoServer security configuration is:

Table 16.5: Table: users

name password enabled
Empty Empty Empty

Table 16.6: Table: user_props

username propname propvalue
Empty Empty Empty

Table 16.7: Table:
groups

name enabled
Empty Empty

Table 16.8: Table:
group_members

groupname username
Empty Empty

For further information, please refer to configuring a user/group service in the Web Administration Interface.

16.1.3 Roles

GeoServer roles are keys associated with performing certain tasks or accessing particular resources. Roles
are assigned to users and groups, authorizing them to perform the actions associated with the role. A

16.1. Role system 521

GeoServer User Manual, Release 2.5.x

GeoServer role includes the following:

• Role name

• Parent role

• Set of key/value pairs

GeoServer roles support inheritance—a child role inherits all the access granted to the parent role. For
example, suppose you have one role named ROLE_SECRET and another role, ROLE_VERY_SECRET, that
extends ROLE_SECRET. ROLE_VERY_SECRET can access everything ROLE_SECRET can access, but not vice
versa.

Key/value pairs are implementation-specific and may be configured by the role service the user or group
belongs to. For example, a role service that assigns roles based on employee organization may wish to
associate additional information with the role such as Department Name.

Geoserver has a number of system roles, the names of which are reserved. Adding a new GeoServer role
with reserved name is not permitted.

• ROLE_ADMINISTRATOR—Provides access to all operations and resources

• ROLE_GROUP_ADMIN—Special role for administrating user groups

• ROLE_AUTHENTICATED—Assigned to every user authenticating successfully

• ROLE_ANONYMOUS—Assigned if anonymous authentication is enabled and user does not log on

16.1.4 Role services

A role service provides the following information for roles:

• List of roles

• Calculation of role assignments for a given user

• Mapping of a role to the system role ROLE_ADMINISTRATOR

• Mapping of a role to the system role ROLE_GROUP_ADMIN

When a user/group service loads information about a user or a group, it delegates to the role service to
determine which roles should be assigned to the user or group. Unlike User/group services, only one role
service is active at any given time.

By default, GeoServer supports two types of role services:

• XML—(Default) role service persisted as XML

• JDBC—Role service persisted in a database via JDBC

Mapping roles to system roles

To assign the system role ROLE_ADMINISTRATOR to a user or to a group, a new role with a different name
must be created and mapped to the ROLE_ADMINISTRATOR role. The same holds true for the system role
ROLE_GROUP_ADMIN. The mapping is stored in the service’s config.xml file.

<roleService>
<id>471ed59f:13915c479bc:-7ffc</id>
<name>default</name>
<className>org.geoserver.security.xml.XMLRoleService</className>
<fileName>roles.xml</fileName>
<checkInterval>10000</checkInterval>

522 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

<validating>true</validating>
<adminRoleName>ADMIN</adminRoleName>
<groupAdminRoleName>GROUP_ADMIN</groupAdminRoleName>

</roleService>

In this example, a user or a group assigned to the role ADMIN is also assigned to the system role
ROLE_ADMINISTRATOR. The same holds true for GROUP_ADMIN and ROLE_GROUP_ADMIN.

XML role service

The XML role service persists the role database in an XML file. This is the default role service for GeoServer.
This service represents the user database as XML, and corresponds to this XML schema.

Note: The XML role file, roles.xml, is located in the GeoServer data directory,
security/role/<name>/roles.xml, where <name> is the name of the role service.

The service is configured to map the local role ADMIN to the system role ROLE_ADMINISTRATOR. Addi-
tionally, GROUP_ADMIN is mapped to ROLE_GROUP_ADMIN. The mapping is stored the config.xml file of
each role service.

The following provides an illustration of the roles.xml that ships with the default GeoServer configura-
tion:

<roleRegistry version="1.0" xmlns="http://www.geoserver.org/security/roles">
<roleList>
<role id="ADMIN"/>
<role id="GROUP_ADMIN"/>

</roleList>
<userList>
<userRoles username="admin">
<roleRef roleID="ADMIN"/>

</userRoles>
</userList>
<groupList/>

</roleRegistry>

This configuration contains two roles named ADMIN and GROUP_ADMIN. The role ADMIN is assigned to the
admin user. Since the ADMIN role is mapped to the system role ROLE_ADMINISTRATOR, the role calculation
assigns both roles to the admin user.

For further information, please refer to configuring a role service in the Web Administration Interface.

J2EE role service

The J2EE role service parses roles from the WEB-INF/web.xml file. As a consequence, this service is a read
only role service. Roles are extracted from the following XML elements:

<security-role>

<security-role>
<role-name>role1</role-name>

</security-role>
<security-role>

<role-name>role2</role-name>

16.1. Role system 523

GeoServer User Manual, Release 2.5.x

</security-role>
<security-role>

<role-name>employee</role-name>
</security-role>

Roles retrieved:

• role1

• role2

• employee

<security-constraint>

<security-constraint>
<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/jsp/security/protected/*</url-pattern>
<http-method>PUT</http-method>
<http-method>DELETE</http-method>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>role1</role-name>
<role-name>employee</role-name>

</auth-constraint>
</security-constraint>

Roles retrieved:

• role1

• employee

<security-role-ref>

<security-role-ref>
<role-name>MGR</role-name>
<!-- role name used in code -->
<role-link>employee</role-link>

</security-role-ref>

Roles retrieved:

• MGR

JDBC role service

The JDBC role service persists the role database via JDBC, managing the role information in multiple tables.
The role database schema is as follows:

524 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Table 16.9: Table: roles

Field Type Null Key
name varchar(64) NO PRI
parent varchar(64) YES

Table 16.10: Table: role_props

Field Type Null Key
rolename varchar(64) NO PRI
propname varchar(64) NO PRI
propvalue varchar(2048) YES

Table 16.11: Table: user_roles

Field Type Null Key
username varchar(128) NO PRI
rolename varchar(64) NO PRI

Table 16.12: Table: group_roles

Field Type Null Key
groupname varchar(128) NO PRI
rolename varchar(64) NO PRI

The roles table is the primary table and contains the list of roles. Roles in GeoServer support inheritance,
so a role may optionally have a link to a parent role. The role_props table maps additional properties to
a role. (See the section on Roles for more details.) The user_roles table maps users to the roles they are
assigned. Similarly the group_roles table maps which groups have been assigned to which roles.

The default GeoServer security configuration is:

Table 16.13: Table:
roles

name parent
Empty Empty

Table 16.14: Table: role_props

rolename propname propvalue
Empty Empty Empty

Table 16.15: Table:
user_roles

username rolename
Empty Empty

Table 16.16: Table:
group_roles

groupname rolename
Empty Empty

For further information, please refer to configuring a role service in the Web Administration Interface.

LDAP role service

The LDAP role service is a read only role service that maps groups from an LDAP repository to GeoServer
roles.

16.1. Role system 525

GeoServer User Manual, Release 2.5.x

Groups are extracted from a specific LDAP node, configured as the Groups search base. A role is
mapped for every matching group. The role will have a name that is built taking the Group common name
(cn attribute), transformed to upper case and with a ROLE_ prefix applied.

It is possible to filter extracted groups using an All groups filter (defaults to cn=* that basically
extracts all nodes from the configured base). It is also possible to configure the filter for users to roles
membership (defaults to member={0}).

A specific group can be assigned to the ROLE_ADMINISTRATOR and/or the ROLE_GROUP_ADMIN admin-
istrative roles.

Groups extraction can be done anonymously or using a given username/password if the LDAP repository
requires it.

An example of configuration file (config.xml) for this type of role service is the following:

<org.geoserver.security.ldap.LDAPRoleServiceConfig>
<id>-36dfbd50:1424687f3e0:-8000</id>
<name>ldapacme</name>
<className>org.geoserver.security.ldap.LDAPRoleService</className>
<serverURL>ldap://127.0.0.1:10389/dc=acme,dc=org</serverURL>
<groupSearchBase>ou=groups</groupSearchBase>
<groupSearchFilter>member=uid={0},ou=people,dc=acme,dc=org</groupSearchFilter>
<useTLS>false</useTLS>
<bindBeforeGroupSearch>true</bindBeforeGroupSearch>
<adminGroup>ROLE_ADMIN</adminGroup>
<groupAdminGroup>ROLE_ADMIN</groupAdminGroup>
<user>uid=bill,ou=people,dc=acme,dc=org</user>
<password>hello</password>
<allGroupsSearchFilter>cn=*</allGroupsSearchFilter>

</org.geoserver.security.ldap.LDAPRoleServiceConfig>

For further information, please refer to configuring a role service in the Web Administration Interface.

16.1.5 Role source and role calculation

Different authentication mechanisms provide different possibilities where to look for the roles of a princi-
pal/user. The role source is the base for the calculation of the roles assigned to the authenticated principal.

Using a user/group Service

During configuration of an authentication mechanism, the name of a user group service has to be specified.
The used role service is always the role service configured as active role service. The role calculation itself
is described here Interaction between user/group and role services

Using a role service directly

During configuration of an authentication mechanism, the name of a role service has to be specified. The
calculation of the roles works as follows:

1. Fetch all roles for the user.

2. For each role in the result set, fetch all ancestor roles and add those roles to the result set.

3. If the result set contains the local admin role, add the role ROLE_ADMINISTRATOR.

4. If the result set contains the local group admin role, add the role ROLE_GROUP_ADMIN.

526 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

This algorithm does not offer the possibility to have personalized roles and it does not consider group
memberships.

Using an HTTP header attribute

The roles for a principal are sent by the client in an HTTP header attribute (Proxy authentication). GeoServer
itself does no role calculation and extracts the roles from the header attribute. During configuration, the
name of the header attribute must be specified. An example with a header attribute named “roles”:

roles: role_a;role_b;role_c

An example for roles with role parameters:

roles: role_a;role_b(pnr=123,nick=max);role_c

The default syntax is

• roles are delimited by ;

• a role parameter list starts with (and ends with)

• a role parameter is a key value pair delimited by =

• role parameters are delimited by ,

16.1.6 Interaction between user/group and role services

The following section describes the interaction between the User/group services and the Role services.

Calculating the roles of a user

The diagram below illustrates how a user/group service and a role service interact to calculate user roles.

Figure 16.1: User/group and role service interacting for role calculation

On fetching an enabled user from a user/group service, the roles(s) assigned to that user must be identified.
The identification procedure is:

1. Fetch all enabled groups for the user. If a group is disabled, it is discarded.

2. Fetch all roles associated with the user and add the roles to the result set.

3. For each enabled group the user is a member of, fetch all roles associated with the group and add the
roles to the result set.

4. For each role in the result set, fetch all ancestor roles and add those roles to the result set.

16.1. Role system 527

GeoServer User Manual, Release 2.5.x

5. Personalize each role in the result set as required.

6. If the result set contains the local admin role, add the role ROLE_ADMINISTRATOR.

7. If the result set contains the local group admin role, add the role ROLE_GROUP_ADMIN.

Note: Role personalization looks for role parameters (key/value pairs) for each role and checks if the
user properties (key/value pairs) contain an identical key. If any matches are found, the value of the role
parameter is replaced by the value of the user property.

Authentication of user credentials

A user/group service is primarily used during authentication. An authentication provider in the Authenti-
cation chain may use a user/group service to authenticate user credentials.

Figure 16.2: Using a a user/group service for authentication

GeoServer defaults

The following diagram illustrates the default user/group service, role service, and authentication provider
in GeoServer:

Two authentication providers are configured—the Root provider and the Username/password provider. The
Root provider authenticates for the GeoServer Root account and does not use a user/group service. The
Username/password provider is the default provider and relays username and password credentials to a
user/group service.

A single user/group service, which persist the user database as XML, is present. The database contains a
single user named admin and no groups. Similarly, the role server persists the role database as XML. By
default, this contains a single role named ADMIN, which is associated with the admin user. The ADMIN role
is mapped to the ROLE_ADMINISTRATOR role and as a result, the admin user is associated with system
administrator role during role calculation.

16.2 Authentication

There are three sets of GeoServer resources involved in authentication:

• The Web Administration Interface (also known as web admin)

• OWS services (such as WFS and WMS)

528 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Figure 16.3: Default GeoServer security configuration

• REST services

The following sections describe how each set of GeoServer resources administers authentication. To con-
figure the authentication settings and providers, please see the section on Authentication in the Web Admin-
istration Interface.

16.2.1 Authentication chain

Understanding the authentication chain helps explain how GeoServer authentication works. The authenti-
cation chain processes requests and applies certain authentication mechanisms. Examples of authentication
mechanisms include:

• Username/password—Performs authentication by looking up user information in an external user
database

• Browser cookie—Performs authentication by recognizing previously sent browser cookies (also
known as “Remember Me”)

• LDAP—Performs authentication against an LDAP database

• Anonymous—Essentially performs no authentication and allows a request to proceed without any
credentials

Multiple authentication mechanisms may be active within GeoServer at a given time. The following figure
illustrates the flow of a generic request.

Before dispatching a request to the appropriate service or handler, GeoServer first filters the request through
the authentication chain. The request is passed to each mechanism in the chain in order, and each is given
the chance to authenticate the request. If one of the mechanisms in the chain is able to successfully au-
thenticate, the request moves to normal processing. Otherwise the request is not routed any further and an
authorization error (usually a HTTP 401) is returned to the user.

16.2. Authentication 529

GeoServer User Manual, Release 2.5.x

Figure 16.4: Flow of a request through the authentication system

Filter chain and provider chain

In the case of GeoServer, the authentication chain is actually made up of two chains: a filter chain, which
determine if further authentication of a request is required, and a provider chain, which performs the actual
authentication.

Figure 16.5: Detail of authentication chain, showing filter chain and provider chain

The filter chain performs a variety of tasks, including:

• Gathering user credentials from a request, for example from Basic and Digest Authentication headers

• Handling events such as ending the session (logging out), or setting the “Remember Me” browser
cookie

• Performing session integration, detecting existing sessions and creating new sessions if necessary

• Invoking the authentication provider chain to perform actual authentication

The filter chain is actually processed twice, before and after the request is handled.

The provider chain is concerned solely with performing the underlying authentication of a request. It is
invoked by the filter chain when a filter determines that authentication is required.

16.2.2 Authenticating to the Web Admin Interface

The method of authenticating to the Web Administration Interface application is typical of most web appli-
cations that provide login capabilities. The application is based primarily on form-based authentication, in

530 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

which a user authenticates through a form in a web browser. Upon successful authentication a session is
created on the server, eliminating the need for a user to repeat the login process for each page they wish to
access. An optional “Remember Me” setting is also supported which will store authentication information
in a client-side cookie to allow the user to bypass the form-based authentication after the initial session has
timed out.

The typical process of authentication is as follows:

1. User visits the home page of the web admin for the very first time, so neither a session or “Remember
Me” cookie is present. In this case, the user is anonymously authenticated.

2. User accesses a secured page and is presented with a login form.

3. Upon successful login a session is created. Depending on the privileges of the account used to log in,
the user will either be directed to the requested page or be redirected back to the home page.

4. Upon subsequent requests to secured pages, the user is authenticated via browser session until the
session expires or the user logs out.

Examples

The following shows the default configuration of the authentication chain for the web admin.

Figure 16.6: GeoServer authentication chain, with filter and provider chains

In this example the filter chain is made up of the following filters:

• Session—Handles session integration, recognizing existing sessions and creating new sessions on
demand

• Logout—Handles ending sessions (user logout)

• Form login—Handles form logins

• Remember Me—Handles “Remember Me” authentication, reading when the flag is set on a form
login, creating the appropriate cookie, and recognizing the cookie on future requests

• Anonymous—Handles anonymous access

The provider chain is made up of two providers:

• Root—The Root account has a special “super user” provider. As this account is rarely used, this
provider is rarely invoked.

• Username/password—Performs username/password authentication against a user database.

To following example requests illustrate how the elements of the various chains work.

16.2. Authentication 531

GeoServer User Manual, Release 2.5.x

First time visit

This example describes the process when a user visits the home page of the web admin for the first time.

Figure 16.7: Authentication chain for a first time visit from a user

The first filter to execute is the Session filter. It checks for an existing session, but finds none, so processing
continues to the next filter in the chain. The Logout filter checks for the case of a user logging out, which also
is not the case, so processing continues. The Form login filter checks for a form login, and also finds none.
The Remember Me filter determines if this request can be authenticated from a previous session cookie, but
in this case it cannot. The final filter to execute is the Anonymous filter which checks if the user specified
any credentials. In this case the user has not provided any credentials, so the request is authenticated
anonymously. Since no authentication is required to view the home page, the provider chain is not invoked.

The last response to the request directs the user to the home page.

User logs on

This examples describes the process invoked when a user logs on to the web admin via the login form.

Figure 16.8: Authentication chain for a user logging in

The Session filter finds no existing session, and processing continues. The Logout filter checks for a logout re-
quest, finds none, and continues. The Form login filter recognizes the request as a form login and begins the
authentication process. It extracts the username and password from the request and invokes the provider
chain.

In the provider chain, the Root provider checks for the root account login, but doesn’t find it so processing
continues to the next provider. The Username/password provider checks if the supplied credentials are valid.
If they are valid the authentication succeeds, user is redirected to the home page and is considered to be

532 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

logged on. During the post-processing step the Session filter recognizes that a successful authentication has
taken place and creates a new session.

If the credentials are invalid, the user will be returned to the login form page and asked to try again.

User visits another page

This example describes the process invoked when a user who is already logged on visits another page in
the web admin.

Figure 16.9: Authentication chain for a user visiting another page after logging in

The Session filter executes and finds an existing session that is still valid. The session contains the authen-
tication details and no further chain processing is required. The response is the page requested by the
user.

User returns after session time out

This example describes the process invoked when a user returns to the web admin after the previously
created session has timed out.

A session will time out after a certain period of time. When the user returns to the web admin, this be-
comes essentially the same chain of events as the user visiting the web app for the first time (as described
previously). The chain proceeds to the Anonymous filter that authenticates anonymously. Since the page
requested is likely to be a page that requires authentication, the user is redirected to the home page and is
not logged on.

User logs on with “Remember Me” flag set

This example describes the process for logging on with the “Remember Me” flag set.

The chain of events for logging on with “Remember Me” set is identical to the process for when the flag is
not set, except that after the successful authentication the Form login filter recognizes the “Remember Me”
flag and triggers the creation of the browser cookie used to persist the authentication information. The user
is now logged on and is directed to the home page.

User returns after session time out (with “Remember Me”)

This example describes the process invoked when the user returns to the web admin after a period of
inactivity, while the “Remember Me” flag is set.

16.2. Authentication 533

GeoServer User Manual, Release 2.5.x

Figure 16.10: Authentication chain for a user returning after session time out with the “Remember Me” flag

Even though the “Remember Me” flag is set, the user’s session on the server will still time out as normal.
As such, the chain proceeds accordingly through the filters, starting with the Session filter, which finds no
valid session. The Logout and Form login filters do not apply here. The Remember Me filter recognizes the
browser cookie and is able to authenticate the request. The user is directed to whatever page was accessed
and remains logged on.

16.2.3 Authentication to OWS and REST services

OWS and REST services are stateless and have no inherent awareness of “session”, so the authentication
scheme for these services requires the client to supply credentials on every request. That said, “session inte-
gration” is supported, meaning that if a session already exists on the server (from a concurrent authenticated
web admin session) it will be used for authentication. This scheme allows GeoServer to avoid the overhead
of session creation for OWS and REST services.

The default GeoServer configuration ships with support for HTTP Basic authentication for services.

The typical process of authentication is as follows:

1. User makes a service request without supplying any credentials

2. If the user is accessing an unsecured resource, the request is handled normally

3. If the user is accessing a secured resource:

• An HTTP 401 status code is sent back to the client, typically forcing the client to prompt for credentials.

• The service request is then repeated with the appropriate credentials included, usually in the HTTP
header as with Basic Authentication.

• If the user has sufficient privileges to access the resource the request is handled normally, otherwise,
a HTTP 404 status code is returned to the client.

4. Subsequent requests should include the original user credentials

Examples

The following describes the authentication chain for an OWS service:

In this example the filter chain consists of three filters:

• Session—Handles “session integration”, recognizing existing sessions (but not creating new sessions)

• Basic Auth—Extracts Basic Authentication credentials from request HTTP header

• Anonymous—Handles anonymous access

534 Chapter 16. Security

http://en.wikipedia.org/wiki/Basic_access_authentication

GeoServer User Manual, Release 2.5.x

Figure 16.11: The OWS service authentication chain

The provider chain is made up of two providers:

• Root—Root account has a special “super user” provider. As this account is rarely used, this provider
is rarely invoked.

• Username/password—Performs username/password authentication against a user database

To illustrate how the elements of the various chains work, here are some example OWS requests.

Anonymous WMS GetCapabilities request

This example shows the process for when a WMS client makes an anonymous GetCapabilities request.

Figure 16.12: Authentication chain for a WMS client making an anonymous GetCapabilities request

The Session filter looks for an existing session, but finds none, so processing continues. The Basic Auth filter
looks for the Basic Authorization header in the request, but as the request is anonymous, the filter finds
none. Finally, the Anonymous filter executes and authenticates the request anonymously. Since GetCapabil-
ities is a “discovery” operation it is typically not locked down, even on a secure server. Assuming this is the
case here, the anonymous request succeeds, returning the capabilities response to the client. The provider
chain is not invoked.

Anonymous WMS GetMap request for a secured layer

This example shows the process invoked when a WMS client makes an anonymous GetMap request for a
secured layer

The chain executes exactly as described above. The Session filter looks for an existing session, but finds none,
so processing continues. The Basic Auth filter looks for the Basic Authorization header in the request, but as

16.2. Authentication 535

GeoServer User Manual, Release 2.5.x

the request is anonymous, the filter finds none. Finally, the Anonymous filter executes and authenticates the
request anonymously. However, in this case the layer being accessed is a secured resource, so the handling
of the GetMap request fails. The server returns an exception accompanied with a HTTP 401 status code,
which usually triggers the client presenting the user with a login dialog.

WMS GetMap request with user-supplied credentials

This example shows the process invoked when a WMS client gathers credentials from the user and reissues
the previous request for a secured layer.

Figure 16.13: Authentication chain for a WMS client making a GetMap request with user-supplied credentials

The Session filter executes as described above, and does nothing. The Basic Auth filter finds the authorization
header in the request, extracts the credentials for it, and invokes the provider chain. Processing moves to
the Username/password provider that does the actual authentication. If the credentials have the necessary
privileges to access the layer, the processing of the request continues normally and the GetMap request
succeeds, returning the map response. If the credentials are not sufficient, the HTTP 401 status code will be
supplied instead, which may again trigger the login dialog on the client side.

16.2.4 Authentication providers

The following authentication providers are available in GeoServer:

• Authentication of a username/password against a user/group service

• Authentication against an LDAP server

• Authentication by connecting to a database through JDBC

Username/password authentication

Username and password authentication is the default authentication provider. It uses a user/group service to
authenticate.

The provider simply takes the username/password from an incoming request (such as a Basic Authentica-
tion request), then loads the user information from the user/group service and verifies the credentials.

LDAP authentication

The LDAP authentication provider allows for authentication against a Lightweight Directory Access Pro-
tocol (LDAP) server. The provider takes the username/password from the incoming request and attempts
to connect to the LDAP server with those credentials.

536 Chapter 16. Security

http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
http://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

GeoServer User Manual, Release 2.5.x

Note: Currently only LDAP Bind authentication is supported.

Role assignment

The LDAP provider offers two options for role assignment for authenticated users:

• Convert the user’s LDAP groups into roles

• Employ a user/group service

The following LDAP database will illustrate the first option:

dn: ou=people,dc=acme,dc=com
objectclass: organizationalUnit
ou: people

dn: uid=bob,ou=people,dc=acme,dc=com
objectclass: person
uid: bob

dn: ou=groups,dc=acme,dc=com
objectclass: organizationalUnit
ou: groups

dn: cn=workers,ou=groups,dc=acme,dc=com
objectclass: groupOfNames
cn: users
member: uid=bob,ou=people,dc=acme,dc=com

The above scenario defines a user with the uid of bob, and a group named workers of which bob is a
member. After authentication, bob will be assigned the role ROLE_WORKERS. The role name is generated
by concatenating ROLE_ with the name of the group in upper case.

Note: When the LDAP server doesn’t allow searching in an anoymous context, the bindBeforeGroupSearch
option should be enabled to avoid errors.

In the case of using a user/group service, the user/group service is queried for the user following authentica-
tion, and the role assignment is performed by both the user/group service and the active role service. When
using this option, any password defined for the user in the user/group service database is ignored.

Secure LDAP connections

There are two ways to create a secure LDAP connection with the server. The first is to directly specify a
secure connection by using the ldaps protocol as part of the Server URL. This typically requires changing
the connection port to port 636 rather than 389.

The second method involves using STARTTLS (Transport Layer Security) to negotiate a secure connection
over a non-secure one. The negotiation takes place over the non-secure URL using the “ldap” protocol on
port 389. To use this option, the Use TLS flag must be set.

Warning: Using TLS for connections will prevent GeoServer from being able to pool LDAP connections.
This means a new LDAP connection will be created and destroyed for each authentication, resulting in
loss of performance.

16.2. Authentication 537

GeoServer User Manual, Release 2.5.x

JDBC authentication

The JDBC authentication provider authenticates by connecting to a database over JDBC.

The provider takes the username/password from the incoming request and attempts to create a database
connection using those credentials. Optionally the provider may use a user/group service to load user in-
formation after a successful authentication. In this context the user/group service will not be used for
password verification, only for role assignment.

Note: To use the user/group service for password verification, please see the section on Username/password
authentication.

16.3 Passwords

Passwords are a central aspect of any security system. This section describes how GeoServer handles pass-
words.

16.3.1 Password encryption

A GeoServer configuration stores two types of passwords:

• Passwords for user accounts to access GeoServer resources

• Passwords used internally for accessing external services such as databases and cascading OGC ser-
vices

As these passwords are typically stored on disk it is strongly recommended that they be encrypted and
not stored as human-readable text. GeoServer security provides four schemes for encrypting passwords:
empty, plain text, Digest, and Password-based encryption (PBE).

The password encryption scheme is specified as a global setting that affects the encryption of passwords
used for external resources, and as an encryption scheme for each user/group service. The encryption scheme
for external resources has to be be reversible, while the user/group services can use any scheme.

Empty

The scheme is not reversible. Any password is encoded as an empty string, and as a consequence it is
not possible to recalculate the plain text password. This scheme is used for user/group services in com-
bination with an authentication mechanism using a back end system. Examples are user name/password
authentication against a LDAP server or a JDBC database. In these scenarios, storing passwords locally to
Geoserver does not make sense.

Plain text

Note: Prior to version 2.2.0, plain text encryption was the only available method used by GeoServer for
storing passwords.

Plain text passwords provide no encryption at all. In this case, passwords are human-readable by anyone
who has access to the file system. For obvious reasons, this is not recommended for any but the most basic
test server. A password mypassword is encoded as plain:mypassword, the prefix uniquely describing
the algorithm used for encoding/decoding.

538 Chapter 16. Security

http://en.wikipedia.org/wiki/Java_Database_Connectivity

GeoServer User Manual, Release 2.5.x

Digest

Digest encryption is not reversible. It applies, 100,000 times through an iterative process, a SHA-256 cryp-
tographic hash function to passwords. This scheme is “one-way” in that it is virtually impossible to reverse
and obtain the original password from its hashed representation. Please see the section on Reversible encryp-
tion for more information on reversibility.

To protect from well known attacks, a random value called a salt is added to the password when generating
the key. For each digesting, a separate random salt is used. Digesting the same password twice results in
different hashed representations.

As an example, the password geoserver is digested to digest1:YgaweuS60t+mJNobGlf9hzUC6g7gGTtPEu0TlnUxFlv0fYtBuTsQDzZcBM4AfZHd.
digest1 indicates the usage of digesting. The hashed representation and the salt are base 64 encoded.

Password-based encryption

Password-based encryption (PBE) normally employs a user-supplied password to generate an encryption
key. This scheme is reversible. A random salt described in the previous section is used.

Note: The system never uses passwords specified by users because these passwords tend to be weak.
Passwords used for encryption are generated using a secure random generator and stored in the GeoServer
key store. The number of possible passwords is 2^260 .

GeoServer supports two forms of PBE. Weak PBE (the GeoServer default) uses a basic encryption method
that is relatively easy to crack. The encryption key is derived from the password using MD5 1000 times
iteratively. The encryption algorithm itself is DES (Data Encryption Standard). DES has an effective key
length of 56 bits, which is not really a challenge for computer systems in these days.

Strong PBE uses a much stronger encryption method based on an AES 256-bit algorithm with CBC. The key
length is 256 bit and is derived using SHA-256 instead of MD5. Using Strong PBE is highly recommended.

As an example, the password geoserver is encrypted to crypt1:KWhO7jrTz/Gi0oTQRKsVeCmWIZY5VZaD.
crypt1 indicates the usage of Weak PBE. The prefix for Strong PBE is crypt2. The ciphertext and the salt
are base 64 encoded.

Note: Strong PBE is not natively available on all Java virtual machines and may require the installation of
some additional JCE Unlimited Strength Jurisdiction policy files:

• Oracle JCE policy jars for Oracle JVM

• IBM JCE policy jars for IBM JVM

Reversible encryption

Password encryption methods can be reversible, meaning that it is possible (and desirable) to obtain the
plain-text password from its encrypted version. Reversible passwords are necessary for database connec-
tions or external OGC services such as cascading WMS and cascading WFS, since GeoServer must be able
to decode the encrypted password and pass it to the external service. Plain text and PBE passwords are
reversible.

Non-reversible passwords provide the highest level of security, and therefore should be used for user ac-
counts and wherever else possible. Using password digesting is highly recommended, the installation of
the unrestricted policy files is not required.

16.3. Passwords 539

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Salt_%28cryptography%29
http://www.javamex.com/tutorials/cryptography/password_based_encryption.shtml
http://en.wikipedia.org/wiki/Message_Digest_Algorithm_5
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://en.wikipedia.org/wiki/SHA-2
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

GeoServer User Manual, Release 2.5.x

16.3.2 Secret keys and the keystore

For a reversible password to provide a meaningful level of security, access to the password must be re-
stricted in some way. In GeoServer, encrypting and decrypting passwords involves the generation of secret
shared keys, stored in a typical Java keystore. GeoServer uses its own keystore for this purpose named
geoserver.jceks which is located in the security directory in the GeoServer data directory. This file
is stored in the JCEKS format rather than the default JKS. JKS does not support storing shared keys.

The GeoServer keystore is password protected with a Master password. It is possible to access the contents
of the keystore with external tools such as keytool. For example, this following command would prompt
for the master password and list the contents of the keystore:

$ keytools -list -keystore geoserver.jceks -storetype "JCEKS"

16.3.3 Master password

It is also possible to set a master password for GeoServer. This password serves two purposes:

• Protect access to the keystore

• Protect access to the GeoServer Root account

By default, the master password is generated and stored in a file named security/masterpw.info
using plain text. When upgrading from an existing GeoServer data directory (versions 2.1.x and lower),
the algorithm attempts to figure out the password of a user with the role ROLE_ADMINISTRATOR. If such a
password is found and the password length is 8 characters at minimum, GeoServer uses this password as
master password. Again, the name of the chosen user is found in security/masterpw.info.

Warning: The file security/masterpw.info is a security risk. The administrator should read this
file and verify the master password by logging on GeoServer as the root user. On success, this file
should be removed.

Refer to Active master password provider for information on how to change the master password.

16.3.4 Password policies

A password policy defines constraints on passwords such as password length, case, and required mix of
character classes. Password policies are specified when adding User/group services and are used to constrain
passwords when creating new users and when changing passwords of existing users.

Each user/group service uses a password policy to enforce these rules. The default GeoServer password
policy implementation supports the following optional constraints:

• Passwords must contain at least one number

• Passwords must contain at least one upper case letter

• Passwords must contain at least one lower case letter

• Password minimum length

• Password maximum length

540 Chapter 16. Security

http://www.itworld.com/nl/java_sec/07202001
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

GeoServer User Manual, Release 2.5.x

16.4 Root account

The highly configurable nature of GeoServer security may result in an administrator inadvertently disrupt-
ing normal authentication, essentially disabling all users including administrative accounts. For this reason,
the GeoServer security subsystem contains a root account that is always active, regardless of the state of
the security configuration. Much like its UNIX-style counterpart, this account provides “super user” status,
and is meant to provide an alternative access method for fixing configuration issues.

The user name for the root account is root. Its name cannot be changed and the password for the root
account is the Master password.

16.5 Service Security

GeoServer supports access control at the service level, allowing for the locking down of service operations
to only authenticated users who have been granted a particular role. There are two main categories of
services in GeoServer. The first is OWS services such as WMS and WFS. The second are RESTful services,
such as the GeoServer REST configuration.

Note: Service-level security and Layer security cannot be combined. For example, it is not possible to
specify access to a specific OWS service only for one specific layer.

16.5.1 OWS services

OWS services support setting security access constraints globally for a particular service, or to a specific
operation within that service. A few examples include:

• Securing the entire WFS service so only authenticated users have access to all WFS operations.

• Allowing anonymous access to read-only WFS operations such as GetCapabilities, but securing write
operations such as Transaction.

• Disabling the WFS service in effect by securing all operations and not applying the appropriate roles
to any users.

OWS service security access rules are specified in a file named services.properties, located in the
security directory in the GeoServer data directory. The file contains a list of rules that map service
operations to defined roles. The syntax for specifying rules is as follows:

<service>.<operation|*>=<role>[,<role2>,...]

The parameters include:

• []—Denotes optional parameters

• |—Denotes “or”

• service—Identifier of an OGC service, such as wfs, wms, or wcs

• operation—Any operation supported by the service, examples include GetFeature for WFS,
GetMap for WMS, * for all operations

• role[,role2,...]—List of predefined role names

Note: It is important that roles specified are actually linked to a user, otherwise the whole ser-
vice/operation will be accessible to no one except for the Root account. However in some cases this may be
the desired effect.

16.4. Root account 541

GeoServer User Manual, Release 2.5.x

The default service security configuration in GeoServer contains no rules and allows any anonymous user
to access any operation of any service. The following are some examples of desired security restrictions and
the corresponding rules.

Securing the entire WFS service

This rule grants access to any WFS operation only to authenticated users that have been granted the
ROLE_WFS role:

wfs.*=ROLE_WFS

Anonymous WFS access only for read-only operations

This rule grants anonymous access to all WFS operations (such as GetCapabilities and GetFeature) but
restricts Transaction requests to authenticated users that have been granted the ROLE_WFS_WRITE role:

wfs.Transaction=ROLE_WFS_WRITE

Securing data-accessing WFS operations and write operations

Used in conjunction, these two rules grant anonymous access to GetCapabilities and DescribeFeatureType,
forcing the user to authenticate for the GetFeature operation (must be granted the ROLE_WFS_READ role),
and to authenticate to perform transactions (must be granted the ROLE_WFS_WRITE role:

wfs.GetFeature=ROLE_WFS_READ
wfs.Transaction=ROLE_WFS_WRITE

Note this example does not specify whether a user accessing Transactions would also have access to Get-
Feature.

16.5.2 REST services

In addition to providing the ability to secure OWS services, GeoServer also allows for the securing of REST-
ful services.

REST service security access rules are specified in a file named rest.properties, located in the
security directory of the GeoServer data directory. This file contains a list of rules mapping request
URIs to defined roles. The rule syntax is as follows:

<uriPattern>;<method>[,<method>,...]=<role>[,<role>,...]

The parameters include:

• []—Denote optional parameters

• uriPattern—The ant pattern that matches a set of request URIs

• method—HTTP request method, one of GET, POST, PUT, POST, DELETE, or HEAD

• role—Name of a predefined role. The wildcard * is used to indicate all users, including anonymous
users.

Note:

542 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

• URI patterns should account for the first component of the rest path, usually rest or api

• method and role lists should not contain any spaces

Ant patterns

Ant patterns are commonly used for pattern matching directory and file paths. The following examples
provide some basic instructions. The Apache ant user manual contains more sophisticated use cases.

These examples are specific to GeoServer REST configuration, but any RESTful GeoServer service could be
configured in the same manner.

Disabling anonymous access to services

The most secure of configurations is one that forces any request, REST or otherwise, to be authenticated.
The following will lock down access to all requests to users that are granted the ROLE_ADMINISTRATOR
role:

/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

A less restricting configuration locks down access to operations under the path /rest to users granted the
ROLE_ADMINISTRATOR role, but will allow anonymous access to requests that fall under other paths (for
example /api):

/rest/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

Allowing anonymous read-only access

The following configuration grants anonymous access when the GET method is used, but forces authenti-
cation for a POST, PUT, or DELETE method:

/**;GET=IS_AUTHENTICATED_ANONYMOUSLY
/**;POST,PUT,DELETE=TRUSTED_ROLE

Securing a specific resource

The following configuration forces authentication for access to a particular resource (in this case the states
feature type):

/rest/**/states*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

The following secures access to a set of resources (in this case all data stores).:

/rest/**/datastores/*;GET=TRUSTED_ROLE
/rest/**/datastores/*.*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

Note the trailing wildcards /* and /*.*.

16.5. Service Security 543

http://ant.apache.org/manual/dirtasks.html

GeoServer User Manual, Release 2.5.x

16.6 Layer security

GeoServer allows access to be determined on a per-layer basis.

Note: Layer security and Service Security cannot be combined. For example, it is not possible to specify
access to a specific OWS service, only for one specific layer.

Providing access to layers is linked to roles. Layers and roles are linked in a file called
layers.properties, which is located in the security directory in your GeoServer data directory. The
file contains the rules that control access to workspaces and layers.

16.6.1 Rules

The syntax for a layer security rule is as follows ([] denotes optional parameters):

workspace.layer.permission=role[,role2,...]

The parameters include:

* ‘‘workspace‘‘--Name of the workspace. The wildcard ‘‘*‘‘ is used to indicate all workspaces.

* ‘‘layer‘‘--Name of a resource (featuretype/coverage/etc...). The wildcard ‘‘*‘‘ is used to indicate all layers.

* ‘‘permission‘‘--Type of access permission/mode.

• r—Read access

• w—Write access

• a—Admin access

See Access modes for more details.

• role[,role2,...] is the name(s) of predefined roles. The wildcard * is used to indicate the
permission is applied to all users, including anonymous users.

Note: If a workspace or layer name is supposed to contain dots, they can be escaped using double back-
slashes (\\). For example, if a layer is named layer.with.dots the following syntax for a rule may be
used:

topp.layer\\.with\\.dots.r=role[,role2,...]

Each entry must have a unique combination of workspace, layer, and permission values. If a permission at
the global level is not specified, global permissions are assumed to allow read/write access. If a permission
for a workspace is not specified, it inherits permissions from the global specification. If a permission for a
layer is not specified, it inherits permissions from its workspace specification. If a user belongs to multiple
roles, the least restrictive permission they inherit will apply.

16.6.2 Catalog Mode

The layers.properties file may contain a further directive that specifies how GeoServer will advertise
secured layers and behave when a secured layer is accessed without the necessary privileges. The parame-
ter is mode and is commonly referred to as the “catalog mode”.

The syntax is:

544 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

mode=option

option may be one of three values:

Option Description
hide (Default) Hides layers that the user does not have read access to, and behaves as if a layer is

read only if the user does not have write permissions. The capabilities documents will not
contain the layers the current user cannot access. This is the highest security mode. As a
result, it may not work very well with clients such as uDig or Google Earth.

challengeAllows free access to metadata, but any attempt at accessing actual data is met by a HTTP
401 code (which forces most clients to show an authentication dialog). The capabilities
documents contain the full list of layers. DescribeFeatureType and DescribeCoverage
operations work successfully. This mode works fine with clients such as uDig or Google
Earth.

mixed Hides the layers the user cannot read from the capabilities documents, but triggers
authentication for any other attempt to access the data or the metadata. This option is useful
if you don’t want the world to see the existence of some of your data, but you still want
selected people to who have data access links to get the data after authentication.

16.6.3 Access modes

The access mode defines what level of access should be granted on a specific workspace/layer to a partic-
ular role. There are three types of access mode:

• r—Read mode (read data from a workspace/layer)

• w—Write mode (write data to a workspace/layer)

• a—Admin mode (access and modify the configuration of a workspace/layer)

Some notes on the above access modes:

• Write does not imply Read, but Admin implies both Write and Read.

• Read and Write apply to the data of a layer, while Admin applies to the configuration of a layer.

• As Admin mode only refers to the configuration of the layer, it is not required for any OGC service
request.

Note: Currently, it is possible to assign Admin permission only to an entire workspace, and not to specific
layers.

16.6.4 Examples

The following examples illustrate some possible layer restrictions and the corresponding rules.

Protecting a single workspace and a single layer

The following example demonstrates how to configure GeoServer as a primarily a read-only server:

..r=*
..w=NO_ONE
private.*.r=TRUSTED_ROLE
private.*.w=TRUSTED_ROLE
topp.congress_district.w=STATE_LEGISLATORS

16.6. Layer security 545

GeoServer User Manual, Release 2.5.x

The mapping of roles to permissions is as follows:

Role private.* topp.* topp.congress_district (all other workspaces)
NO_ONE (none) w (none) w
TRUSTED_ROLE r/w r r r
STATE_LEGISLATURES (none) r r/w r
(All other users) r r r r

Locking down GeoServer

The following example demonstrates how to lock down GeoServer:

..r=TRUSTED_ROLE

..w=TRUSTED_ROLE
topp.*.r=*
army.*.r=MILITARY_ROLE,TRUSTED_ROLE
army.*.w=MILITARY_ROLE,TRUSTED_ROLE

The mapping of roles to permissions is as follows:

Role topp.* army.* (All other workspaces)
TRUSTED_ROLE r/w r/w r/w
MILITARY_ROLE r r/w (none)
(All other users) r (none) (none)

Providing restricted administrative access

The following provides administrative access on a single workspace to a specific role, in additional to the
full administrator role:

..a=ROLE_ADMINISTRATOR
topp.*.a=ROLE_TOPP_ADMIN,ROLE_ADMINISTRATOR

Managing multi-level permissions

The following example demonstrates how to configure GeoServer with global-, workspace–, and layer-level
permissions:

..r=TRUSTED_ROLE

..w=NO_ONE
topp.*.r=*
topp.states.r=USA_CITIZEN_ROLE,LAND_MANAGER_ROLE,TRUSTED_ROLE
topp.states.w=NO_ONE
topp.poly_landmarks.w=LAND_MANAGER_ROLE
topp.military_bases.r=MILITARY_ROLE
topp.military_bases.w=MILITARY_ROLE

The mapping of roles to permissions is as follows:

546 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Role topp.states topp.poly_landmarkstopp.military_basestopp.(all other
layers)

(All other
workspaces)

NO_ONE w r (none) w w
TRUSTED_ROLE r r (none) r r
MILITARY_ROLE (none) r r/w r (none)
USA_CITIZEN_ROLEr r (none) r (none)
LAND_MANAGER_ROLEr r/w (none) r (none)
(All other users) (none) r (none) r (none)

Note: The entry topp.states.w=NO_ONE is not required because this permission would be inherited
from the global level (the entry *.*.w=NO_ONE).

Invalid configuration

The following examples are invalid because the workspace, layer, and permission combinations are not
unique:

topp.state.rw=ROLE1
topp.state.rw=ROLE2,ROLE3

16.7 REST Security

In addition to providing the ability to secure OWS style services, GeoServer also supports securing RESTful
services.

As with layer and service security, RESTful security configuration is based on sec_roles. The mapping
of request URI to role is defined in a file named rest.properties, located in the security directory of
the GeoServer data directory.

16.7.1 Syntax

The following syntax defines access control rules for RESTful services (parameters in brackets [] are op-
tional):

uriPattern;method[,method,...]=role[,role,...]

The parameters are:

• uriPattern—ant pattern that matches a set of request URIs

• method—HTTP request method, one of GET, POST, PUT, POST, DELETE, or HEAD

• role—Name of a predefined role. The wildcard ‘* is used to indicate the permission is applied to all
users, including anonymous users.

Note:

• URI patterns should account for the first component of the rest path, usually rest or api

• Method and role lists should not contain any spaces

16.7. REST Security 547

GeoServer User Manual, Release 2.5.x

Ant patterns

Ant patterns are commonly used for pattern matching directory and file paths. The examples section con-
tains some basic instructions. The Apache ant user manual contains more sophisticated use cases.

16.7.2 Examples

Most of the examples in this section are specific to the GeoServer REST configuration but any RESTful
GeoServer service may be configured in the same manner.

Allowing only authenticated access

The most secure configuration is one that forces any request to be authenticated. The following example
locks down access to all requests:

/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

A less restricting configuration locks down access to operations under the path /rest, but will allow
anonymous access to requests that fall under other paths (for example /api):

/rest/**;GET,POST,PUT,DELETE=ROLE_ADMINISTRATOR

The following configuration is similar to the previous one except it grants access to a specific role rather
than the administrator:

/**;GET,POST,PUT,DELETE=ROLE_TRUSTED

ROLE_TRUSTED is a role defined in users.properties.

Providing anonymous read-only access

The following configuration allows anonymous access when the GET (read) method is used but forces
authentication for a POST, PUT, or DELETE (write):

/**;GET=IS_AUTHENTICATED_ANONYMOUSLY
/**;POST,PUT,DELETE=TRUSTED_ROLE

Securing a specific resource

The following configuration forces authentication for access to a particular resource (in this case a feature
type):

/rest/**/states*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

The following secures access to a set of resources (in this case all data stores):

/rest/**/datastores/*;GET=TRUSTED_ROLE
/rest/**/datastores/*.*;GET=TRUSTED_ROLE
/rest/**;POST,PUT,DELETE=TRUSTED_ROLE

548 Chapter 16. Security

http://ant.apache.org/manual/dirtasks.html

GeoServer User Manual, Release 2.5.x

16.8 Disabling security

If you are using an external security subsystem, you may want to disable the built-in security to prevent
conflicts. Disabling security is possible for each security filter chain individually. The security filter chains
are listed on the GeoServer authentication page.

Warning: Disabling security for a filter chain results in administrator privileges for each HTTP request
matching this chain. As an example, disabling security on the web chain gives administrative access to
each user accessing the Web Administration Interface interface.

16.9 Tutorials

16.9.1 Authentication with LDAP

This tutorial introduces GeoServer LDAP support and walks through the process of setting up authen-
tication aganist an LDAP server. It is recommended that the LDAP authentication section be read before
proceeding.

LDAP server setup

A mock LDAP server will be used for this tutorial. Download and run the acme-ldap jar:

java -jar acme-ldap.jar

The output of which should look like the following:

Directory contents:
ou=people,dc=acme,dc=org
uid=bob,ou=people,dc=acme,dc=org
uid=alice,ou=people,dc=acme,dc=org
uid=bill,ou=people,dc=acme,dc=org

ou=groups,dc=acme,dc=org
cn=users,ou=groups,dc=acme,dc=org
member: uid=bob,ou=people,dc=acme,dc=org
member: uid=alice,ou=people,dc=acme,dc=org

cn=admins,ou=groups,dc=acme,dc=org
member: uid=bill,ou=people,dc=acme,dc=org

Server running on port 10389

The following diagram illustrates the hierachy of the LDAP datatabse:

The LDAP tree consists of:

• The root domain component, dc=acme,dc=org

• Two organizational units (groups) named user and admin

• Two users named bob and alice who are members of the user group

• One user named bill who is a member of the admin group

16.8. Disabling security 549

http://files.opengeo.org/geoserver/acme-ldap.jar

GeoServer User Manual, Release 2.5.x

Configure the LDAP authentication provider

1. Start GeoServer and login to the web admin interface as the admin user.

2. Click the Authentication link located under the Security section of the navigation sidebar.

3. Scroll down to the Authentication Providers panel and click the Add new link.

4. Click the LDAP link.

5. Fill in the fields of the settings form as follows:

• Set Name to “acme-ldap”

• Set Server URL to “ldap://localhost:10389/dc=acme,dc=org“

• Set User lookup pattern to “uid={0},ou=people”

6. Test the LDAP connection by entering the username “bob” and password “secret” in the connection
test form located on the right and click the Test Connection button.

A successful connection should be reported at the top of the page.

7. Save.

8. Back on the authentication page scroll down to the Provider Chain panel and move the
acme-ldap provider from Available to Selected.

9. Save.

Test a LDAP login

1. Navigate to the GeoServer home page and log out of the admin account.

2. Login as the user “bob” with the with the password “secret”.

Logging in as bob doesn’t yield any administrative functionality because the bobaccount has not been
mapped to the administrator role. In the next section GeoServer will be configured to map groups from the
LDAP database to roles.

550 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 551

GeoServer User Manual, Release 2.5.x

552 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Map LDAP groups to GeoServer roles

When using LDAP for authentication GeoServer maps LDAP groups to GeoServer roles by prefixing the
group name with ROLE_ and converting the result to uppercase. For example bob and alice are members
of the user group so after authentication they would be assigned a role named ROLE_USER. Similarily bill
is a member of the admin group so he would be assigned a role named ROLE_ADMIN.

1. Log out of the web admin and log back in as the admin user.

2. Navigate to the Authentication page.

3. Scroll to the Authentication Providers panel and click the acme-ldap link.

4. On the settings page fill in the following form fields:

• Set Group search base to “ou=groups”

• Set Group search filter to “member={0}”

The first field specifies the node of the LDAP directory tree at which groups are located. In this case
the organizational unit named groups. The second field specifies the LDAP query filter to use in
order to locate those groups that a specific user is a member of. The {0} is a placeholder which is
replaced with the uid of the user.

16.9. Tutorials 553

GeoServer User Manual, Release 2.5.x

5. Save.

At this point the LDAP provider will populate an authenticated user with roles based on the groups the
user is a member of. But the GeoServer administrative role is named ROLE_ADMINISTRATOR. Therefore
even bill who is assigned the role ROLE_ADMIN will not be granted administrative rights. To remedy this
the GeoServer role service will be reconfigured to treat ROLE_ADMIN as an adminstrative role.

1. Click the Users,Group,Roles link located under the Security section of the navigation sidebar.

2. Scroll to the Role Services panel and click the default link.

3. Switch to the Roles tab.

4. Add a new role named ROLE_ADMIN.

5. Save.

6. Switch to the Settings tab.

7. Select ROLE_ADMIN from the Administrator role drop down.

8. Save.

At this point members of the admin LDAP group should be given full administrative privileges once au-
thenticated. Log out of the admin account and log in as “bill” with the password “hello”. Once logged in
full administrative functionality should be available.

554 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 555

GeoServer User Manual, Release 2.5.x

Configure the LDAP role service

An additional step permits to configure a role service to get GeoServer roles from the LDAP repository and
allow access rights to be assigned to those roles.

1. Click the Users,Group,Roles link located under the Security section of the navigation sidebar.

2. Click the Add new link under the Role Services section.

3. Click the LDAP option under the New Role Service section.

4. Enter ldaprs in the Name text field.

5. Enter ldap://127.0.0.1:10389/dc=acme,dc=org in the Server URL text field.

6. Enter ou=groups in the Group search base text field.

7. Enter member=uid={0},ou=people,dc=acme,dc=org in the Group user membership
search filter text field.

8. Enter cn=* in the All groups search filter text field.

Then we need to a choose a user to authenticate on the server (many LDAP server don’t allow anonymous
data lookup).

1. Check the Authenticate to extract roles checkbox.

2. Enter uid=bill,ou=people,dc=acme,dc=org in the Username text field.

3. Enter hello in the Password text field.

4. Save.

556 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

5. Click the ldaprs role service item under the Role Services section.

6. Select ROLE_ADMIN from the Administrator role combobox.

7. Select ROLE_ADMIN from the Group administrator role combobox.

8. Save again.

You should now be able to see and assign the new ROLE_ADMIN and ROLE_USER roles wherever an
Available Roles list is shown (for example in the Data and Services rules sections.

16.9.2 Authentication with LDAP against ActiveDirectory

This tutorial explains how to use GeoServer LDAP support to connect to a Windows Domain using Ac-
tiveDirectory as an LDAP server. It is recommended that the LDAP authentication section be read before
proceeding.

Windows Server and ActiveDirectory

Active Directory is just another LDAP server implementation, but has some features that we must know
to successfully use it with GeoServer LDAP authentication. In this tutorial we will assume to have a Win-
dows Server Domain Controller with ActiveDirectory named domain-controller for a domain named
ad.local. If your environment uses different names (and it surely will) use your real names where
needed.

We will also assume that:

• a group named GISADMINGROUP exists.

• a user named GISADMIN exists, has password secret, and belongs to the GISADMINGROUP group.

• a user named GISUSER exists, has password secret, and does NOT belong to the GISADMINGROUP
group.

Note: ADMINISTRATOR cannot be generally used as the admin group name with ActiveDirectory, be-
cause Administrator is the master user name in Windows environment.

Configure the LDAP authentication provider

1. Start GeoServer and login to the web admin interface as the admin user.

2. Click the Authentication link located under the Security section of the navigation sidebar.

3. Scroll down to the Authentication Providers panel and click the Add new link.

4. Click the LDAP link.

5. Fill in the fields of the settings form as follows:

• Set Name to “ad-ldap”

• Set Server URL to “ldap://domain-controller/dc=ad,dc=local“

• Set Filter used to lookup user to “(|(userPrincipalName={0})(sAMAccountName={1}))”

16.9. Tutorials 557

GeoServer User Manual, Release 2.5.x

558 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

• Set Format used for user login name to “{0}@ad.local“

• Check Use LDAP groups for authorization

• Check Bind user before searching for groups

• Set Group to use as ADMIN to “GISADMINGROUP”

• Set Group search base to “cn=Users”

• Set Group search filter to “member={0}”

6. Test the LDAP connection by entering the username “GISADMIN” and password “secret” in the
connection test form located on the right and click the Test Connection button.

A successful connection should be reported at the top of the page.

7. Save.

8. Back on the authentication page scroll down to the Provider Chain panel and move the ad-ldap
provider from Available to Selected.

9. Save.

Test a LDAP login

1. Navigate to the GeoServer home page and log out of the admin account.

2. Login as the user “GISUSER” with the with the password “secret”.

16.9. Tutorials 559

mailto:\protect \T1\textbraceleft 0\protect \T1\textbraceright @ad.local

GeoServer User Manual, Release 2.5.x

560 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Logging in as GISUSER doesn’t yield any administrative functionality because the GISUSER account has
not been mapped to the administrator role. In the next section GeoServer will be configured to map groups
from the LDAP database to roles.

Now we will login with a user having administrative rights.

1. Navigate to the GeoServer home page and log out of the account.

2. Login as the user “GISADMIN” with the with the password “secret”.

Once logged in full administrative functionality should be available.

Configure the LDAP role service

An additional step permits to configure a role service to get GeoServer roles from the LDAP repository and
allow access rights to be assigned to those roles.

1. Click the Users,Group,Roles link located under the Security section of the navigation sidebar.

2. Click the Add new link under the Role Services section.

3. Click the LDAP option under the New Role Service section.

4. Enter ldapadrs in the Name text field.

5. Enter ldap://domain-controller/dc=ad,dc=local in the Server URL text field.

6. Enter CN=Users in the Group search base text field.

16.9. Tutorials 561

GeoServer User Manual, Release 2.5.x

7. Enter member={1},dc=ad,dc=local in the Group user membership search filter text
field.

8. Enter objectClass=group in the All groups search filter text field.

9. Enter sAMAccountName={0} in the Filter used to lookup user text field.

Then we need to a choose a user to authenticate on the server (many LDAP server don’t allow anonymous
data lookup).

1. Check the Authenticate to extract roles checkbox.

2. Enter GISADMIN@ad.local in the Username text field.

3. Enter secret in the Password text field.

4. Save.

5. Click the ldapadrs role service item under the Role Services section.

6. Select ROLE_DOMAIN ADMINS from the Administrator role combobox.

7. Select ROLE_DOMAIN ADMINS from the Group administrator role combobox.

8. Save again.

You should now be able to see and assign the new ActiveDirectory roles wherever an Available Roles
list is shown (for example in the Data and Services rules sections.

16.9.3 Configuring Digest Authentication

Introduction

Out of the box GeoServer REST and OGC services support authentication via HTTP Basic authentication.
One of the major downsides of basic auth is that it sends user passwords in plain text. HTTP Digest au-
thentication offers a more secure alternative that applies a cryptographic hash function to passwords before
sending them over the network.

This tutorial walks through the process of setting up digest authentication.

Prerequisites

This tutorial uses the curl utility to issue HTTP request that test authentication. Install curl before proceed-
ing.

Note: Any utility that supports both basic and digest authentication can be used in place of curl. Most
modern web browsers support both types of authentication.

Configure the Digest authentication filter

1. Start GeoServer and login to the web admin interface as the admin user.

2. Click the Authentication link located under the Security section of the navigation sidebar.

3. Scroll down to the Authentication Filters panel and click the Add new link.

562 Chapter 16. Security

http://en.wikipedia.org/wiki/Basic_access_authentication
http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 563

GeoServer User Manual, Release 2.5.x

4. Click the Digest link.

5. Fill in the fields of the settings form as follows:

• Set Name to “digest”

• Set User group service to “default”

6. Save.

7. Back on the authentication page scroll down to the Filter Chains panel.

8. Select “Default” from the Request type drop down.

9. Unselect the basic filter and select the digest filter. Position the the digest filter before the
anonymous filter.

564 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

10. Save.

Secure OGC service requests

In order to test the authentication settings configured in the previous section a service or resource must be
first secured. The Default filter chain is the chain applied to all OGC service requests so a service security
rule must be configured.

1. From the GeoServer home page and click the Services link located under the Security section of
the navigation sidebar.

2. On the Service security page click the Add new rule link and add a catch all rule that secures all
OGC service requests requiring the ROLE_ADMINISTRATOR role.

3. Save.

Test a digest authentication login

1. Ensure that basic authentication is disabled execute the following curl command:

curl -v -u admin:geoserver -G "http://localhost:8080/geoserve/wfs?request=getcapabilities"

16.9. Tutorials 565

GeoServer User Manual, Release 2.5.x

The result should be a 401 response signaling that authentication is required. The output should look
something like the following:

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user ’admin’
> GET /geoserver/wfs?request=getcapabilities HTTP/1.1
> Authorization: Basic YWRtaW46Z2Vvc2VydmVy
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8r zlib/1.2.3
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 401 Full authentication is required to access this resource
< Set-Cookie: JSESSIONID=1dn2bi8qqu5qc;Path=/geoserver
< WWW-Authenticate: Digest realm="GeoServer Realm", qop="auth", nonce="MTMzMzQzMDkxMTU3MjphZGIwMWE4MTc1NmRiMzI3YmFiODhmY2NmZGQ2MzEwZg=="
< Content-Type: text/html; charset=iso-8859-1
< Content-Length: 1491
< Server: Jetty(6.1.8)
<
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"/>
<title>Error 401 Full authentication is required to access this resource</title>
</head>
...

2. Execute the same command but specify the --digest option to tell curl to use digest authentication
rather than basic authentication:

curl --digest -v -u admin:geoserver -G "http://localhost:8080/geoserve/wfs?request=getcapabilities"

The result should be a successful authentication and contain the normal WFS capabilities response.

16.9.4 Configuring X.509 Certificate Authentication

Certificates authentication provides a much more secure alternative basic username password schemes
that involves the usage of public/private keys to identify ones self. X.509 is a well defined standard for the
format of public key certificates.

This tutorial walks through the process of setting up X.509 certificate authentication.

Prerequisites

This tutorial requires the following:

• A web browser that supports the usage of client certificates for authentication. This is also referred to
as “two way SSL”. This tutorial uses Firefox.

• An SSL capable servlet container. This tutorial uses Tomcat.

Deploy GeoServer in tomcat before proceeding.

Configure the user group service

Users authenticated via X.509 certificate must be configured in GeoServer. For this a new user group service
will be added.

566 Chapter 16. Security

http://en.wikipedia.org/wiki/X.509

GeoServer User Manual, Release 2.5.x

1. Login to the web admin interface as the admin user.

2. Click the Users, Groups, and Roles link located under the Security section of the navigation
sidebar.

3. Scroll down to the User Group Services panel and click the Add new link.

4. Create a new user group service named “cert-ugs” and fill out the settings form as follows:

• Set Password encryption to “Empty” since users will not authenticate via password.

• Set Password policy to “default”.

5. Save

6. Back on the Users, Groups, and Roles page click the cert-ugs link.

7. Select the Users tab and click the Add new user link.

8. Add a new user named “rod” the and assign the ROLE_ADMINISTRATOR role.

9. Save.

10. Click the Authentication link located under the Security section of the navigation sidebar.

11. Scroll down to the Authentication Filters panel and click the Add new link.

16.9. Tutorials 567

GeoServer User Manual, Release 2.5.x

568 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 569

GeoServer User Manual, Release 2.5.x

12. Click the X.509 link and fill out settings form as follows:

• Set Name to “cert”

• Set Role source to “User group service” and set the associated drop down to “cert-ugs”

13. Save.

14. Back on the authentication page scroll down to the Filter Chains panel.

15. Select “Web UI” from the Request type drop down.

16. Select the digest filter and position it after the anonymous filter.

17. Save.

Download sample certificate files

Rather than demonstrate how to create or obtain valid certificates, which is beyond the scope of this tutorial,
sample files available as part of the spring security sample applications will be used.

Download and unpack the sample certificate files. The zip archive contains the following files:

570 Chapter 16. Security

https://github.com/SpringSource/spring-security/tree/master/samples/certificates

GeoServer User Manual, Release 2.5.x

• ca.pem is the certificate authority (CA) certificate issued by the “Spring Security Test CA” certificate
authority. This file is used to sign the server and client certificates.

• server.jks is the Java keystore containing the server certificate and private key used by Tomcat
and presented to the user during the setup of the SSL connection.

• rod.p12 contains the client certificate / key combination used to perform client authentication via
the web browser.

Configure Tomcat for SSL

1. Copy the server.jks file into the conf directory under the root of the Tomcat installation.

2. Edit the Tomcat conf/server.xml and add an SSL connector:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true"
clientAuth="true" sslProtocol="TLS"
keystoreFile="${catalina.home}/conf/server.jks"
keystoreType="JKS" keystorePass="password"
truststoreFile="${catalina.home}/conf/server.jks"
truststoreType="JKS" truststorePass="password" />

This enables SSL on port 8443.

3. Restart Tomcat.

Install the client certificate

1. In Firefox select Preferences and navigate to the Advanced panel.

2. Select the Encryption tab and click the View Certificates button.

3. On the Your Certificates panel click the Import... button and in the file browser select the
rod.p12 file.

4. When prompted enter in the password “password”.

5. Click Ok and close the Firefox preferences.

Test certificate login

1. In Firefox navigate to the GeoServer admin on port “8443” using “https”.
https://localhost:8443/geoserver/web

2. When prompted select the “rod” certificate for identification.

3. When warned about the self signed server certificate add a security exception to proceed.

The result is the rod user logged into the GeoServer admin interface.

16.9. Tutorials 571

https://localhost:8443/geoserver/web

GeoServer User Manual, Release 2.5.x

572 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 573

GeoServer User Manual, Release 2.5.x

16.9.5 Configuring J2EE Authentication

Servlet containers such as Tomcat and Jetty offer their own options for authentication. Often it is desirable
for an application such as GeoServer to use that existing authentication mechanisms rather than require its
own authentication configuration.

J2EE authentication allows GeoServer to delegate to the servlet container for authentication. This tutorial
walks through the process of setting up J2EE authentication.

Prerequisites

This tutorial requires a servlet container capable of doing its own authentication. This tutorial uses Tomcat.

Deploy GeoServer in tomcat before proceeding.

Configure the J2EE authentication filter

In order to delegate to the container for authentication a filter must first be configured to recognize the
container authentication.

1. Login to the GeoServer web admin interface as the admin user.

2. Click the Authentication link located under the Security section of the navigation sidebar.

3. Scroll down to the Authentication Filter panel and click the Add new link.

574 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

4. Create a new filter named “j2ee” and fill out the settings form as follows:

• Set the Role service to “default”

5. Save

6. Back on the authentication page scroll down to the Filter Chains panel.

7. Select “Web UI” from the Request type drop down.

8. Select the j2ee filter and position it after the anonymous filter.

9. Save.

Configure the role service

Since it is not possible to ask a J2EE container for the roles of a principal it is necessary to have all J2EE roles
enlisted in a role service. The only J2EE API GeoServer can use is:

class: javax.servlet.http.HttpServletRequest
method: boolean isUserInRole(String role)

The idea is to query all roles from the role service and test each role with the “isUserInRole” method.

This tutorial assumes a user named “admin” with password “password” and a J2EE role named “tomcat”.

16.9. Tutorials 575

GeoServer User Manual, Release 2.5.x

1. Click the Users, Groups, and Roles link located under the Security section of the navigation
sidebar.

2. Click on default to work with the role service named “default”.

3. Click on the Roles tab.

4. Click on the Add new role link.

• Set the Name to “tomcat”

5. Save

Configure Tomcat for authentication

By default Tomcat does not require authentication for web applications. In this section Tomcat will be
configured to secure GeoServer requiring a basic authentication login.

1. Shut down Tomcat.

2. Edit the conf/tomcat-users.xml under the Tomcat root directory and add a user named “admin”:

<user username="admin" password="password" roles="tomcat"/>

576 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

16.9. Tutorials 577

GeoServer User Manual, Release 2.5.x

3. Edit the GeoServer web.xml file located at webapps/geoserver/WEB-INF/web.xml under the
Tomcat root directory and add the following at the end of the file directly before the closing
</web-app> element:

<security-constraint>
<web-resource-collection>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>tomcat</role-name>
</auth-constraint>

</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>

</login-config>

4. Save web.xml and restart Tomcat.

Note: It is necessary to add all the role names specified in the web.xml to the configured role service. This
is duplicate work but there is currently no other solution.

Test J2EE login

1. Navigate to the GeoServer web admin interface. The result should be a prompt to authenticate.

2. Enter in the username “admin” and password “password”

The result should be the admin user logged into the GeoServer web admin.

16.9.6 Configuring HTTP Header Proxy Authentication

Introduction

Proxy authentication is used in multi-tier system. The user/principal authenticates at the proxy and the
proxy provides the authentication information to other services.

This tutorial shows how to configure GeoServer to accept authentication information passed by HTTP
header attribute(s). In this scenario GeoServer will do no actual authentication itself.

578 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Prerequisites

This tutorial uses the curl utility to issue HTTP request that test authentication. Install curl before proceed-
ing.

Note: Any utility that supports setting HTTP header attributes can be used in place of curl.

Configure the HTTP header filter

1. Start GeoServer and login to the web admin interface as the admin user.

2. Click the Authentication link located under the Security section of the navigation sidebar.

3. Scroll down to the Authentication Filters panel and click the Add new link.

4. Click the HTTP Header link.

5. Fill in the fields of the settings form as follows:

• Set Name to “proxy”

• Set Request header attribute to to “sdf09rt2s”

16.9. Tutorials 579

http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

580 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

• Set Role source to “User group service”

• Set the name of the user group service to “default”

Additional information about role services is here Role source and role calculation

Warning: The tutorial uses the obscure “sdf09rt2s” name for the header attribute. Why not
use “user” or “username” ?. In a proxy scenario a relationship of trust is needed between the
proxy and GeoServer. An attacker could easily send an HTTP request with an HTTP header
attribute “user” and value “admin” and operate as an administrator.
One possibility is to configure the network infrastructure preventing such requests from all
IP addresses except the IP of the proxy.
This tutorial uses a obscure header attribute name which should be a shared secret between
the proxy and GeoServer. Additionally, the use of SSL is recommended, otherwise the shared
secret is transported in plain text.

1. Save.

2. Back on the authentication page scroll down to the Filter Chains panel.

3. Select “Default” from the Request type drop down.

4. Unselect the basic filter and select the proxy filter. Position the the proxy filter before the
anonymous filter.

5. Save.

Secure OGC service requests

In order to test the authentication settings configured in the previous section a service or resource must be
first secured. The Default filter chain is the chain applied to all OGC service requests so a service security
rule must be configured.

1. From the GeoServer home page and click the Services link located under the Security section of
the navigation sidebar.

2. On the Service security page click the Add new rule link and add a catch all rule that secures all
OGC service requests requiring the ADMIN role.

3. Save.

16.9. Tutorials 581

GeoServer User Manual, Release 2.5.x

582 Chapter 16. Security

GeoServer User Manual, Release 2.5.x

Test a proxy login

1. Execute the following curl command:

curl -v -G "http://localhost:8080/geoserver/wfs?request=getcapabilities"

The result should be a 403 response signaling that access is denied. The output should look something
like the following:

* About to connect() to localhost port 8080 (#0)

* Trying ::1... connected
> GET /geoserver/wfs?request=getcapabilities HTTP/1.1
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 403 Access Denied
< Content-Type: text/html; charset=iso-8859-1
< Content-Length: 1407
< Server: Jetty(6.1.8)
<
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"/>
<title>Error 403 Access Denied</title>
</head>
...

2. Execute the same command but specify the --header option.:

curl -v --header "sdf09rt2s: admin" -G "http://localhost:8080/geoserver/wfs?request=getcapabilities"

The result should be a successful authentication and contain the normal WFS capabilities response.

16.9. Tutorials 583

GeoServer User Manual, Release 2.5.x

584 Chapter 16. Security

CHAPTER 17

Running in a Production Environment

GeoServer is geared towards many different uses, from a simple test server to the enterprise-level data
server. While many optimizations for GeoServer are set by default, here are some extra considerations to
keep in mind when running GeoServer in a production environment.

17.1 Java Considerations

17.1.1 Use Oracle JRE

Note: As of version 2.0, a Java Runtime Environment (JRE) is sufficient to run GeoServer. GeoServer no
longer requires a Java Development Kit (JDK).

GeoServer’s speed depends a lot on the chosen Java Runtime Environment (JRE). For best performance, use
Oracle JRE 6 (also known as JRE 1.6) or newer. (As of GeoServer 2.2.x, Oracle JRE 5 is no longer supported.)
JREs other than those released by Oracle may work correctly, but are generally not tested or supported.
Users report GeoServer to be working with OpenJDK, but expect reductions in 2D rendering performance.

17.1.2 Install native JAI and JAI Image I/O extensions

The Java Advanced Imaging API (JAI) is an advanced image manipulation library built by Oracle.
GeoServer requires JAI to work with coverages and leverages it for WMS output generation. By default,
GeoServer ships with the pure Java version of JAI, but for best performance, install the native JAI version
in your JDK/JRE.

In particular, installing the native JAI is important for all raster processing, which is used heavily in both
WMS and WCS to rescale, cut and reproject rasters. Installing the native JAI is also important for all raster
reading and writing, which affects both WMS and WCS. Finally, native JAI is very useful even if there
is no raster data involved, as WMS output encoding requires writing PNG/GIF/JPEG images, which are
themselves rasters.

Native extensions are available for Windows, Linux and Solaris (32 and 64 bit systems). They are, however,
not available for OS X.

Note: These installers are limited to allow adding native extensions to just one version of the JDK/JRE on
your system. If native extensions are needed on multiple versions, manually unpacking the extensions will
be necessary. See the section on Installing native JAI manually.

585

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://java.sun.com/javase/technologies/desktop/media/

GeoServer User Manual, Release 2.5.x

Note: These installers are also only able to apply the extensions to the currently used JDK/JRE. If native
extensions are needed on a different JDK/JRE than that which is currently used, it will be necessary to
uninstall the current one first, then run the setup program against the remaining JDK/JRE.

Installing native JAI on Windows

1. Go to the JAI download page and download the Windows installer for version 1.1.3. At the time of
writing only the 32 bit version of the installer is available, so if you are using a JDK, you will want to
download jai-1_1_3-lib-windows-i586-jdk.exe, and if you are using a JRE, you will want to download
jai-1_1_3-lib-windows-i586-jre.exe.

2. Run the installer and point it to the JDK/JRE install that GeoServer will use to run.

3. Go to the JAI Image I/O download page and download the Windows installer for version 1.1. At
the time of writing only the 32 bit version of the installer is available, so if you are using a JDK, you
will want to download jai_imageio-1_1-lib-windows-i586-jdk.exe, and if you are using a JRE, you will
want to download jai_imageio-1_1-lib-windows-i586-jre.exe

4. Run the installer and point it to the JDK/JRE install that GeoServer will use to run.

Installing native JAI on Linux

1. Go to the JAI download page and download the Linux installer for version 1.1.3, choosing the appro-
priate architecture:

• i586 for the 32 bit systems

• amd64 for the 64 bit ones (even if using Intel processors)

2. Copy the file into the directory containing the JDK/JRE and then run it. For example, on an Ubuntu
32 bit system:

$ sudo cp jai-1_1_3-lib-linux-i586-jdk.bin /usr/lib/jvm/java-6-sun
$ cd /usr/lib/jvm/java-6-sun
$ sudo sh jai-1_1_3-lib-linux-i586-jdk.bin
accept license
$ sudo rm jai-1_1_3-lib-linux-i586-jdk.bin

3. Go to the JAI Image I/O download page and download the Linux installer for version 1.1, choosing
the appropriate architecture:

• i586 for the 32 bit systems

• amd64 for the 64 bit ones (even if using Intel processors)

4. Copy the file into the directory containing the JDK/JRE and then run it. If you encounter difficulties,
you may need to export the environment variable _POSIX2_VERSION=199209. For example, on a
Ubuntu 32 bit Linux system:

$ sudo cp jai_imageio-1_1-lib-linux-i586-jdk.bin /usr/lib/jvm/java-6-sun
$ cd /usr/lib/jvm/java-6-sun
$ sudo su
$ export _POSIX2_VERSION=199209
$ sh jai_imageio-1_1-lib-linux-i586-jdk.bin
accept license
$ rm ./jai_imageio-1_1-lib-linux-i586-jdk.bin
$ exit

586 Chapter 17. Running in a Production Environment

http://download.java.net/media/jai/builds/release/1_1_3/
http://download.java.net/media/jai/builds/release/1_1_3/jai-1_1_3-lib-windows-i586-jdk.exe
http://download.java.net/media/jai/builds/release/1_1_3/jai-1_1_3-lib-windows-i586-jre.exe
http://download.java.net/media/jai-imageio/builds/release/1.1/
http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-lib-windows-i586-jdk.exe
http://download.java.net/media/jai-imageio/builds/release/1.1/jai_imageio-1_1-lib-windows-i586-jre.exe
http://download.java.net/media/jai/builds/release/1_1_3/
http://download.java.net/media/jai-imageio/builds/release/1.1/

GeoServer User Manual, Release 2.5.x

Installing native JAI manually

You can install the native JAI manually if you encounter problems using the above installers, or if you wish
to install the native JAI for more than one JDK/JRE.

Please refer to the GeoTools page on JAI installation for details.

GeoServer cleanup

Once the installation is complete, you may optionally remove the original JAI files from the GeoServer
instance:

jai_core-x.y.z.jar
jai_imageio-x.y.jar
jai_codec-x.y.z.jar

where x, y, and z refer to specific version numbers.

17.2 Container Considerations

Java web containers such as Tomcat or Jetty ship with configurations that allow for fast startup, but don’t
always deliver the best performance.

17.2.1 Optimize your JVM

Set the following performance settings in the Java virtual machine (JVM) for your container. These settings
are not specific to any container.

Option Description
-server Enables the server Java Virtual Machine (JVM), which compiles bytecode

much earlier and with stronger optimizations. Startup and initial calls will be
slower due to “just-in-time” (JIT) compilation taking longer, but subsequent
calls will be faster.

-Xmx256M -Xms48m Allocates extra memory to your server. By default, JVM will use only 64MB of
heap. If you’re serving just vector data, you’ll be streaming, so having more
memory won’t increase performance. If you’re serving coverages, however,
JAI will use a disk cache. -Xmx256M allocates 256MB of memory to
GeoServer (use more if you have excess memory). It is also a good idea to
configure the JAI tile cache size (see the Server Config page in the Web
Administration Interface section) so that it uses 75% of the heap (0.75).
-Xms48m will tell the virtual machine to grab a 48MB heap on startup, which
will make heap management more stable during heavy load serving.

-XX:SoftRefLRUPolicyMSPerMB=36000Increases the lifetime of “soft references” in GeoServer. GeoServer uses soft
references to cache datastore references and other similar requests. Making
them live longer will increase the effectiveness of the cache.

-XX:MaxPermSize=128mIncreases the maximum size of permanent generation (or “permgen”)
allocated to GeoServer to 128MB. Permgen is the heap portion where the class
bytecode is stored. GeoServer uses lots of classes, and it may exhaust that
space quickly, leading to out of memory errors. This is especially important if
you’re deploying GeoServer along with other applications in the same
container, or if you need to deploy multiple GeoServer instances inside the
same container.

-XX:+UseParallelGC Enables the throughput garbage collector.

17.2. Container Considerations 587

http://docs.geotools.org/latest/userguide/build/install/jdk.html#java-extensions-optional
http://tomcat.apache.org
http://www.mortbay.org/jetty/

GeoServer User Manual, Release 2.5.x

For more information about JVM configuration, see the article Performance tuning garbage collection in
Java.

17.3 Configuration Considerations

17.3.1 Use production logging

Logging may visibly affect the performance of your server. High logging levels are often necessary to track
down issues, but by default you should run with low levels. (You can switch the logging levels while
GeoServer is running.)

You can change the logging level in the Web Administration Interface. You’ll want to choose the PRODUC-
TION logging configuration.

17.3.2 Set a service strategy

A service strategy is the method in which output is served to the client. This is a balance between proper
form (being absolutely sure of reporting errors with the proper OGC codes, etc) and speed (serving output
as quickly as possible). This is a decision to be made based on the function that GeoServer is providing.
You can configure the service strategy by modifying the web.xml file of your GeoServer instance.

The possible strategies are:

Strategy Description
SPEED Serves output right away. This is the fastest strategy, but proper OGC errors are usually

omitted.
BUFFER Stores the whole result in memory, and then serves it after the output is complete. This

ensures proper OGC error reporting, but delays the response quite a bit and can exhaust
memory if the response is large.

FILE Similar to BUFFER, but stores the whole result in a file instead of in memory. Slower than
BUFFER, but ensures there won’t be memory issues.

PARTIAL-BUFFERA balance between BUFFER and SPEED, this strategy tries to buffer in memory a few KB
of response, then serves the full output.

17.3.3 Personalize your server

This is isn’t a performance consideration, but is just as important. In order to make GeoServer as useful
as possible, you should customize the server’s metadata to your organization. It may be tempting to skip
some of the configuration steps, and leave in the same keywords and abstract as the sample, but this will
only confuse potential users.

Suggestions:

• Fill out the WFS, WMS, and WCS Contents sections (this info will be broadcast as part of the capabil-
ities documents)

• Serve your data with your own namespace (and provide a correct URI)

• Remove default layers (such as topp:states)

588 Chapter 17. Running in a Production Environment

http://www.petefreitag.com/articles/gctuning/
http://www.petefreitag.com/articles/gctuning/

GeoServer User Manual, Release 2.5.x

17.3.4 Configure service limits

Make sure clients cannot request an inordinate amount of resources from your server.

In particular:

• Set the maximum amount of features returned by each WFS GetFeature request (this can also be set
on a per featuretype basis by modifying the info.xml files directly)

• Set the WMS request limits so that no request will consume too much memory or too much time

17.3.5 Set security

GeoServer includes support for WFS-T (transactions) by default, which lets users modify your data. If you
don’t want your database modified, you can turn off transactions in the the Web Administration Interface. Set
the Service Level to Basic.

If you’d like some users to be able to modify some but not all of your data, you will have to set up an
external security service. An easy way to accomplish this is to run two GeoServer instances and configure
them differently, and use authentication to only allow certain users to have access.

For extra security, make sure that the connection to the datastore that is open to all is through a user who has
read-only permissions. This will eliminate the possibility of a SQL injection (though GeoServer is generally
not vulnerable to that sort of attack).

17.3.6 Cache your data

Server-side caching of WMS tiles is the best way to increase performance. In caching, pre-rendered tiles will
be saved, eliminating the need for redundant WMS calls. There are several ways to set up WMS caching for
GeoServer. GeoWebCache is the simplest method, as it comes bundled with GeoServer. (See the section on
Caching with GeoWebCache for more details.) Another option is TileCache. You can also use a more generic
caching system, such as OSCache (an embedded cache service) or Squid (a web cache proxy).

17.3.7 Disable the GeoServer web administration interface

In some circumstances, you might want to completely disable the web administration interface. There are
two ways of doing this:

• Set the Java system property GEOSERVER_CONSOLE_DISABLED to true by adding -
DGEOSERVER_CONSOLE_DISABLED=true to your container’s JVM options

• Remove all of the web*-.jar files from WEB-INF/lib

17.4 Data Considerations

17.4.1 Use an external data directory

GeoServer comes with a built-in data directory. However, it is a good idea to separate the data from the
application. Using an external data directory allows for much easier upgrades, since there is no risk of
configuration information being overwritten. An external data directory also makes it easy to transfer
your configuration elsewhere if desired. To point to an external data directory, you only need to edit the
web.xml file. If you are new to GeoServer, you can copy (or just move) the data directory that comes with
GeoServer to another location.

17.4. Data Considerations 589

http://tilecache.org
http://www.opensymphony.com/oscache/
http://www.squid-cache.org

GeoServer User Manual, Release 2.5.x

17.4.2 Use a spatial database

Shapefiles are a very common format for geospatial data. But if you are running GeoServer in a production
environment, it is better to use a spatial database such as PostGIS. This is essential if doing transactions
(WFS-T). Most spatial databases provide shapefile conversion tools. Although there are many options for
spatial databases (see the section on Working with Databases), PostGIS is recommended. Oracle, DB2, and
ArcSDE are also supported.

17.4.3 Pick the best performing coverage formats

There are very significant differences between performance of the various coverage formats.

Serving big coverage data sets with good performance requires some knowledge and tuning, since usually
data is set up for distribution and archival. The following tips try to provide you with a base knowledge of
how data restructuring affects performance, and how to use the available tools to get optimal data serving
performance.

Choose the right format

The first key element is choosing the right format. Some formats are designed for data exchange, others for
data rendering and serving. A good data serving format is binary, allows for multi-resolution extraction,
and provides support for quick subset extraction at native resolutions.

Examples of such formats are GeoTiff, ECW, JPEG 2000 and MrSid. ArcGrid on the other hand is an example
of format that’s particularly ill-suited for large dataset serving (it’s text based, no multi-resolution, and we
have to read it fully even to extract a data subset in the general case).

GeoServer supports MrSID, ECW and JPEG 2000 through the GDAL Image Format plugin. MrSID is the
easiest to work with, as their reader is now available under a GeoServer compatible open source format. If
you have ECW files you have several non-ideal options. If you are only using GeoServer for educational
or non-profit purposes you can use the plugin for free. If not you need to buy a license, since it’s server
software. You could also use GDAL to convert it to MrSID or tiled GeoTiffs. If your files are JPEG 2000 you
can use the utilities of ECW and MrSID software. But the fastest is Kakadu, which requires a license.

Setup Geotiff data for fast rendering

As soon as your Geotiffs gets beyond some tens of megabytes you’ll want to add the following capabilities:

• inner tiling

• overviews

Inner tiling sets up the image layout so that it’s organized in tiles instead of simple stripes (rows). This
allows much quicker access to a certain area of the geotiff, and the Geoserver readers will leverage this by
accessing only the tiles needed to render the current display area. The following sample command instructs
gdal_translate to create a tiled geotiff.

gdal_translate -of GTiff -projwin -180 90 -50 -10 -co "TILED=YES" bigDataSet.ecw myTiff.tiff

Overviews are downsampled version of the same image, that is, a zoomed out version, which is usually
much smaller. When Geoserver needs to render the Geotiff, it’ll look for the most appropriate overview as
a starting point, thus reading and converting way less data. Overviews can be added using gdaladdo, or
the the OverviewsEmbedded command included in Geotools. Here is a sample of using gdaladdo to add
overviews that are downsampled 2, 4, 8 and 16 times compared to the original:

590 Chapter 17. Running in a Production Environment

http://www.postgis.org
http://www.gdal.org/gdal_translate.html
http://www.gdal.org/frmt_gtiff.html
http://www.gdal.org/gdaladdo.html

GeoServer User Manual, Release 2.5.x

gdaladdo -r average mytiff.tif 2 4 8 16

For more hands on information on how to use GDAL utilites along with Geoserver, have a look at the
BlueMarble data loading tutorial.

As a final note, Geotiff supports various kinds of compression, but we do suggest to not use it. Whilst it
allows for much smaller files, the decompression process is expensive and will be performed on each data
access, significantly slowing down rendering. In our experience, the decompression time is higher than the
pure disk data reading.

Handling huge data sets

If you have really huge data sets (several gigabytes), odds are that simply adding overviews and tiles does
not cut it, making intermediate resolution serving slow. This is because tiling occurs only on the native
resolution levels, and intermediate overviews are too big for quick extraction.

So, what you need is a way to have tiling on intermediate levels as well. This is supported by the Im-
agePyramid plugin.

This plugin assumes you have create various seamless image mosaics, each for a different resolution level
of the original image. In the mosaic, tiles are actual files (for more info about mosaics, see the Using the
ImageMosaic plugin). The whole pyramid structures looks like the following:

rootDirectory
+- pyramid.properties
+- 0

+- mosaic metadata files
+- mosaic_file_0.tiff
+- ...
+- mosiac_file_n.tiff

+- ...
+- 32

+- mosaic metadata files
+- mosaic_file_0.tiff
+- ...
+- mosiac_file_n.tiff

Creating a pyramid by hand can theoretically be done with gdal, but in practice it’s a daunting task that
would require some scripting, since gdal provides no “tiler” command to extract regular tiles out of an
image, nor one to create a downsampled set of tiles. As an alternative, you can use the geotools Pyra-
midBuilder tool (documentation on how to use this is pending, contact the developers if you need to use
it).

17.5 Linux init scripts

You will have to adjust the scripts to your environment. Download a script, rename it to geoserver and
move it to /etc/init.d. Use chmod to make the script executable and test with /etc/init.d/geoserver.

To set different values for environment variables, create a file /etc/default/geoserver and specify
your environment.

Example settings in /etc/default/geoserver for your environment:

USER=geoserver
GEOSERVER_DATA_DIR=/home/$USER/data_dir
GEOSERVER_HOME=/home/$USER/geoserver

17.5. Linux init scripts 591

http://geoserver.org/display/GEOSDOC/Load+NASA+Blue+Marble+Data

GeoServer User Manual, Release 2.5.x

JAVA_HOME=/usr/lib/jvm/java-6-sun
JAVA_OPTS="-Xms128m -Xmx512m"

17.5.1 Debian/Ubuntu

Download the init script

17.5.2 Suse

Download the init script

17.5.3 Starting GeoServer in Tomcat

Download the init script

17.6 Other Considerations

17.6.1 Host your application separately

GeoServer includes a few sample applications in the demo section of the Web Administration Interface. For
production instances, we recommend against this bundling of your application. To make upgrades and
troubleshooting easier, please use a separate container for your application. It is perfectly fine, though, to
use one container manager (such as Tomcat or Jetty) to host both GeoServer and your application.

17.6.2 Proxy your server

GeoServer can have the capabilities documents properly report a proxy. You can configure this in the Server
configuration section of the Web Administration Interface and entering the URL of the external proxy in the
field labeled Proxy base URL.

17.6.3 Publish your server’s capabilities documents

In order to make it easier to find your data, put a link to your capabilities document somewhere on the web.
This will ensure that a search engine will crawl and index it.

17.6.4 Set up clustering

Setting up a Cluster is one of the best ways to improve the reliability and performance of your GeoServer
installation. All the most stable and high performance GeoServer instances are configured in some sort of
cluster. There are a huge variety of techniques to configure a cluster, including at the container level, the
virtual machine level, and the physical server level.

Andrea Aime is currently working on an overview of what some of the biggest GeoServer users have done,
for his ‘GeoServer in Production’ talk at FOSS4G 2009. In time that information will be migrated to tutorials
and white papers.

592 Chapter 17. Running in a Production Environment

http://en.wikipedia.org/wiki/Cluster_(computing)

GeoServer User Manual, Release 2.5.x

17.7 Troubleshooting

17.7.1 Checking WFS requests

It often happens that users report issues with hand made WFS requests not working as expected. In the
majority of the cases the request is malformed, but GeoServer does not complain and just ignores the mal-
formed part (this behaviour is the default to make older WFS clients work fine with GeoServer).

If you want GeoServer to validate most WFS XML request you can post it to the following URL:

http://host:port/geoserver/ows?strict=true

Any deviation from the required structure will be noted in an error message. The only request type that is
not validated in any case is the INSERT one (this is a GeoServer own limitation).

17.7.2 Leveraging GeoServer own log

GeoServer can generate a quite extensive log of its operations in the
$GEOSERVER_DATA_DIR/logs/geoserver.log file. Looking into such file is one of the first things to
do when troubleshooting a problem, in particular it’s interesting to see the log contents in correspondence
of a misbehaving request. The amount of information logged can vary based on the logging profile chosen
in the Server Settings configuration page.

17.7.3 Logging service requests

GeoServer provides a request logging filter that is normally inactive. The filter can log both the requested
URL and POST requests contents. Normally it is disabled due to its overhead. If you need to have an history
of the incoming requests you can enable it by changing the geoserver/WEB-INF/web.xml contents to
look like:

<filter>
<filter-name>Request Logging Filter</filter-name>
<filter-class>org.geoserver.filters.LoggingFilter</filter-class>
<init-param>

<param-name>enabled</param-name>
<param-value>true</param-value>

</init-param>
<init-param>

<param-name>log-request-bodies</param-name>
<param-value>true</param-value>

</init-param>
</filter>

This will log both the requests and the bodies, resulting in something like the following:

08 gen 11:30:13 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?HEIGHT=330&WIDTH=660&LAYERS=nurc%3AArc_Sample&STYLES=&SRS=EPSG%3A4326&FORMAT=image%2Fjpeg&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&BBOX=-93.515625,-40.078125,138.515625,75.9375" "Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.15) Gecko/2009102815 Ubuntu/9.04 (jaunty) Firefox/3.0.15" "http://localhost:8080/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=nurc:Arc_Sample&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers"
08 gen 11:30:13 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?HEIGHT=330&WIDTH=660&LAYERS=nurc%3AArc_Sample&STYLES=&SRS=EPSG%3A4326&FORMAT=image%2Fjpeg&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&BBOX=-93.515625,-40.078125,138.515625,75.9375" took 467ms
08 gen 11:30:14 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?REQUEST=GetFeatureInfo&EXCEPTIONS=application%2Fvnd.ogc.se_xml&BBOX=-93.515625%2C-40.078125%2C138.515625%2C75.9375&X=481&Y=222&INFO_FORMAT=text%2Fhtml&QUERY_LAYERS=nurc%3AArc_Sample&FEATURE_COUNT=50&Layers=nurc%3AArc_Sample&Styles=&Srs=EPSG%3A4326&WIDTH=660&HEIGHT=330&format=image%2Fjpeg" "Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.15) Gecko/2009102815 Ubuntu/9.04 (jaunty) Firefox/3.0.15" "http://localhost:8080/geoserver/wms?service=WMS&version=1.1.0&request=GetMap&layers=nurc:Arc_Sample&styles=&bbox=-180.0,-90.0,180.0,90.0&width=660&height=330&srs=EPSG:4326&format=application/openlayers"
08 gen 11:30:14 INFO [geoserver.filters] - 127.0.0.1 "GET /geoserver/wms?REQUEST=GetFeatureInfo&EXCEPTIONS=application%2Fvnd.ogc.se_xml&BBOX=-93.515625%2C-40.078125%2C138.515625%2C75.9375&X=481&Y=222&INFO_FORMAT=text%2Fhtml&QUERY_LAYERS=nurc%3AArc_Sample&FEATURE_COUNT=50&Layers=nurc%3AArc_Sample&Styles=&Srs=EPSG%3A4326&WIDTH=660&HEIGHT=330&format=image%2Fjpeg" took 314ms

17.7.4 Using JDK tools to get stack and memory dumps

The JDK contains three useful command line tools that can be used to gather information about GeoServer
instances that are leaking memory or not performing as requested: jps, jstack and jmap.

17.7. Troubleshooting 593

GeoServer User Manual, Release 2.5.x

All tools work against a live Java Virtual Machine, the one running GeoServer in particular. In other for
them to work properly you’ll have to run them with a user that has enough privileges to connect to the JVM
process, in particular super user or the same user that’s running the JVM usually have the required right.

jps

jps is a tool listing all the Java processing running. It can be used to retried the pid (process id) of the
virtual machine that is running GeoServer. For example:

> jps -mlv

16235 org.apache.catalina.startup.Bootstrap start -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Djava.util.logging.config.file=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/conf/logging.properties -Djava.endorsed.dirs=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/endorsed -Dcatalina.base=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18 -Dcatalina.home=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18 -Djava.io.tmpdir=/home/aaime/devel/webcontainers/apache-tomcat-6.0.18/temp
11521 -XX:MinHeapFreeRatio=10 -XX:MaxHeapFreeRatio=20 -Djava.library.path=/usr/lib/jni -Dosgi.requiredJavaVersion=1.5 -XX:MaxPermSize=256m -Xms64m -Xmx1024m -XX:CMSClassUnloadingEnabled -XX:CMSPermGenSweepingEnabled -XX:+UseParNewGC
16287 sun.tools.jps.Jps -mlv -Dapplication.home=/usr/lib/jvm/java-6-sun-1.6.0.16 -Xms8m

The output shows the pid, the main class name if available, and the parameters passed to the JVM at
startup. In this example 16235 is Tomcat hosting GeoServer, 11521 is an Eclipse instance, and 16287 is
jps itself. In the common case you’ll have only few JVM and the one running GeoServer can be identified
by the parameters passed to it.

jstack

jstack is a tool extracting a the current stack trace for each thread running in the virtual machine. It can be
used to identify scalability issues and to gather what the program is actually doing.

It usually takes people knowing about the inner workings of GeoServer can properly interpret the jstack
output.

An example of usage:

> jstack -F -l 16235 > /tmp/tomcat-stack.txt
Attaching to process ID 16235, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01

And the file contents might look like:

Deadlock Detection:

No deadlocks found.

Thread 16269: (state = BLOCKED)
- java.lang.Object.wait(long) @bci=0 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$MonitorRunnable.run() @bci=10, line=565 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

Thread 16268: (state = IN_NATIVE)
- java.net.PlainSocketImpl.socketAccept(java.net.SocketImpl) @bci=0 (Interpreted frame)
- java.net.PlainSocketImpl.accept(java.net.SocketImpl) @bci=7, line=390 (Interpreted frame)
- java.net.ServerSocket.implAccept(java.net.Socket) @bci=60, line=453 (Interpreted frame)
- java.net.ServerSocket.accept() @bci=48, line=421 (Interpreted frame)
- org.apache.jk.common.ChannelSocket.accept(org.apache.jk.core.MsgContext) @bci=46, line=306 (Interpreted frame)
- org.apache.jk.common.ChannelSocket.acceptConnections() @bci=72, line=660 (Interpreted frame)

594 Chapter 17. Running in a Production Environment

http://java.sun.com/javase/6/docs/technotes/tools/share/jps.html
http://java.sun.com/javase/6/docs/technotes/tools/share/jstack.html

GeoServer User Manual, Release 2.5.x

- org.apache.jk.common.ChannelSocket$SocketAcceptor.runIt(java.lang.Object[]) @bci=4, line=870 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run() @bci=167, line=690 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

Thread 16267: (state = BLOCKED)
- java.lang.Object.wait(long) @bci=0 (Interpreted frame)
- java.lang.Object.wait() @bci=2, line=485 (Interpreted frame)
- org.apache.tomcat.util.threads.ThreadPool$ControlRunnable.run() @bci=26, line=662 (Interpreted frame)
- java.lang.Thread.run() @bci=11, line=619 (Interpreted frame)

Locked ownable synchronizers:
- None

...

jmap

jmap is a tool to gather information about the a Java virtual machine. It can be used in a few interesting
ways.

By running it without arguments (past the pid of the JVM) it will print out a dump of the native libraries
used by the JVM. This can come in handy when one wants to double check GeoServer is actually using a
certain version of a native library (e.g., GDAL):

> jmap 17251

Attaching to process ID 17251, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01
0x08048000 46K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/bin/java
0x7f87f000 6406K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSEcw.so.0
0x7f9b2000 928K /usr/lib/libstdc++.so.6.0.10
0x7faa1000 7275K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libgdal.so.1
0x800e9000 1208K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libclib_jiio.so
0x80320000 712K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSUtil.so.0
0x80343000 500K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libNCSCnet.so.0
0x8035a000 53K /lib/libgcc_s.so.1
0x8036c000 36K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libnio.so
0x803e2000 608K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libawt.so
0x80801000 101K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libgdaljni.so
0x80830000 26K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/headless/libmawt.so
0x81229000 93K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libnet.so
0xb7179000 74K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libzip.so
0xb718a000 41K /lib/tls/i686/cmov/libnss_files-2.9.so
0xb7196000 37K /lib/tls/i686/cmov/libnss_nis-2.9.so
0xb71b3000 85K /lib/tls/i686/cmov/libnsl-2.9.so
0xb71ce000 29K /lib/tls/i686/cmov/libnss_compat-2.9.so
0xb71d7000 37K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/native_threads/libhpi.so
0xb71de000 184K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libjava.so
0xb7203000 29K /lib/tls/i686/cmov/librt-2.9.so
0xb725d000 145K /lib/tls/i686/cmov/libm-2.9.so
0xb7283000 8965K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/server/libjvm.so
0xb7dc1000 1408K /lib/tls/i686/cmov/libc-2.9.so

17.7. Troubleshooting 595

http://java.sun.com/javase/6/docs/technotes/tools/share/jmap.html

GeoServer User Manual, Release 2.5.x

0xb7f24000 9K /lib/tls/i686/cmov/libdl-2.9.so
0xb7f28000 37K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/jli/libjli.so
0xb7f32000 113K /lib/tls/i686/cmov/libpthread-2.9.so
0xb7f51000 55K /usr/lib/jvm/java-6-sun-1.6.0.16/jre/lib/i386/libverify.so
0xb7f60000 114K /lib/ld-2.9.so

It’s also possible to get a quick summary of the JVM heap status:

> jmap -heap 17251

Attaching to process ID 17251, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 14.2-b01

using thread-local object allocation.
Parallel GC with 2 thread(s)

Heap Configuration:
MinHeapFreeRatio = 40
MaxHeapFreeRatio = 70
MaxHeapSize = 778043392 (742.0MB)
NewSize = 1048576 (1.0MB)
MaxNewSize = 4294901760 (4095.9375MB)
OldSize = 4194304 (4.0MB)
NewRatio = 8
SurvivorRatio = 8
PermSize = 16777216 (16.0MB)
MaxPermSize = 67108864 (64.0MB)

Heap Usage:
PS Young Generation
Eden Space:

capacity = 42401792 (40.4375MB)
used = 14401328 (13.734176635742188MB)
free = 28000464 (26.703323364257812MB)
33.96396076845054% used

From Space:
capacity = 4718592 (4.5MB)
used = 2340640 (2.232208251953125MB)
free = 2377952 (2.267791748046875MB)
49.60462782118056% used

To Space:
capacity = 4587520 (4.375MB)
used = 0 (0.0MB)
free = 4587520 (4.375MB)
0.0% used

PS Old Generation
capacity = 43188224 (41.1875MB)
used = 27294848 (26.0303955078125MB)
free = 15893376 (15.1571044921875MB)
63.19974630121396% used

PS Perm Generation
capacity = 38404096 (36.625MB)
used = 38378640 (36.60072326660156MB)
free = 25456 (0.0242767333984375MB)
99.93371540369027% used

In the result it can be seen that the JVM is allowed to use up to 742MB of memory, and that at the moment

596 Chapter 17. Running in a Production Environment

GeoServer User Manual, Release 2.5.x

the JVM is using 130MB (rough sum of the capacities of each heap section). In case of a persistent memory
leak the JVM will end up using whatever is allowed to and each section of the heap will be almost 100%
used.

To see how the memory is actually being used in a succinct way the following command can be used (on
Windows, replace head -25 with more):

> jmap -histo:live 17251 | head -25

num #instances #bytes class name
--

1: 81668 10083280 <constMethodKlass>
2: 81668 6539632 <methodKlass>
3: 79795 5904728 [C
4: 123511 5272448 <symbolKlass>
5: 7974 4538688 <constantPoolKlass>
6: 98726 3949040 org.hsqldb.DiskNode
7: 7974 3612808 <instanceKlassKlass>
8: 9676 2517160 [B
9: 6235 2465488 <constantPoolCacheKlass>
10: 10054 2303368 [I
11: 83121 1994904 java.lang.String
12: 27794 1754360 [Ljava.lang.Object;
13: 9227 868000 [Ljava.util.HashMap$Entry;
14: 8492 815232 java.lang.Class
15: 10645 710208 [S
16: 14420 576800 org.hsqldb.CachedRow
17: 1927 574480 <methodDataKlass>
18: 8937 571968 org.apache.xerces.dom.ElementNSImpl
19: 12898 561776 [[I
20: 23122 554928 java.util.HashMap$Entry
21: 16910 541120 org.apache.xerces.dom.TextImpl
22: 9898 395920 org.apache.xerces.dom.AttrNSImpl

By the dump we can see most of the memory is used by the GeoServer code itself (first 5 items) followed
by the HSQL cache holding a few rows of the EPSG database. In case of a memory leak a few object types
will hold the vast majority of the live heap. Mind, to look for a leak the dump should be gathered with
the server almost idle. If, for example, the server is under a load of GetMap requests the main memory
usage will be the byte[] holding the images while they are rendered, but that is not a leak, it’s legitimate
and temporary usage.

In case of memory leaks a developer will probably ask for a full heap dump to analyze with a high end
profiling tool. Such dump can be generated with the following command:

> jmap -dump:live,file=/tmp/dump.hprof 17251
Dumping heap to /tmp/dump.hprof ...
Heap dump file created

The dump files are generally as big as the memory used so it’s advisable to compress the resulting file
before sending it to a developer.

17.7. Troubleshooting 597

GeoServer User Manual, Release 2.5.x

598 Chapter 17. Running in a Production Environment

CHAPTER 18

Caching with GeoWebCache

GeoWebCache is a tiling server. It runs as a proxy between a map client and map server, caching (storing)
tiles as they are requested, eliminating redundant request processing and thus saving large amounts of
processing time. GeoWebCache is integrated with GeoServer, though it is also available as a standalone
product for use with other map servers.

This section will discuss the version of GeoWebCache integrated with GeoServer. For information about
the standalone product, please see the GeoWebCache homepage.

18.1 Using GeoWebCache

Note: For an more in-depth discussion of using GeoWebCache, please see the GeoWebCache documenta-
tion.

18.1.1 Direct integration with GeoServer WMS

GeoWebCache can be transparently integrated with the GeoServer WMS, and so requires no special end-
point or custom URL. In this way one can have the simplicity of a standard WMS endpoint with the perfor-
mance of a tiled client.

Although this direct integration is disabled by default, it can be enabled by going to the Caching defaults
page in the Web Administration Interface.

When this feature is enabled, GeoServer WMS will cache and retrieve tiles from GeoWebCache (via a
GetMap request) only if all of the following criteria are followed:

• WMS Direct integration is enabled (you can set this on the Caching defaults page)

• tiled=true is included in the request

• The request only references a single layer

• Caching is enabled for that layer

• The image requested is of the same height and width as the size saved in the layer configuration

• The requested CRS matches one of the available tile layer gridsets

599

http://geowebcache.org
http://geowebcache.org/docs/
http://geowebcache.org/docs/

GeoServer User Manual, Release 2.5.x

• The image requested lines up with the existing grid bounds

• A parameter is included for which there is a corresponding Parameter Filter

In addition, when direct integration is enabled, the WMS capabilities document (via a GetCapabilities re-
quest) will only return the WMS-C vendor-specific capabilities elements (such as a <TileSet> element for
each cached layer/CRS/format combination) if tiled=true is appended to the GetCapabilities request.

Note: For more information on WMS-C, please see the WMS Tiling Client Recommendation from OSGeo.

Note: GeoWebCache integration is not compatible with the OpenLayers-based Layer Preview, as the pre-
view does not usually align with the GeoWebCache layer gridset. This is because the OpenLayers appli-
cation calculates the tileorigin based on the layer’s bounding box, which is different from the gridset.
It is, possible to create an OpenLayers application that caches tiles; just make sure that the tileorigin
aligns with the gridset.

Virtual services

When direct WMS integration is enabled, GeoWebCache will properly handle requests to Virtual OWS
Services (/geoserver/<workspace>/wms?tiled=true&...).

Virtual services capabilities documents will contain <TileSet> entries only for the layers that belong to
that workspace (and global layer groups), and will be referenced by unqualified layer names (no names-
pace). For example, the layer topp:states will be referred to as <Layers>states</Layers> in-
stead of <Layers>topp:states</Layers>, and GetMap requests to the virtual services endpoint using
LAYERS=states will properly be handled.

Supported parameter filters

With direct WMS integration, the following parameter filters are supported for GetMap requests:

• ANGLE

• BGCOLOR

• BUFFER

• CQL_FILTER

• ELEVATION

• ENV

• FEATUREID

• FEATUREVERSION

• FILTER

• FORMAT_OPTIONS

• MAXFEATURES

• PALETTE

• STARTINDEX

• TIME

• VIEWPARAMS

600 Chapter 18. Caching with GeoWebCache

http://wiki.osgeo.org/wiki/WMS_Tiling_Client_Recommendation

GeoServer User Manual, Release 2.5.x

If a request is made using any of the above parameters, the request will be passed to GeoServer, unless a
parameter filter has been set up, in which case GeoWebCache will process the request.

18.1.2 GeoWebCache endpoint URL

When not using direct integration, you can point your client directly to GeoWebCache.

Warning: GeoWebCache is not a true WMS, and so the following is an oversimplification. If you
encounter errors, see the Troubleshooting page for help.

To direct your client to GeoWebCache (and thus receive cached tiles) you need to change the WMS URL.

If your application requests WMS tiles from GeoServer at this URL:

http://example.com/geoserver/wms

You can invoke the GeoWebCache WMS instead at this URL:

http://example.com/geoserver/gwc/service/wms

In other words, add /gwc/service/wms in between the path to your GeoServer instance and the WMS
call.

As soon as tiles are requested through GeoWebCache, GeoWebCache automatically starts saving them. This
means that initial requests for tiles will not be accelerated since GeoServer will still need to generate the
tiles. To automate this process of requesting tiles, you can seed the cache. See the section on Seeding and
refreshing for more details.

18.1.3 Disk quota

GeoWebCache has a built-in disk quota feature to prevent disk space from growing unbounded. You can
set the maximum size of the cache directory, poll interval, and what policy of tile removal to use when the
quota is exceeded. Tiles can be removed based on usage (“Least Frequently Used” or LFU) or timestamp
(“Least Recently Used” or LRU).

Disk quotas are turned off by default, but can be configured on the Disk Quotas page in the Web Administra-
tion Interface.

18.1.4 Integration with external mapping sites

The documentation on the GeoWebCache homepage contains examples for creating applications that inte-
grate with Google Maps, Google Earth, Bing Maps, and more.

18.1.5 Support for custom projections

The version of GeoWebCache that comes embedded in GeoServer automatically configures every layer
served in GeoServer with the two most common projections:

• EPSG:4326 (latitude/longitude)

• EPSG:900913 (Spherical Mercator, the projection used in Google Maps)

You can also set a custom CRS from any that GeoServer recognizes. See the Gridsets page for details.

18.1. Using GeoWebCache 601

http://geowebcache.org

GeoServer User Manual, Release 2.5.x

18.2 Configuration

GeoWebCache is automatically configured for use with GeoServer using the most common options, with no
setup required. All communication between GeoServer and GeoWebCache happens by passing messages
inside the JVM.

By default, all layers served by GeoServer will be known to GeoWebCache. See the Tile Layers page to test
the configuration.

Note: Version 2.2.0 of GeoServer introduced changes to the configuration of the integrated GeoWebCache.

18.2.1 Integrated user interface

GeoWebCache has a full integrated web-based configuration. See the Tile Caching section in the Web Admin-
istration Interface.

18.2.2 Determining tiled layers

In versions of GeoServer prior to 2.2.0, the GeoWebCache integration was done in a such way that every
GeoServer layer and layer group was forced to have an associated GeoWebCache tile layer. In addition,
every such tile layer was forcedly published in the EPSG:900913 and EPSG:4326 gridsets with PNG and
JPEG output formats.

It is possible to selectively turn caching on or off for any layer served through GeoServer. This setting can
be configured in the Tile Layers section of the Web Administration Interface.

18.2.3 Configuration files

It is possible to configure most aspects of cached layers through the Tile Caching section in the Web Admin-
istration Interface or the GeoWebCache REST API.

GeoWebCache keeps the configuration for each GeoServer tiled layer separately, inside the
<data_dir>/gwc-layers/ directory. There is one XML file for each tile layer. These files contain a
different syntax from the <wmsLayer> syntax in the standalone version and are not meant to be edited by
hand. Instead you can configure tile layers on the Tile Layers page or through the GeoWebCache REST API.

Configuration for the defined gridsets is saved in <data_dir>/gwc/geowebcache.xml‘ so that the
integrated GeoWebCache can continue to serve externally-defined tile layers from WMS services outside
GeoServer.

If upgrading from a version prior to 2.2.0, a migration process is run which creates a tile layer configuration
for all the available layers and layer groups in GeoServer with the old defaults. From that point on, you
should configure the tile layers on the Tile Layers page.

18.2.4 Changing the cache directory

GeoWebCache will automatically store cached tiles in a gwc directory inside your GeoServer data directory.
To set a different directory, stop GeoServer (if it is running) and add the following code to your GeoServer
web.xml file (located in the WEB-INF directory):

602 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

<context-param>
<param-name>GEOWEBCACHE_CACHE_DIR</param-name>
<param-value>C:\temp</param-value>

</context-param>

Change the path inside <param-value> to the desired cache path (such as C:\temp or /tmp). Restart
GeoServer when done.

Note: Make sure GeoServer has write access in this directory.

18.2.5 GeoWebCache with multiple GeoServer instances

For stability reasons, it is not recommended to use the embedded GeoWebCache with multiple GeoServer
instances. If you want to configure GeoWebCache as a front-end for multiple instances of GeoServer, we
recommend using the standalone GeoWebCache.

18.2.6 Geoserver Data Security

GWC Data Security is an option that can be turned on and turned off through the Caching defaults page. By
default it is turned off.

When turned on, the embedded GWC will do a data security check before calling GeoWebCache, i.e. verify
whether the user actually has access to the layer, and reject the request if this is not the case. In the case of
WMS-C requests, there is also limited support for data access limit filters, only with respect to geographic
boundaries (all other types of data access limits will be ignored). The embedded GWC will reject requests
for which the requested bounding box is (partly) inaccessible. It is only possible to request a tile within a
bounding box that is fully accessible. This behaviour is different from the regular WMS, which will filter
the data before serving it. However, if the integrated WMS/WMS-C is used, the request will be forwarded
back to WMS and give the desired result.

When using the default GeoServer security system, rules cannot combine data security with service security.
However, when using a security subsystem it may be possible to make such particular combinations. In
this case the WMS-C service inherits all security rules from the regular WMS service; while all other GWC
services will get their security from rules associated with the ‘GWC’ service itself.

18.3 Seeding and refreshing

The primary benefit to GeoWebCache is that it allows for the acceleration of normal WMS tile request
processing by eliminating the need for the tiles to be regenerated for every request. This page discusses tile
generation.

You can configure seeding processes via the Web Administration Interface. See the Tile Layers page for more
information.

18.3.1 Generating tiles

There are two ways for tiles to be generated by GeoWebCache. The first way for tiles to be generated is
during normal map viewing. In this case, tiles are cached only when they are requested from a client,
either through map browsing (such as in OpenLayers) or through manual WMS tile requests. The first
time a map view is requested it will be roughly at the same speed as a standard GeoServer WMS request.
The second and subsequent map viewings will be greatly accelerated as those tiles will have already been

18.3. Seeding and refreshing 603

http://geowebcache.org

GeoServer User Manual, Release 2.5.x

generated. The main advantage to this method is that it requires no preprocessing, and that only the data
that has been requested will be cached, thus potentially saving disk space as well. The disadvantage to this
method is that map viewing will be only intermittently accelerated, reducing the quality of user experience.

The other way for tiles to be generated is by seeding. Seeding is the process where map tiles are generated
and cached internally from GeoWebCache. When processed in advance, the user experience is greatly
enhanced, as the user never has to wait for tiles to be generated. The disadvantage to this process is that
seeding can be a very time- and disk-consuming process.

In practice, a combination of both methods are usually used, with certain zoom levels (or certain areas of
zoom levels) seeded, and the less-likely-viewed tiles are left uncached.

18.4 HTTP Response Headers

The GeoWebCache integrated with GeoServer employs special information stored in the header of re-
sponses. These headers are available either with direct calls to the GeoWebCache endpoint or with direct
WMS integration.

18.4.1 Custom response headers

GeoWebCache returns both standard and custom HTTP response headers when serving a tile request. This
aids in the debugging process, as well as adhering to an HTTP 1.1 transfer control mechanism.

The response headers can be determined via a utility such as cURL.

Example

Note: For all cURL commands below, make sure to replace >/dev/null with >nul if you are running on
Windows.

This is a sample request and response using cURL:

curl -v "http://localhost:8080/geoserver/gwc/service/wms?LAYERS=sde%3Abmworld&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&STYLES=&SRS=EPSG%3A4326&BBOX=-180,-38,-52,90&WIDTH=256&HEIGHT=256&tiled=true" > /dev/null

< HTTP/1.1 200 OK
< geowebcache-tile-index: [0, 1, 2]
< geowebcache-cache-result: HIT
< geowebcache-tile-index: [0, 1, 2]
< geowebcache-tile-bounds: -180.0,-38.0,-52.0,90.0
< geowebcache-gridset: GlobalCRS84Pixel
< geowebcache-crs: EPSG:4326
< Content-Type: image/png
< Content-Length: 102860
< Server: Jetty(6.1.8)

From this, one can learn that the tile was found in the cache (HIT), the requested tile was from the gridset
called GlobalCRS84Pixel and had a CRS of EPSG:4326.

List of custom response headers

The following is the full list of custom response headers. Whenever GeoWebCache serves a tile request, it
will write some or all of the following custom headers on the HTTP response.

604 Chapter 18. Caching with GeoWebCache

http://curl.haxx.se

GeoServer User Manual, Release 2.5.x

Response Header Description
geowebcache-cache-result Shows whether the GeoWebCache WMS was used.

Options are:
• HIT: Tile requested was found on the cache
• MISS: Tile was not found on the cache but

was acquired from the layer’s data source
• WMS: Request was proxied directly to the ori-

gin WMS (for example, for GetFeatureInfo re-
quests)

• OTHER: Response was the default
white/transparent tile or an error occurred

geowebcache-tile-index Contains the three-dimensional tile index in x,y,z
order of the returned tile image in the correspond-
ing grid space (e.g. [1, 0, 0])

geowebcache-tile-bounds Bounds of the returned tile in the corre-
sponding coordinate reference system (e.g.
-180,-90,0,90)

geowebcache-gridset Name of the gridset the tile belongs to (see Gridsets
for more information)

geowebcache-crs Coordinate reference system code of the matching
gridset (e.g. EPSG:900913, EPSG:4326, etc).

18.4.2 Last-Modified and If-Modified-Since

Well behaved HTTP 1.1 clients and server applications can make use of Last-Modified and
If-Modified-Since HTTP control mechanisms to know when locally cached content is up to date, elim-
inating the need to download the same content again. This can result in considerable bandwidth savings.
(See HTTP 1.1 RFC 2616, sections 14.29 and 14.25, for more information on these mechanisms.)

GeoWebCache will write a Last-Modified HTTP response header when serving a tile image. The date is
written as an RFC-1123 HTTP-Date:

Last-Modified: Wed, 15 Nov 1995 04:58:08 GMT

Clients connecting to GeoWebCache can create a “conditional GET” request with the
If-Modified-Since request header. If the tile wasn’t modified after the date specified in the
Last-Modified response header, GeoWebCache will return a 304 status code indicating that the
resource was available and not modified.

Example

A query for a specific tile returns the Last-Modified response header:

curl -v "http://localhost:8080/geoserver/gwc/service/wms?LAYERS=img%20states&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&STYLES=&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&BBOX=-135,45,-90,90&WIDTH=256&HEIGHT=256" >/dev/null

> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
...
< Last-Modified: Wed, 25 Jul 2012 00:42:00 GMT
< Content-Type: image/png
< Content-Length: 31192

18.4. HTTP Response Headers 605

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

GeoServer User Manual, Release 2.5.x

This request has the If-Modified-Since header set to one second after what was returned by
Last-Modified:

curl --header "If-Modified-Since: Wed, 25 Jul 2012 00:42:01 GMT" -v "http://localhost:8080/geoserver/gwc/service/wms?LAYERS=img%20states&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&STYLES=&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&BBOX=-135,45,-90,90&WIDTH=256&HEIGHT=256" >/dev/null

> Host: localhost:8080
> Accept: */*
> If-Modified-Since: Wed, 25 Jul 2012 00:42:01 GMT
>
< HTTP/1.1 304 Not Modified
< Last-Modified: Wed, 25 Jul 2012 00:42:00 GMT
< Content-Type: image/png
< Content-Length: 31192

The response code is 304. As the file hasn’t been modified since the time specified in the request, no content
is actually transferred. The client is informed that its copy of the tile is up to date.

However, if you were to set the If-Modified-Since header to before the time stored in Last-Modified,
you will instead receive a 200 status code and the tile will be downloaded.

This example sets the If-Modified-Since header to one second before what was returned by
Last-Modified:

curl --header "If-Modified-Since: Wed, 25 Jul 2012 00:41:59 GMT" -v "http://localhost:8080/geoserver/gwc/service/wms?LAYERS=img%20states&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&STYLES=&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A4326&BBOX=-135,45,-90,90&WIDTH=256&HEIGHT=256" >/dev/null

> Host: localhost:8080
> Accept: */*
> If-Modified-Since: Wed, 25 Jul 2012 00:41:59 GMT
>
< HTTP/1.1 200 OK
...
< Last-Modified: Wed, 25 Jul 2012 00:42:00 GMT
< Content-Type: image/png
< Content-Length: 31192

18.5 GeoWebCache REST API

This section discusses the GeoWebCache REST API, an interface for working programmatically with the
integrated GeoWebCache without the need for a GUI.

The GeoWebCache REST endpoint when integrated with GeoServer is available at:

<GEOSERVER_HOME>/gwc/rest/

For example:

http://example.com:8080/geoserver/gwc/rest/

18.5.1 Managing Layers

The GeoWebCache REST API provides a RESTful interface through which users can add, modify, or remove
cached layers.

Note: JSON is not recommended for managing layers as the JSON library has a number of issues with
multi-valued properties such as “parameterFilters”.

606 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

Layer list

URL: /gwc/rest/seed/layers.xml

Method Action Return Code Formats
GET Return the list of available layers 200 XML
POST 400
PUT 400
DELETE 400

The following example will request a full list of layers:

curl -u admin:geoserver "http://localhost:8080/geoserver/gwc/rest/layers"

<layers>
<layer>
<name>img states</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/gwc/rest/layers/img+states.xml" type="text/xml"/>

</layer>
<layer>
<name>raster test layer</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/gwc/rest/layers/raster+test+layer.xml" type="text/xml"/>

</layer>
<layer>
<name>topp:states</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/gwc/rest/layers/topp%3Astates.xml" type="text/xml"/>

</layer>
</layers>

Layer Operations

URL: /gwc/rest/seed/layers/<layer>.xml

Note: JSON is not recommended for managing layers as the JSON library has a number of issues with
multi-valued properties such as “parameterFilters”.

Method Action Return Code Formats
GET Return the XML representation of the layer 200 XML
POST Modify the definition/configuration of the layer 200 XML
PUT Add a new layer 200 XML
DELETE Delete the layer 200

Note: There are two different representations for cached layers, depending on whether the tile
layer is created from the GeoServer WMS layer or layer group (GeoServerLayer), or is configured
in geowebcache.xml as a regular GWC layer (wmsLayer). A GeoServer layer is referred to as a
GeoServerLayer and contains no image data source information such as origin WMS URL.

Representations:

• GeoWebCache (wmsLayer) XML minimal

• GeoWebCache (wmsLayer) XML

• GeoServer (GeoServerLayer) XML minimal

• GeoServer (GeoServerLayer) XML

The examples below use the cURL tool, though the examples apply to any HTTP-capable tool or library.

18.5. GeoWebCache REST API 607

http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

Adding a GeoWebCache layer

The following example will add a new layer to GeoWebCache:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d @layer.xml "http://localhost:8080/geoserver/gwc/rest/layers/newlayer.xml"

The layer.xml file is defined as the following:

<wmsLayer>
<name>newlayer</name>
<mimeFormats>
<string>image/png</string>

</mimeFormats>
<gridSubsets>
<gridSubset>

<gridSetName>EPSG:900913</gridSetName>
</gridSubset>

</gridSubsets>
<wmsUrl>
<string>http://localhost:8080/geoserver/wms</string>

</wmsUrl>
<wmsLayers>topp:states</wmsLayers>

</wmsLayer>

Note: The addressed resource (newlayer in this example) must match the name of the layer in the XML
representation.

Adding a GeoServer layer

The following example will add a new layer to both GeoServer and GeoWebCache:

curl -v -u admin:geoserver -XPUT -H "Content-type: text/xml" -d @poi.xml "http://localhost:8080/geoserver/gwc/rest/layers/tiger:poi.xml"

The poi.xml file is defined as the following:

<GeoServerLayer>
<id>LayerInfoImpl--570ae188:124761b8d78:-7fd0</id>
<enabled>true</enabled>
<name>tiger:poi</name>
<mimeFormats>
<string>image/png8</string>

</mimeFormats>
<gridSubsets>
<gridSubset>

<gridSetName>GoogleCRS84Quad</gridSetName>
<zoomStart>0</zoomStart>
<zoomStop>14</zoomStop>
<minCachedLevel>1</minCachedLevel>
<maxCachedLevel>9</maxCachedLevel>

</gridSubset>
</gridSubsets>
<metaWidthHeight>
<int>4</int>
<int>4</int>

</metaWidthHeight>
<gutter>50</gutter>

608 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

<autoCacheStyles>true</autoCacheStyles>
</GeoServerLayer>

Note: The addressed resource (tiger:poi in this example) must match the name of the layer in the XML
representation, as well as the name of an existing GeoServer layer or layer group.

Modifying a layer

This example modifies the layer definition via the layer.xml file. The request adds a parameter filter and
a grid subset to the existing tiger:poi tile layer:

<GeoServerLayer>
<enabled>true</enabled>
<name>tiger:poi</name>
<mimeFormats>
<string>image/png8</string>

</mimeFormats>
<gridSubsets>
<gridSubset>

<gridSetName>GoogleCRS84Quad</gridSetName>
<zoomStart>0</zoomStart>
<zoomStop>14</zoomStop>
<minCachedLevel>1</minCachedLevel>
<maxCachedLevel>9</maxCachedLevel>

</gridSubset>
<gridSubset>

<gridSetName>EPSG:900913</gridSetName>
<extent>

<coords>
<double>-8238959.403861314</double>
<double>4969300.121476209</double>
<double>-8237812.689219721</double>
<double>4971112.167757057</double>

</coords>
</extent>

</gridSubset>
</gridSubsets>
<metaWidthHeight>
<int>4</int>
<int>4</int>

</metaWidthHeight>
<parameterFilters>
<floatParameterFilter>

<key>ELEVATION</key>
<defaultValue>0.0</defaultValue>
<values>

<float>0.0</float>
<float>1.0</float>
<float>2.0</float>
<float>3.0</float>
<float>4.0</float>

</values>
<threshold>1.0E-3</threshold>

</floatParameterFilter>
</parameterFilters>
<gutter>50</gutter>

18.5. GeoWebCache REST API 609

GeoServer User Manual, Release 2.5.x

<autoCacheStyles>true</autoCacheStyles>
</GeoServerLayer>

Instead of PUT, use the HTTP POST method instead:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d @poi.xml "http://localhost:8080/geoserver/gwc/rest/layers/tiger:poi.xml"

Deleting a layer

Deleting a GeoWebCache tile layer deletes the layer configuration as well as the layer’s disk cache. No tile
images will remain in the cache directory after deleting a tile layer.

To delete a layer, use the HTTP DELETE method against the layer resource:

curl -v -u admin:geoserver -XDELETE "http://localhost:8080/geoserver/gwc/rest/layers/newlayer.xml"

Note: If trying to delete a tile layer that is an integrated GeoServerLayer, only the GeoWebCache layer
definition will be deleted; the GeoServer definition is left untouched. To delete a layer in GeoServer, use
the GeoServer REST configuration to manipulate GeoServer resources.

On the other hand, deleting a GeoServer layer via the GeoServer REST API will automatically delete the
associated tile layer.

18.5.2 Seeding and Truncating

The GeoWebCache REST API provides a RESTful interface through which users can add or remove tiles
from the cache on a per-layer basis.

Operations

URL: /gwc/rest/seed/<layer>.<format>

Method Action Return Code Formats
GET Return the status of the seeding threads 200 JSON
POST Issue a seed or truncate task request 200 XML, JSON
PUT 405
DELETE 405

Representations:

• XML

• JSON

The examples below use the cURL tool, though the examples apply to any HTTP-capable tool or library.

Seeding

The following XML request initiates a seeding task:

curl -v -u admin:geoserver -XPOST -H "Content-type: text/xml" -d ’<seedRequest><name>nurc:Arc_Sample</name><srs><number>4326</number></srs><zoomStart>1</zoomStart><zoomStop>12</zoomStop><format>image/png</format><type>truncate</type><threadCount>2</threadCount></seedRequest>’ "http://localhost:8080/geoserver/gwc/rest/seed/nurc:Arc_Sample.xml"

610 Chapter 18. Caching with GeoWebCache

http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user ’admin’
> POST /geoserver/gwc/rest/seed/nurc:Arc_Sample.xml HTTP/1.1
> Authorization: Basic YWRtaW46Z2Vvc2VydmVy
> User-Agent: curl/7.21.3 (x86_64-pc-linux-gnu) libcurl/7.21.3 OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18
> Host: localhost:8080
> Accept: */*
> Content-type: text/xml
> Content-Length: 209
>
< HTTP/1.1 200 OK

The following is a more complete XML fragment for a seed request, including parameter filters:

<?xml version="1.0" encoding="UTF-8"?>
<seedRequest>

<name>topp:states</name>
<bounds>
<coords>

<double>-2495667.977678598</double>
<double>-2223677.196231552</double>
<double>3291070.6104286816</double>
<double>959189.3312465074</double>

</coords>
</bounds>

<!-- These are listed on http://localhost:8080/geoserver/gwc/demo -->
<gridSetId>EPSG:2163</gridSetId>
<zoomStart>0</zoomStart>
<zoomStop>2</zoomStop>
<format>image/png</format>

<!-- type can be seed, reseed, or truncate -->
<type>truncate</type>

<!-- Number of seeding threads to run in parallel.
If type == truncate only one thread will be used
regardless of this parameter -->

<threadCount>1</threadCount>
<!-- Parameter filters -->
<parameters>
<entry>

<string>STYLES</string>
<string>pophatch</string>

</entry>
<entry>

<string>CQL_FILTER</string>
<string>TOTPOP > 10000</string>

</entry>
</parameters>

</seedRequest>

Truncating

The following XML request initiates a seeding task:

18.5. GeoWebCache REST API 611

GeoServer User Manual, Release 2.5.x

curl -v -u admin:geoserver -XPOST -H "Content-type: application/json" -d "{’seedRequest’:{’name’:’topp:states’,’bounds’:{’coords’:{ ’double’:[’-124.0’,’22.0’,’66.0’,’72.0’]}},’srs’:{’number’:4326},’zoomStart’:1,’zoomStop’:12,’format’:’image\/png’,’type’:’truncate’,’threadCount’:4}}}" "http://localhost:8080/geoserver/gwc/rest/seed/nurc:Arc_Sample.json"

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected

* Connected to localhost (127.0.0.1) port 8080 (#0)

* Server auth using Basic with user ’admin’
> POST /geoserver/gwc/rest/seed/nurc:Arc_Sample.json HTTP/1.1
> Authorization: Basic YWRtaW46Z2Vvc2VydmVy
> User-Agent: curl/7.21.3 (x86_64-pc-linux-gnu) libcurl/7.21.3 OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18
> Host: localhost:8080
> Accept: */*
> Content-type: application/json
> Content-Length: 205
>
< HTTP/1.1 200 OK
< Date: Fri, 14 Oct 2011 22:09:21 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Transfer-Encoding: chunked
<

* Connection #0 to host localhost left intact

* Closing connection #0

Querying running tasks

URL: /gwc/rest/seed[/<layer>].json

Method Action Return Code Formats
GET Get the global or per layer state of running and pending tasks 200 JSON
POST 405
PUT 405
DELETE 405

Getting current state of the seeding threads

Sending a GET request to the /gwc/rest/seed.json resource returns a list of pending (scheduled) and
running tasks for all the layers.

Sending a GET request to the /gwc/rest/seed/<layer name>.json resource returns a list of pending
(scheduled) and running tasks for that specific layer.

The returned content is a JSON array of the form:

{"long-array-array":[[<long>,<long>,<long>,<long>,<long>],...]}

If there are no pending or running tasks, the returned array is empty:

{"long-array-array":[]}

The returned array of arrays contains one array per seeding/truncating task. The meaning of each long
value in each thread array is:

[tiles processed, total # of tiles to process, # of remaining tiles, Task ID, Task status]

The returned Task Status value will be one of the following:

612 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

-1 = ABORTED
0 = PENDING
1 = RUNNING
2 = DONE

The example below returns the current state of tasks for the topp:states layer:

curl -u <user>:<password> -v -XGET http://localhost:8080/geoserver/gwc/rest/seed/topp:states.json

{"long-array-array":[[17888,44739250,18319,1,1],[17744,44739250,18468,2,1],[16608,44739250,19733,3,0],[0,1000,1000,4,0]]}

In the above response, tasks 1 and 2 for the topp:states layer are running, and tasks 3 and 4 are in a
pending state waiting for an available thread.

The example below returns a list of tasks for all the layers.

curl -u <user>:<password> -XGET http://localhost:8080/geoserver/gwc/rest/seed.json

{"long-array-array":[[2240,327426,1564,2,1],[2368,327426,1477,3,1],[2272,327426,1541,4,1],[2176,327426,1611,5,1],[1056,15954794690,79320691,6,1],[1088,15954794690,76987729,7,1],[1040,15954794690,80541010,8,1],[1104,15954794690,75871965,9,1]]}

Terminating running tasks

URL: /gwc/rest/seed[/<layer>]

Method Action Return Code Formats
GET 405
POST Issue a kill running and/or pending tasks request 200
PUT 405
DELETE 405

A POST request to the /gwc/rest/seed resource terminates pending and/or running tasks for all layers.
A POST request to the /gwc/rest/seed/<layername> resource terminates pending and/or running
tasks for a specific layer.

It is possible to terminate individual or all pending and/or running tasks. Use the parameter kill_all
with one of the following values: running, pending, or all.

Note: For backward compatibility, the kill_all parameter value 1 is also accepted and is equivalent to
running.

The following request terminates all running seed and truncate tasks.

curl -v -u admin:geoserver -d "kill_all=all" "http://localhost:8080/geoserver/gwc/rest/seed"

* About to connect() to localhost port 8080 (#0)

* Trying 127.0.0.1... connected
< HTTP/1.1 200 OK
< Date: Fri, 14 Oct 2011 22:23:04 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: text/html; charset=ISO-8859-1
< Content-Length: 426
<
<html>
...

* Connection #0 to host localhost left intact

* Closing connection #0

18.5. GeoWebCache REST API 613

GeoServer User Manual, Release 2.5.x

18.5.3 Disk Quota

The GeoWebCache REST API provides a RESTful interface through which users can configure the disk
usage limits and expiration policies for a GeoWebCache instance.

Operations

URL: /gwc/rest/diskquota.<format>

Method Action Return Code Formats
GET Return the global disk quota configuration 200 XML, JSON
POST 405
PUT Modify the global disk quota configuration 200 XML, JSON
DELETE 405

Representations:

• XML

• JSON

The examples below use the cURL tool, though the examples apply to any HTTP-capable tool or library.

Retrieving the current configuration

The following returns the current disk quota configuration in XML format:

curl -u admin:geoserver -v -XGET http://localhost:8080/geoserver/gwc/rest/diskquota.xml

< HTTP/1.1 200 OK
< Date: Mon, 21 Mar 2011 13:50:49 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: text/xml; charset=ISO-8859-1
< Content-Length: 422
<
<gwcQuotaConfiguration>

<enabled>true</enabled>
<diskBlockSize>2048</diskBlockSize>
<cacheCleanUpFrequency>5</cacheCleanUpFrequency>
<cacheCleanUpUnits>SECONDS</cacheCleanUpUnits>
<maxConcurrentCleanUps>5</maxConcurrentCleanUps>
<globalExpirationPolicyName>LRU</globalExpirationPolicyName>
<globalQuota>
<value>100</value>
<units>MiB</units>

</globalQuota>
<layerQuotas/>

</gwcQuotaConfiguration>

The following returns the current disk quota configuration in JSON format:

curl -u admin:geoserver -v -XGET http://localhost:8080/geoserver/gwc/rest/diskquota.json

< HTTP/1.1 200 OK
< Date: Mon, 21 Mar 2011 13:53:42 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: application/json; charset=ISO-8859-1
< Content-Length: 241

614 Chapter 18. Caching with GeoWebCache

http://curl.haxx.se/

GeoServer User Manual, Release 2.5.x

<

* Connection #0 to host localhost left intact

* Closing connection #0
{"gwcQuotaConfiguration":{"diskBlockSize":2048,"enabled":true,"maxConcurrentCleanUps":5,"cacheCleanUpFrequency":5,"globalExpirationPolicyName":"LRU","globalQuota":{"value":"100","units":"MiB"},"cacheCleanUpUnits":"SECONDS"}}

Changing configuration

Note: The request body for PUT should contain only the desired properties to be modified. For example,
the following will only change the maxConcurrentCleanups property in XML format:

<gwcQuotaConfiguration><maxConcurrentCleanUps>2</maxConcurrentCleanUps></gwcQuotaConfiguration>

The following will only change the diskBlockSize, enabled, and globalQuota properties in JSON format:

{"gwcQuotaConfiguration":{"diskBlockSize":2048,"enabled":true,"globalQuota":{"value":"100","units":"MiB"}}

The following XML example successfully enables the quota and sets the globalQuota size:

curl -v -u admin:geoserver "http://localhost:8090/geoserver/gwc/rest/diskquota.xml" -X PUT -d "<gwcQuotaConfiguration><enabled>true</enabled><globalQuota><value>100</value><units>GiB</units></globalQuota></gwcQuotaConfiguration>"

< HTTP/1.1 200 OK
< Date: Fri, 18 Mar 2011 20:59:31 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: text/xml; charset=ISO-8859-1
< Content-Length: 422
<
<gwcQuotaConfiguration>

<enabled>true</enabled>
<diskBlockSize>2048</diskBlockSize>
<cacheCleanUpFrequency>5</cacheCleanUpFrequency>
<cacheCleanUpUnits>SECONDS</cacheCleanUpUnits>
<maxConcurrentCleanUps>5</maxConcurrentCleanUps>
<globalExpirationPolicyName>LFU</globalExpirationPolicyName>
<globalQuota>
<value>100</value>
<units>GiB</units>

</globalQuota>
<layerQuotas/>

</gwcQuotaConfiguration>

The following JSON example changes the globalQuote and expirationPolicyName parameters:

curl -v -u admin:geoserver "http://localhost:8090/geoserver/gwc/rest/diskquota.json" -X PUT -d "{"gwcQuotaConfiguration":{"globalQuota":{"value":"100","units":"MiB"},"globalExpirationPolicyName":"LRU"}}"

< HTTP/1.1 200 OK
< Date: Fri, 18 Mar 2011 21:02:20 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: application/json; charset=ISO-8859-1
< Content-Length: 241
<

* Connection #0 to host localhost left intact

* Closing connection #0
{"gwcQuotaConfiguration":{"diskBlockSize":2048,"enabled":true,"maxConcurrentCleanUps":5,"cacheCleanUpFrequency":5,"globalExpirationPolicyName":"LRU","globalQuota":{"value":"100","units":"MiB"},"cacheCleanUpUnits":"SECONDS","layerQuotas":[]}}

The following invalid XML example has an invalid parameter (maxConcurrentCleanUps must be > 0). It
returns a 400 response code and contains an error message as plain text:

18.5. GeoWebCache REST API 615

GeoServer User Manual, Release 2.5.x

curl -v -u admin:geoserver "http://localhost:8090/geoserver/gwc/rest/diskquota.xml" -X PUT -d "<gwcQuotaConfiguration><maxConcurrentCleanUps>-1</maxConcurrentCleanUps></gwcQuotaConfiguration>"

< HTTP/1.1 400 Bad Request
< Date: Fri, 18 Mar 2011 20:53:26 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: text/plain; charset=ISO-8859-1
< Content-Length: 53
<

* Connection #0 to host localhost left intact

* Closing connection #0
maxConcurrentCleanUps shall be a positive integer: -1

The following invalid JSON example uses an unknown unit of measure (ZZiB). It returns a 400 response
code and contains an error message as plain text:

curl -v -u admin:geoserver "http://localhost:8090/geoserver/gwc/rest/diskquota.json" -X PUT -d "{"gwcQuotaConfiguration":{"globalQuota":{"value":"100","units":"ZZiB"}}}"

< HTTP/1.1 400 Bad Request
< Date: Fri, 18 Mar 2011 20:56:23 GMT
< Server: Noelios-Restlet-Engine/1.0..8
< Content-Type: text/plain; charset=ISO-8859-1
< Content-Length: 601
<
No enum const class org.geowebcache.diskquota.storage.StorageUnit.ZZiB : No enum const class org.geowebcache.diskquota.storage.StorageUnit.ZZiB
---- Debugging information ----
message : No enum const class org.geowebcache.diskquota.storage.StorageUnit.ZZiB
cause-exception : java.lang.IllegalArgumentException
cause-message : No enum const class org.geowebcache.diskquota.storage.StorageUnit.ZZiB
class : org.geowebcache.diskquota.DiskQuotaConfig
required-type : org.geowebcache.diskquota.storage.Quota
line number : -1

* Connection #0 to host localhost left intact

* Closing connection #0

18.6 Troubleshooting

This section will discuss some common issues with the integrated GeoWebCache and their solutions.

18.6.1 Grid misalignment

Sometimes errors will occur when requesting data from GeoWebCache endpoints. The error displayed
might say that the “resolution is not supported” or the “bounds do not align.” This is due to the client
making WMS requests that do not align with the grid of tiles that GeoWebCache has created, such as
differing map bounds or layer bounds, or an unsupported resolution. If you are using OpenLayers as a
client, looking at the source code of the included demos may provide more clues to matching up the grid.

An alternative workaround is to enable direct WMS integration with the GeoServer WMS. You can set this
on the Caching defaults page.

18.6.2 Direct WMS integration

Direct integration allows WMS requests served through GeoServer to be cached as if they were received
and processed by GeoWebCache. With Direct WMS Integration, a request may either be handled by the

616 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

GeoServer WMS or GeoWebCache WMS.

Sometimes requests that should go to GeoWebCache will instead be passed through to GeoServer, resulting
in no tiles saved. That said, it is possible to determine why a request was not handled by GeoWebCache
when intended. This is done by using the command-line utility cURL and inspecting the response headers.

First, obtain a sample request. This can easily be done by going to the Layer Preview for a given layer,
setting the Tiled parameter to Tiled, then right-clicking on an area of the map and copy the full path to the
image location. If done correctly, the result will be a GET request that looks something like this:

http://localhost:8090/geoserver/nurc/wms?LAYERS=nurc%3AArc_Sample&STYLES=&FORMAT=image%2Fjpeg&TILED=true&TILESORIGIN=-180%2C-90&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-45,-45,0,0&WIDTH=256&HEIGHT=256

You can then paste this URL into a curl request:

curl -v "URL"

For example:

curl -v "http://localhost:8090/geoserver/nurc/wms?LAYERS=nurc%3AArc_Sample&STYLES=&FORMAT=image%2Fjpeg&TILED=true&TILESORIGIN=-180%2C-90&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&SRS=EPSG%3A4326&BBOX=-45,-45,0,0&WIDTH=256&HEIGHT=256"

Note: To omit the raw image output to the terminal, pipe the output to your system’s null. On Linux / OS
X, append > /dev/null to these requests, and on Windows, append > nul.

If the request doesn’t go through GeoWebCache’s WMS, a reason will be given in a custom response header.
Look for the following response headers:

• geowebcache-cache-result: Will say HIT if the GeoWebCache WMS processed the request, and
MISS otherwise.

• geowebcache-miss-reason: If the above shows as MISS, this will generated a short description
of why the request wasn’t handled by the GeoWebCache WMS.

The following are some example requests made along with the responses. These responses have been
truncated to show only the information relevant for troubleshooting.

Successful request

This request was successfully handled by the GeoWebCache WMS.

Request:

curl -v "http://localhost:8080/geoserver/topp/wms?TILED=true&LAYERS=states&FORMAT=image/png&REQUEST=GetMap&STYLES=&SRS=EPSG:4326&BBOX=-135,45,-112.5,67.5&WIDTH=256&HEIGHT=256"

Response:

< HTTP/1.1 200 OK
< Content-Type: image/png
< geowebcache-crs: EPSG:4326
...
< geowebcache-layer: topp:states
< geowebcache-gridset: EPSG:4326
< geowebcache-tile-index: [2, 6, 3]
...
< geowebcache-cache-result: HIT
< geowebcache-tile-bounds: -135.0,45.0,-112.5,67.5
...

18.6. Troubleshooting 617

http://curl.haxx.se

GeoServer User Manual, Release 2.5.x

Wrong height parameter

The following request is not handled by the GeoWebCache WMS because the image requested (256x257)
does not conform to the expected 256x256 tile size.

Request:

curl -v "http://localhost:8080/geoserver/topp/wms?TILED=true&LAYERS=states&FORMAT=image/png&REQUEST=GetMap&STYLES=&SRS=EPSG:4326&BBOX=-135,45,-112.5,67.5&WIDTH=256&HEIGHT=257"

Response:

< HTTP/1.1 200 OK
< Content-Type: image/png
< geowebcache-miss-reason: request does not align to grid(s) ’EPSG:4326’
...

No tile layer associated

The following request is not handled by the GeoWebCache WMS because the layer requested has no tile
layer configured.

Request:

curl -v "http://localhost:8080/geoserver/topp/wms?TILED=true&LAYERS=tasmania_roads&FORMAT=image/png&REQUEST=GetMap&STYLES=&SRS=EPSG:4326&BBOX=-135,45,-112.5,67.5&WIDTH=256&HEIGHT=256"

Response:

< HTTP/1.1 200 OK
< Content-Type: image/png
< geowebcache-miss-reason: not a tile layer
...

Missing parameter filter

The following request is not handled by the GeoWebCache WMS because the request contains a parameter
filter (BGCOLOR) that is not configured for this layer.

Request:

curl -v "http://localhost:8080/geoserver/topp/wms?BGCOLOR=0xAAAAAA&TILED=true&LAYERS=states&FORMAT=image/png&REQUEST=GetMap&STYLES=&SRS=EPSG:4326&BBOX=-135,45,-112.5,67.5&WIDTH=256&HEIGHT=256"

Response:

< HTTP/1.1 200 OK
< Content-Type: image/png
< geowebcache-miss-reason: no parameter filter exists for BGCOLOR
...

CRS not defined

The following request is not handled by the GeoWebCache WMS because the request references a CRS
(EPSG:26986) that does not match any of the tile layer gridsets:

Request:

curl -v "http://localhost:8080/geoserver/topp/wms?TILED=true&LAYERS=states&FORMAT=image/png&REQUEST=GetMap&STYLES=&SRS=EPSG:26986&BBOX=-135,45,-112.5,67.5&WIDTH=256&HEIGHT=256"

618 Chapter 18. Caching with GeoWebCache

GeoServer User Manual, Release 2.5.x

Response:

< HTTP/1.1 200 OK
< Content-Type: image/png
< geowebcache-miss-reason: no cache exists for requested CRS
...

18.6. Troubleshooting 619

GeoServer User Manual, Release 2.5.x

620 Chapter 18. Caching with GeoWebCache

CHAPTER 19

Google Earth

This section contains information on Google Earth support in GeoServer.

Google Earth is a 3-D virtual globe program. A free download from Google, it allows the user to virtually
view, pan, and fly around Earth imagery. The imagery on Google Earth is obtained from a variety of sources,
mainly from commercial satellite and aerial photography providers.

Google Earth recognizes a markup language called KML (Keyhole Markup Language) for data exchange.
GeoServer integrates with Google Earth by supporting KML as a native output format. Any data configured
to be served by GeoServer is thus able to take advantage of the full visualization capabilities of Google
Earth.

19.1 Overview

19.1.1 Why use GeoServer with Google Earth?

GeoServer is useful when one wants to put a lot of data on to Google Earth. GeoServer automatically
generates KML that can be easily and quickly served and visualized in Google Earth. GeoServer oper-
ates entirely through a Network Link, which allows it to selectively return information for the area being
viewed. With GeoServer as a robust and powerful server and Google Earth providing rich visualizations,
they are a perfect match for sharing your data.

19.1.2 Standards-based implementation

GeoServer supports Google Earth by providing KML as a Web Map Service (WMS) output format. This
means that adding data published by GeoServer is as simple as constructing a standard WMS request and
specifying “application/vnd.google-earth.kml+xml” as the outputFormat. Since generating KML is just
a WMS request, it fully supports Styling via SLD.

See the next section (Quickstart) to view GeoServer and Google Earth in action.

19.2 Quickstart

Note: If you are using GeoServer locally, the GEOSERVER_URL is usually
http://localhost:8080/geoserver

621

http://earth.google.com/
http://earth.google.com/kml/kml_intro.html
http://code.google.com/apis/kml/documentation/kml_tut.html#network_links
http://en.wikipedia.org/wiki/Web_Map_Service

GeoServer User Manual, Release 2.5.x

19.2.1 Viewing a layer

Once GeoServer is installed and running, open up a web browser and go to the web admin console (Interface
basics). Navigate to the Layer Preview by clicking on the Layer Preview link at the bottom of the left sidebar.
You will be presented with a list of the currently configured layers in your GeoServer instance. Find the
row that says topp:states. To the right of the layer click on the link that says KML.

Figure 19.1: The Map Preview page

If Google Earth is correctly installed on your computer, you will see a dialog asking how to open the file.
Select Open with Google Earth.

Figure 19.2: Open with Google Earth

When Google Earth is finished loading the result will be similar to below.

622 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Figure 19.3: The topp:states layer rendered in Google Earth

19.2.2 Direct access to KML

All of the configured FeatureTypes are available to be output as KML (and thus loaded into Google Earth).
The URL structure for KMLs is:

http://GEOSERVER_URL/wms/kml?layers=<layername>

For example, the topp:states layer URL is:

http://GEOSERVER_URL/wms/kml?layers=topp:states

19.2.3 Adding a Network Link

An alternative to serving KML directly into Google Earth is to use a Network Link. A Network Link allows
for better integration into Google Earth. For example, using a Network Link enables the user to refresh the
data within Google Earth, without having to retype a URL, or click on links in the GeoServer Map Preview
again.

To add a Network Link, pull down the Add menu, and go to Network Link. The New Network Link
dialog box will appear. Name your layer in the Name field. (This will show up in My Places on the main
Google Earth screen.) Set Link to:

http://GEOSERVER_URL/wms/kml?layers=topp:states

(Don’t forget to replace the GEOSERVER_URL.) Click OK. You can now save this layer in your My Places.

Check out the sections on Tutorials and the KML Styling for more information.

19.3 KML Styling

19.3.1 Introduction

Keyhole Markup Langauge (KML), when created and output by GeoServer, is styled using Styled Layer
Descriptors (SLD). This is the same approach used to style standard WMS output formats, but is a bit
different from how Google Earth is normally styled, behaving more like Cascading Style Sheets (CSS).

19.3. KML Styling 623

http://en.wikipedia.org/wiki/Styled_Layer_Descriptor
http://en.wikipedia.org/wiki/Styled_Layer_Descriptor

GeoServer User Manual, Release 2.5.x

Figure 19.4: Adding a network link

The style of the map is specified in the SLD file as a series of rules, and then the data matching those
rules is styled appropriately in the KML output. For those unfamiliar with SLD, a good place to start
is the Introduction to SLD. The remainder of this guide contains information about how to construct SLD
documents in order to impact the look of KML produced by GeoServer.

Contents

Basic SLD Creation Wizard

Creating SLD by hand

SLD Structure

Points

Lines

Polygons

Text Labels

Descriptions

19.3.2 Basic SLD Creation Wizard

Basic SLD styling can be accomplished with the coming GeoExt Styler. It provides a GUI to create new
styles. These styles will work seamlessly with KML output from GeoServer.

19.3.3 Creating SLD by hand

One can edit the SLD files directly instead of using the Styler GUI. For the most complete exploration of
editing SLDs see the Styling section. The examples below show how some of the basic styles show up in

624 Chapter 19. Google Earth

http://geoserver.org/display/GEOS/GeoExt+Styler

GeoServer User Manual, Release 2.5.x

Google Earth.

19.3.4 SLD Structure

The following is a skeleton of a SLD document. It can be used as a base on which to expand upon to create
more interesting and complicated styles.

<StyledLayerDescriptor version="1.0.0"
xsi:schemaLocation="http://www.opengis.net/sld StyledLayerDescriptor.xsd"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<NamedLayer>

<Name>Default Line</Name>
<UserStyle>

<Title>My Style</Title>
<Abstract>A style</Abstract>
<FeatureTypeStyle>

<Rule>

<!-- symbolizers go here -->

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Figure 3: Basic SLD structure

In order to test the code snippets in this document, create an SLD with the content as shown in Figure 3,
and then add the specific code you wish to test in the space that says <!-- symbolizers go here -->.
To view, edit, or add SLD files to GeoServer, navigate to Config -> Data -> Styles.

19.3.5 Points

In SLD, styles for points are specified via a PointSymbolizer. An empty PointSymbolizer element will result
in a default KML style:

<PointSymbolizer>
</PointSymbolizer>

Figure 19.5: Figure 4: Default point

Three aspects of points that can be specified are color, opacity, and the icon.

19.3. KML Styling 625

GeoServer User Manual, Release 2.5.x

Point Color

The color of a point is specified with a CssParameter element and a fill attribute. The color is specified
as a six digit hexadecimal code.

<PointSymbolizer>
<Graphic>

<Mark>
<Fill>

<CssParameter name="fill">#ff0000</CssParameter>
</Fill>

</Mark>
</Graphic>

</PointSymbolizer>

Figure 19.6: Figure 5: Setting the point color (#ff0000 = 100% red)

Point Opacity

The opacity of a point is specified with a CssParameter element and a fill-opacity attribute. The opac-
ity is specified as a floating point number between 0 and 1, with 0 being completely transparent, and 1
being completely opaque.

<PointSymbolizer>
<Graphic>

<Mark>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</Mark>
</Graphic>

</PointSymbolizer>

Figure 19.7: Figure 6: Setting the point opacity (0.5 = 50% opaque)

626 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Point Icon

An icon different from the default can be specified with the ExternalGraphic element:

<PointSymbolizer>
<Graphic>

<ExternalGraphic>
<OnlineResource xlink:type="simple"

xlink:href="http://maps.google.com/mapfiles/kml/pal3/icon55.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</PointSymbolizer>

Figure 19.8: Figure 7: A custom icon for points

In Figure 7, the custom icon is specified as a remote URL. It is also possible to place the graphic in the
GeoServer styles directory, and then specify the filename only:

<PointSymbolizer>
<Graphic>

<ExternalGraphic>
<OnlineResource xlink:type="simple" xlink:href="icon55.png"/>
<Format>image/png</Format>

</ExternalGraphic>
</Graphic>

</PointSymbolizer>

Figure 8: Specifying a local file for a graphic point

19.3.6 Lines

Styles for lines are specified via a LineSymbolizer. An empty LineSymbolizer element will result in
a default KML style:

<LineSymbolizer>
</LineSymbolizer>

The aspects of the resulting line which can be specified via a LineSymbolizer are color, width, and opacity.

Line Color

The color of a line is specified with a CssParameter element and a stroke attribute. The color is specified
as a six digit hexadecimal code.

19.3. KML Styling 627

GeoServer User Manual, Release 2.5.x

Figure 19.9: Figure 9: Default line

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke">#ff0000</CssParameter>
</Stroke>

</LineSymbolizer>

Figure 19.10: Figure 10: Line rendered with color #ff0000 (100% red)

Line Width

The width of a line is specified with a CssParameter element and a stroke-width attribute. The width
is specified as an integer (in pixels):

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-width">5</CssParameter>

628 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

</Stroke>
</LineSymbolizer>

Figure 19.11: Figure 11: Line rendered with a width of five (5) pixels

Line Opacity

The opacity of a line is specified with a CssParameter element and a fill-opacity attribute. The
opacity is specified as a floating point number between 0 and 1, with 0 being completely transparent, and 1
being completely opaque.

<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-opacity">0.5</CssParameter>
</Stroke>

</LineSymbolizer>

Figure 19.12: Figure 12: A line rendered with 50% opacity

19.3. KML Styling 629

GeoServer User Manual, Release 2.5.x

19.3.7 Polygons

Styles for polygons are specified via a PolygonSymbolizer. An empty PolygonSymbolizer element
will result in a default KML style:

<PolygonSymbolizer>
</PolygonSymbolizer>

Polygons have more options for styling than points and lines, as polygons have both an inside (“fill”) and
an outline (“stroke”). The aspects of polygons that can be specified via a PolygonSymbolizer are stroke
color, stroke width, stroke opacity, fill color, and fill opacity.

Polygon Stroke Color

The outline color of a polygon is specified with a CssParameter element and stroke attribute inside of
a Stroke element. The color is specified as a 6 digit hexadecimal code:

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke">#0000FF</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 19.13: Figure 13: Outline of a polygon (#0000FF or 100% blue)

Polygon Stroke Width

The outline width of a polygon is specified with a CssParameter element and stroke-width attribute
inside of a Stroke element. The width is specified as an integer.

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke-width">5</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 14: Polygon with stroke width of five (5) pixels

630 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Polygon Stroke Opacity

The stroke opacity of a polygon is specified with a CssParameter element and stroke attribute inside
of a Stroke element. The opacity is specified as a floating point number between 0 and 1, with 0 being
completely transparent, and 1 being completely opaque.

<PolygonSymbolizer>
<Stroke>

<CssParameter name="stroke-opacity">0.5</CssParameter>
</Stroke>

</PolygonSymbolizer>

Figure 19.14: Figure 15: Polygon stroke opacity of 0.5 (50% opaque)

Polygon Fill Color

The fill color of a polygon is specified with a CssParameter element and fill attribute inside of a Fill
element. The color is specified as a six digit hexadecimal code:

19.3. KML Styling 631

GeoServer User Manual, Release 2.5.x

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill">#0000FF</CssParameter>
</Fill>

</PolygonSymbolizer>

Figure 19.15: Figure 16: Polygon fill color of #0000FF (100% blue)

Polygon Fill Opacity

The fill opacity of a polygon is specified with a CssParameter element and fill-opacity attribute
inside of a Fill element. The opacity is specified as a floating point number between 0 and 1, with 0 being
completely transparent, and 1 being completely opaque.

<PolygonSymbolizer>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</PolygonSymbolizer>

19.3.8 Text Labels

There are two ways to specify a label for a feature in Google Earth. The first is with Freemarker templates
(LINK?), and the second is with a TextSymbolizer. Templates take precedence over symbolizers.

Freemarker Templates

Specifying labels via a Freemarker template involves creating a special text file called title.ftl
and placing it into the workspaces/<ws name>/<datastore name>/<feature type name> di-
rectory (inside the GeoServer data directory) for the dataset to be labeled. For example, to
create a template to label the states dataset by state name one would create the file here:
<data_dir>/workspaces/topp/states_shapefile/states/title.ftl. The content of the file
would be:

632 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Figure 19.16: Figure 17: Polygon fill opacity of 0.5 (50% opaque)

${STATE_NAME.value}

Figure 19.17: Figure 18: Using a Freemarker template to display the value of STATE_NAME

For more information on Placemark Templates, please see our full tutorial (LINK FORTHCOMING).

TextSymbolizer

In SLD labels are specified with the Label element of a TextSymbolizer. (Note the ogc: prefix on the
PropertyName element.)

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>

</TextSymbolizer>

The aspects of the resulting label which can be specified via a TextSymbolizer are color and opacity.

19.3. KML Styling 633

GeoServer User Manual, Release 2.5.x

Figure 19.18: Figure 19: Using a TextSymbolizer to display the value of STATE_NAME

TextSymbolizer Color

The color of a label is specified with a CssParameter element and fill attribute inside of a Fill element.
The color is specified as a six digit hexadecimal code:

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>
<Fill>

<CssParameter name="fill">#000000</CssParameter>
</Fill>

</TextSymbolizer>

Figure 19.19: Figure 20: TextSymbolizer with black text color (#000000)

634 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

TextSymbolizer Opacity

The opacity of a label is specified with a CssParameter element and fill-opacity attribute inside of a
Fill element. The opacity is specified as a floating point number between 0 and 1, with 0 being completely
transparent, and 1 being completely opaque.

<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_NAME</ogc:PropertyName>
</Label>
<Fill>

<CssParameter name="fill-opacity">0.5</CssParameter>
</Fill>

</TextSymbolizer>

Figure 19.20: Figure 21: TextSymbolizer with opacity 0.5 (50% opaque)

19.3.9 Descriptions

When working with KML, each feature is linked to a description, accessible when the feature is clicked on.
By default, GeoServer creates a list of all the attributes and values for the particular feature.

It is possible to modify this default behavior. Much like with featureType titles, which are edited by creating
a title.ftl template, a custom description can be used by creating template called description.ftl
and placing it into the feature type directory (inside the GeoServer data directory) for the dataset. For
instance, to create a template to provide a description for the states dataset, one would create the file:
<data_dir>/workspaces/topp/states_shapefile/states/description.ftl. As an example,
if the content of the description template is:

This is the state of ${STATE_NAME.value}.

The resultant description will look like this:

It is also possible to create one description template for all featureTypes in a given
namespace. To do this, create a description.ftl file as above, and save it as
<data_dir>/templates/<workspace>/description.ftl. Please note that if a description
template is created for a specific featureType that also has an associated namespace description template,
the featureType template (i.e. the most specific template) will take priority.

19.3. KML Styling 635

GeoServer User Manual, Release 2.5.x

Figure 19.21: Figure 22: Default description for a feature

Figure 19.22: Figure 23: A custom description

636 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

One can also create more complex descriptions using a combination of HTML and the attributes of the data.
A full tutorial on how to use templates to create descriptions is available in our page on KML Placemark
Templates. (LINK?)

Basic SLD Creation Wizard SLD Structure Points Lines Polygons Text Labels Descriptions

19.4 Tutorials

19.4.1 KML Placemark Templates

Introduction

In KML a “Placemark” is used to mark a position on a map, often visualized with a yellow push pin. A
placemark can have a “description” which allows one to attach information to it. Placemark descriptions
are nothing more then an HTML snippet and can contain anything we want it to.

By default GeoServer produces placemark descriptions which are HTML tables describing all the attributes
available for a particular feature in a dataset. In the following image we see the placemark description for
the feature representing Idaho state:

Figure 19.23: The default placemark

This is great, but what about if one wanted some other sort of information to be conveyed in the description.
Or perhaps one does not want to show all the attributes of the dataset. The answer is Templates!!

A template is more or less a way to create some output.

Getting Started

First let us get set up. To complete the tutorial you will need the following:

• A GeoServer install

• A text editor

And thats it. For this tutorial we will assume that GeoServer is running the same configuration (data
directory) that it does out of the box.

Hello World

Ok, time to get to creating our first template. We will start off an extremely simple template which, you
guessed it, creates the placemark description “Hello World!”. So lets go.

1. Using the text editor of your choice start a new file called description.ftl

19.4. Tutorials 637

GeoServer User Manual, Release 2.5.x

2. Add the following content to the file:

Hello World!

3. Save the file in the workspaces/topp/states_shapefile/states directory of your “data di-
rectory”. The data directory is the location of all the GeoServer configuration files. It is normally
pointed to by the environment variable GEOSERVER_DATA_DIR.

4. Start GeoServer is it is not already running.

And thats it. We can now test out our template by adding the following network link in google earth:

http://localhost:8080/geoserver/wms/kml?layers=states

And voila. Your first template

Figure 19.24: Hello World template.

Refreshing Templates: One nice aspect of templates is that they are read upon every request. So one can
simply edit the template in place and have it picked up by Geoserver as soon as the file is saved. So when
after editing and saving a template simply “Refresh” the network link in Google Earth to have the new
content picked up.

Figure 19.25: Refresh Template

638 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

As stated before template descriptions are nothing more than html. Play around with description.ftl
and add some of your own html. Some examples you may want to try:

1. A simple link to the homepage of your organization:

Provided by the The Open Planning Project.

Homepage of Topp

Figure 19.26: Homepage of Topp

2. The logo of your organization:

Logo of Topp

The possibilities are endless. Now this is all great and everything but these examples are some what lacking
in that the content is static. In the next section we will create more realistic template which actually access
some the attributes of our data set.

19.4. Tutorials 639

GeoServer User Manual, Release 2.5.x

Figure 19.27: Logo of Topp

Data Content

The real power of templates is the ability to easily access content, in the case of features this content is the
attributes of features.In a KML placemark description template, there are a number of “template variables”
available.

• The variable “fid”, which corresponds to the id of the feature

• The variable “typeName”, which corresponds to the name of the type of the feature

• A sequence of variables corresponding to feature attributes, each named the same name as the at-
tribute

So with this knowledge in hand let us come up with some more examples:

Simple fid/typename access:

This is feature ${fid} of type ${typeName}.

This is a feature of 3.1 of type states.

Figure 19.28: FID

Access to the values of two attributes named STATE_NAME, and PERSONS:

This is ${STATE_NAME.value} state which has a population of ${PERSONS.value}.

ID This is Idaho state which has a population of 1.006.749.

640 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Figure 19.29: Attributes

Attribute Variables

A feature attribute a “complex object” which is made up of three parts:

1. A value, given as a default string representation of the actual attribute value feasible to be used
directly

2. A rawValue, being the actual value of the attribute, to allow for more specialized customization
(for example, ${attribute.value?string("Enabled", "Disabled")} for custom represen-
tations of boolean attributes, etc).

3. A type, each of which is accessible via ${<attribute_name>.name},
${<attribute_name>.value}, ${<attribute_name>.rawValue},
${<attribute_name>.type} respectively. The other variables: fid, and typeName and are
“simple objects” which are available directly.

WMS Demo Example

We will base our final example off the “WMS Example” demo which ships with GeoServer. To check out
the demo visit http://localhost:8080/geoserver/popup_map/index.html in your web browser.

You will notice that hovering the mouse over one of the points on the map displays an image specific to
that point. Let us replicate this with a KML placemark description.

1. In the featureTypes/DS_poi_poi directory of the geoserver data directory create the following
template:

2. Add the following network link in Google Earth:

http://localhost:8080/geoserver/wms/kml?layers=tiger:poi

Poi.4

19.4.2 Heights Templates

Introduction

Height Templates in KML allow you to use an attribute of your data as the ‘height’ of features in Google
Earth.

Note: This tutorial assumes that GeoServer is running on http://localhost:8080.

19.4. Tutorials 641

http://localhost:8080/geoserver/popup_map/index.html
http://localhost:8080

GeoServer User Manual, Release 2.5.x

Figure 19.30: WMS Example

Getting Started

For the purposes of this tutorial, you just need to have GeoServer with the release configura-
tion, and Google Earth installed. Google Earth is available for free from <http://earth.google.com/
<http://earth.google.com/>‘_.

Step One

By default GeoServer renders all features with 0 height, so they appear to lay flat on the world’s surface in
Google Earth.

To view the topp:states layer (packaged with all releases of GeoServer) in Google Earth, the easiest way
is to use a network link. In Google Earth, under Places, right-click on Temporary Places, and go to Add →
Network Link. In the dialog box, fill in topp:states as the Name, and the following URL as the Link:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&format=application/vnd.google-earth.kml+xml

Step Two

An interesting value to use for the height would be the population of each state (so that more populated
states appear taller on the map). We can do this by creating a file called height.ftl in the GeoServer
data directory under workspaces/topp/states_shapefile/states. To set the population value, we
enter the following text inside this new file:

${PERSONS.value}

This uses the value of the PERSONS attribute as the height for each feature. To admire our handiwork, we
can refresh our view by right-clicking on our temporary place (called topp:states) and selecting Refresh:

642 Chapter 19. Google Earth

http://earth.google.com/
http://earth.google.com/

GeoServer User Manual, Release 2.5.x

Figure 19.31: topp:states in Google Earth

19.4. Tutorials 643

GeoServer User Manual, Release 2.5.x

Figure 19.32: Height by Population

644 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Step Three

Looking at our population map, we see that California dwarfs the rest of the nation, and in general all of
the states are too tall for us to see the heights from a convenient angle. In order to scale things down to a
more manageable size, we can divide all height values by 100. Just change the template we wrote earlier to
read:

${PERSONS.value / 100}

Refreshing our view once again, we see that our height field has disappeared. Looking at the GeoServer
log (in the data directory under logs/geoserver.log) we see something like:

Caused by: freemarker.core.NonNumericalException: Error on line 1, column 3 in height.ftl
Expression PERSONS.value is not numerical

However, we know that the PERSONS field is numeric, even if it is declared in the shapefile as a string
value. To force a conversion, we can append ?number, like so:

${PERSONS.value?number / 100}

One final Refresh brings us to a nicely sized map of the US:

Figure 19.33: Scaled Height

19.4. Tutorials 645

GeoServer User Manual, Release 2.5.x

Step Four

There are still a couple of tweaks we can make. The default is to create a ‘solid’ look for features with
height, but Google Earth can also create floating polygons that are disconnected from the ground. To turn
off the ‘connect to ground’ functionality, add a format option called ‘extrude’ whose value is ‘false’. That
is, change the Link in the Network Link to be:

http://localhost:8080/geoserver/wms/reflect?layers=topp:states&format=application/vnd.google-earth.kml%2Bxml&format_options=extrude:false

We also have a few options for how Google Earth interprets the height field. By default, the height is
interpreted as relative to the ground, but we can also set the heights relative to sea level, or to be ignored
(useful for reverting to the ‘flat’ look without erasing your template). This is controlled with a format option
named altitudeMode, whose values are summarized below.

altitudeMode Purpose
altitudeMode Interpret height as relative to ground level
absolute Interpret height as relative to sea level
clampToGround Ignore height entirely

19.4.3 Time

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

Getting Started

For this tutorial we will using a Shapefile which contains information about the number of Internet users
in the countries of Western Europe for a rang of years.

1. Download and unzip inet_weu.zip

2. Configure GeoServer to serve the Shapefile inet_weu.zip. (A tutorial is available Publishing a Shape-
file.)

3. Add the SLD “inet_weu.sld to GeoServer. (A tutorial is available for Styling a Map)

4. Set the style of the feature type added in step 2 to the style added in step 3

Figure 19.34: Style

646 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Checking the Setup

If all is configured properly you should be able to navigate to
http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu&format=openlayers&bbox=-
33.780,26.266,21.005,56.427 and see the following map:

Figure 19.35: Setup

Creating the Template

Next we will create a template which allows us to specify the temporal aspects of the dataset. The schema
of our dataset looks like:

INET_P100n Number of internet users per 100 people
NAME Name of country
RPT_YEAR Year
Geometry Polygon representing the country

The temporal attribute is RPT_YEAR and is the one that matters to us. Ok, time to create the template.

1. In your text editor of choice, create a new text file called time.ftl.

2. Add the following text:

${RPT_YEAR.value?date(’yyyy’)}

3. Save the file to the <GEOSERVER_DATA_DIR>/workspaces/topp/inet_weu_shapefile/inet_weu
directory. Where <GEOSERVER_DATA_DIR> is the location of the “data directory” of your GeoServer
installation. Usually pointed to via the GEOSERVER_DATA_DIR environment variable.

See the ref:references section for more information about specifying a date format.

Trying it Out

Ok time to try it out.

1. Navigate to http://localhost:8080/geoserver/wms/kml?layers=inet_weu&legend=true. This should
cause Google Earth to open.

2. In Google Earth, adjust the time bar so that it captures a time interval that is approximately 1 year
wide

19.4. Tutorials 647

http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu&format=openlayers&bbox=-33.780,26.266,21.005,56.427
http://localhost:8080/geoserver/wms/kml?layers=topp:inet_weu&format=openlayers&bbox=-33.780,26.266,21.005,56.427
http://localhost:8080/geoserver/wms/kml?layers=inet_weu&legend=true

GeoServer User Manual, Release 2.5.x

Figure 19.36: Google Earth

Figure 19.37: Google Earth Time Bar

3. Slide the time bar forward in time and notice how the polygon colors change

References

Specifying a Date Format

When setting up a time template for your own dataset the most important issue is the format of your
temporal data. It may or may not be in a format in which GeoServer can read directly. You can check if
the date/time format can be used directly by GeoServer by using the following time template. This is an
example time template file (time.ftl) file without explicit formatting.

${DATETIME_ATTRIBUTE_NAME.value}

While GeoServer will try its best to parse the data there are cases in which your data is in a format which it
cannot parse. When this occurs it is necessary to explicitly specify the format. Luckily Freemarker provides
us with functionality to do just this.

Consider the date time 12:30 on January 01, 2007 specified in the following format:
01?01%2007&12$30!00. When creating the template we need to explicitly tell Freemarker the for-
mat the date time is in with the datetime function. This is an example time template file (time.ftl) file with
explicit formatting:

${DATETIME_ATTRIBUTE_NAME.value?datetime("M?d%y&H:m:s")}

The process is similar for dates (no time). The date 01?01%2007 would be specified in a template with
explicit formatting:

648 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Figure 19.38: Sliding the Time Bar

${DATETIME_ATTRIBUTE_NAME.value?date("M?d%y")}

So when must you specify the date format in this manner? The following table illustrates the date formats
that GeoServer can understand. Note that the ‘-‘ character can be one of any of the following characters: ‘/’
(forward slash), ‘ ‘ (space), ‘.’ (period), ‘,’ (comma)

Date Format Example
yyyy-MM-dd 2007-06-20
yyyy-MMM-dd 2007-Jun-20
MM-dd-yyyy 06-20-2007
MMM-dd-yyyy Jun-20-2007
dd-MM-yyyy 20-06-2007
dd-MMM-yyyy 20-Jun-2007

The set of date time formats which GeoServer can be understand is formed by appending the timestamp
formats hh:mm and hh:mm:ss to the entries in the above table:

DateTime Format Example
yyyy-MM-dd hh:mm 2007-06-20 12:30
yyyy-MMM-dd hh:mm 2007-Jun-20 12:30
yyyy-MM-dd hh:mm:ss 2007-06-20 12:30:00
yyyy-MMM-dd hh:mm:ss 2007-Jun-20 12:30:00

Warning: Setting the Timezone
Be aware that the KML output for date time formats will reflect the timezone of the java virtual machine,
which can be set using the user.timezone parameter in the startup script. For example, the following
command starts GeoServer using the Coordinated Universal Time (UTC) timezone.

exec "$_RUNJAVA" -DGEOSERVER_DATA_DIR="$GEOSERVER_DATA_DIR"
-Djava.awt.headless=true -DSTOP.PORT=8079 -Duser.timezone=UTC
-DSTOP.KEY=geoserver -jar start.jar

If the timezone is not set, it will default to the timezone of the operating system.

19.4. Tutorials 649

GeoServer User Manual, Release 2.5.x

Specifying a Date Range

In the above example a single time stamp is output for the dataset. GeoServer also supports specifying date
ranges via a template. The syntax for ranges is:

Where begin is the first date in the range, end is the last date in the range, and || is the delimiter between
the two. As an example:

Would the date range starting at January 1, 2007 and ending June 1, 2007. Date ranges can also be
open ended:

The first date specifies a date range where the beginning is open-ended. The second specifies a date range
where the end is open-ended.

19.4.4 Super-Overlays and GeoWebCache

Overview

This tutorial explains how to use GeoWebCache (GWC) to enhance the performance of super-overlays in
Google Earth. For more information please see the page on KML Super-Overlays

Conveniently GeoWebCache can generate super-overlays automatically. With the standalone GeoWeb-
Cache it takes minimal amount of configuration. Please see the GeoWebCache documentation for more
information on the standalone version of GeoWebCache.

We are going to use the plug in version of GeoWebCache where there is no configuration need. For this
tutorial we are also using the topp:states layer. Using the GeoWebCache plug in with super-overlays

To access GWC from GeoServer go to http://localhost:8080/geoserver/gwc/demo/. This should return a
layer list of similar to below.

To use a super-overlay in GeoWebCache select the KML (vector) option display for each layer. Lets select
topp:states.The url would be http://localhost:8080/geoserver/gwc/service/kml/topp:states.kml.kmz Af-
ter doing so you will be presented with a open option dialog, choose Google Earth.

650 Chapter 19. Google Earth

http://geowebcache.org
http://geowebcache.org/trac/wiki/configuration
http://localhost:8080/geoserver/gwc/demo/

GeoServer User Manual, Release 2.5.x

When Google Earth finishes loading you should be viewing a the topp:states layers.

19.5 Features

This section delves into greater detail about the various functionality and options possible with KML output
and Google Earth.

19.5.1 KML Reflector

Standard WMS requests can be quite long and cumbersome. The following is an example of a request for
KML output from GeoServer:

http://localhost:8080/geoserver/ows?service=WMS&request=GetMap&version=1.1.1&format=application/vnd.google-earth.kml+XML&width=1024&height=1024&srs=EPSG:4326&layers=topp:states&styles=population&bbox=-180,-90,180,90

GeoServer includes an alternate way of requesting KML, and that is to use the KML reflector. The KML
reflector is a simpler URL-encoded request that uses sensible defaults for many of the parameters in a
standard WMS request. Using the KML reflector one can shorten the above request to:

http://localhost:8080/geoserver/wms/kml?layers=topp:states

Using the KML reflector

The only mandatory parameter is the layers parameter. The syntax is as follows:

19.5. Features 651

GeoServer User Manual, Release 2.5.x

http://GEOSERVER_URL/wms/kml?layers=<layer>

where GEOSERVER_URL is the URL of your GeoServer instance, and <layer> is the name of the feature-
type to be served.

The following table lists the default assumptions:

Key Value
request GetMap
service wms
version 1.1.1
srs EPSG:4326
format applcation/vnd.google-earth.kmz+xml
width 2048
height 2048
bbox <layer bounds>
kmattr true
kmplacemark false
kmscore 40
styles [default style for the featuretype]

Any of these defaults can be changed when specifying the request. For instance, to specify a particular
style, one can append styles=population to the request:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&styles=population

To specify a different bounding box, append the parameter to the request:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&bbox=-124.73,24.96,-66.97,49.37

Reflector modes

The KML reflector can operate in one of three modes: refresh, superoverlay, and download.

The mode is set by appending the following parameter to the URL:

mode=<mode>

where <mode> is one of the three reflector modes. The details for each mode are as follows:

Mode Description
refresh (default for all versions except 1.7.1 through 1.7.5) Returns dynamic KML that can be

refreshed/updated by the Google Earth client. Data is refreshed and new data/imagery is
downloaded when zooming/panning stops. This mode can return either vector or raster
(placemark or overlay) The decision to return either vector or raster data is determined by
the value of kmscore. Please see the section on KML Scoring for more information.

superoverlay(default for versions 1.7.1 through 1.7.5) Returns KML as a super-overlay. A super-overlay is a
form of KML in which data is broken up into regions. Please see the section on KML
Super-Overlays for more information.

download Returns KML which contains the entire data set. In the case of a vector layer, this will
include a series of KML placemarks. With raster layers, this will include a single KML
ground overlay. This is the only mode that doesn’t dynamically request new data from the
server, and thus is self-contained KML.

652 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

More about the “superoverlay” mode

When requesting KML using the superoverlay mode, there are four additional submodes available re-
garding how and when data is requested. These options are set by appending the following parameter to
the KML reflector request:

superoverlay_mode=<submode>

where <submode> is one of the following options:

Sub-
mode

Description

auto (default) Always returns vector features if the original data is in vector form, and returns raster
imagery if the original data is in raster form. This can sometimes be less than optimal if the
geometry of the features are very complicated, which can slow down Google Earth.

raster Always returns raster imagery, regardless of the original data. This is almost always faster,
but all vector information is lost in this view.

overviewDisplays either vector or raster data depending on the view. At higher zoom levels, raster
imagery will be displayed, and at lower zoom levels, vector features will be displayed. The
determination for when to switch between vector and raster is made by the regionation
parameters set on the server. See the section on KML Regionation for more information.

hybrid Displays both raster and vector data at all times.

19.5.2 Toggling Placemarks

Vector Placemarks

When GeoServer generates KML for a vector dataset, it attaches information from the data to each feature
that is created. When clicking on a vector feature, a pop-up window is displayed. This is called a placemark.
By default this is a simple list which displays attribute data, although this information can be customized
using Freemarker templates.

If you would like this information not to be shown when a feature is clicked (either for security reasons, or
simply to have a cleaner user interface), it is possible to disable this functionality. To do so, use the kmattr
parameter in a KML request to turn off attribution.

The syntax for kmattr is as follows:

format_options=kmattr:[true|false]

Note that kmattr is a “format option”, so the syntax is slightly different from the usual key-value pair. For
example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&format_options=kmattr:false

Raster Placemarks

Unlike vector features, where the placemark is enabled by default, placemarks are disabled by default with
raster images of features. To enable this feature, you can use the kmplacemark format option in your KML
request. The syntax is similar to the kmattr format option specified above:

format_options=kmplacemark:[true|false]

For example, using the KML reflector, the syntax would be:

19.5. Features 653

GeoServer User Manual, Release 2.5.x

http://localhost:8080/geoserver/wms/kml?layers=topp:states&format_options=kmplacemark:true

19.5.3 Customizing Placemarks

KML output can leverage some powerful visualization abilities in Google Earth. Titles can be displayed
on top of the features. Descriptions (custom HTML shown when clicking on a feature) can be added
to customize the views of the attribute data. In addition, using Google Earth’s time slider, time-based
animations can be created. Finally, height of features can be set, as opposed to the default ground overlay.
All of these can be accomplished by creating Freemarker templates. Freemarker templates are text files
(with limited HTML code), saved in the GeoServer Data Directory, that utilize variables that link to specific
attributes in the data.

Titles

Specifying labels via a template involves creating a special text file called title.ftl and placing it
into the featuretypes directory inside the GeoServer Data Directory for the dataset to be labeled. For
instance, to create a template to label the states layer by state name, one would create the file:
<data_dir>/workspaces/topp/states_shapefile/states/title.ftl. The content of the file
would be:

${STATE_NAME.value}

Descriptions

When working with KML, each feature is linked to a description, accessible when the feature is clicked on.
By default, GeoServer creates a list of all the attributes and values for the particular feature.

It is possible to modify this default behavior. Much like with featuretype titles, which are edited by cre-
ating a title.ftl template, specifying descriptions via a template involves creating a special text file
called description.ftl and placing it into the featuretypes directory inside the GeoServer Data Di-
rectory for the dataset to be labeled. For instance, a sample description template would be saved here:
<data_dir>/workspaces/topp/states_shapefile/states/description.ftl. The content of
the file could be:

This is the state of ${STATE_NAME.value}.

The resulting description will look like this:

Warning: Add SS: A custom description

It is also possible to create one description template for all layers in a given namespace. To do this, create a
description.ftl file as above, and save it here:

<data_dir>/templates/<namespace>/description.ftl.

Please note that if a description template is created for a specific layer that also has an associated namespace
description template, the layer template (i.e. the most specific template) will take priority.

654 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

19.5.4 KML Height and Time

Height

GeoServer by default creates two dimensional overlays in Google Earth. However, GeoServer can output
features with height information (also called “KML extrudes”) if desired. This can have the effect of having
features “float” above the ground, or create bar graph style structures in the shape of the features. The
height of features can be linked to an attribute of the data.

Setting the height of features is determined by using a KML Freemarker template. Create a file
called height.ftl, and save it in the same directory as the featuretype in your GeoServer Data Di-
rectory. For example, to create a height template for the states layer, the file should be saved in
<data_dir>/workspaces/topp/states_shapefile/states/height.ftl.

To set the height based on an attribute, the syntax is:

${ATTRIBUTE.value}

Replace the word ATTRIBUTEwith the name of the height attribute in your data set. For a complete tutorial
on working with the height templates see Heights Templates.

Time

Google Earth also contains a “time slider”, which can allow animations of data, and show changes over
time. As with height, time can be linked to an attribute of the data, as long as the data set has a date/time
attribute. Linking this date/time attribute to the time slider in Google Earth is accomplished by creating a
Freemarker template. Create a file called time.ftl, and save it in the same directory that contains your
data’s info.xml.

To set the time based on an attribute the syntax is:

${DATETIME_ATTRIBUTE.value}

Replace the word DATETIME_ATTRIBUTE with the name of the date/time attribute. When creating KML,
GeoServer will automatically link the data to the time element in Google Earth. If set successfully, the time
slider will automatically appear.

For a full tutorial on using GeoServer with Google Earth’s time slider see Time

19.5.5 KML Legends

WMS includes a GetLegendGraphic operation which allows a WMS client to obtain a legend graphic
from the server for a particular layer. Combining the legend with KML overlays allows the legend to be
viewed inside Google Earth.

To get GeoServer to include a legend with the KML output, append legend=true to the KML reflector
request. For example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&legend=true

The resulting Google Earth output looks like this:

19.5. Features 655

GeoServer User Manual, Release 2.5.x

19.5.6 Filters

Though not specific to Google Earth, GeoServer has the ability to filter data returned from the Web Map
Service. The KML Reflector will pass through any WMS filter or cql_filter parameter to GeoServer
to constrain the response.

Note: Filters are basically a translation of a SQL “WHERE” statement into web form. Though limited to
a single table, this allows users to do logical filters like “AND” and “OR” to make very complex queries,
leveraging numerical and string comparisons, geometric operations (“bbox”, “touches”, “intersects”, “dis-
joint”), “LIKE” statements, nulls, and more.

Filter

There simplest filter is very easy to include. It is called the featureid filter, and it lets you filter to a single
feature by its ID. The syntax is:

featureid=<feature>

where <feature> is the feature and its ID. An example would be:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&featureid=states.5

This request will output only the state of Maryland. The feature IDs of your data are most easily found by
doing WFS or KML requests and examining the resulting output.

CQL Filter

Using filters in a URL can be very unwieldy, as one needs to include URL-encoded XML:

656 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

http:/localhost:8080/geoserver/wms/kml?layers=topp:states&FILTER=%3CFilter%3E%3CPropertyIsBetween%3E%3CPropertyName%3Etopp:LAND_KM%3C/PropertyName%3E%3CLowerBoundary%3E%3CLiteral%3E100000%3C/Literal%3E%3C/LowerBoundary%3E%3CUpperBoundary%3E%3CLiteral%3E150000%3C/Literal%3E%3C/UpperBoundary%3E%3C/PropertyIsBetween%3E%3C/Filter%3E

Instead, one can use Common Query Language (CQL), which allows one to specify the same statement
more succinctly:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&CQL_FILTER=LAND_KM+BETWEEN+100000+AND+150000

This query will return all the states in the US with areas between 100,000 and 150,000 km^2.

19.5.7 KML Super-Overlays

Super-overlays are a form of KML in which data is broken up into regions. This allows Google Earth to
refresh/request only particular regions of the map when the view area changes. Super-overlays are used to
efficiently publish large sets of data. (Please see Google’s page on super-overlays for more information.)

GeoServer supports two types of super-overlays: raster and vector. With raster super-overlays, GeoServer
intelligently produces imagery appropriate to the current zoom level and dynamically outputs new im-
agery when the zoom level changes. With vector super-overlays, feature data is requested for only the
visible features and new features are dynamically loaded as necessary. Raster super-overlays require less
resources on the client, but vector super-overlays have a higher output quality.

When using the KML Reflector, super-overlays are enabled by default, whether the data in question is raster
or vector. For more information on the various options for KML super-overlay output, please see the page
on the KML Reflector.

Raster Super-Overlays

Consider this image, which is generated from GeoServer. When zoomed out, the data is at a small size.

When zooming in, the image grows larger, but since the image is at low resolution (orignially designed to
be viewed small), the quality degrades.

19.5. Features 657

http://code.google.com/apis/kml/documentation/kml_21tutorial.html#superoverlays

GeoServer User Manual, Release 2.5.x

However, in a super-overlay, the KML document requests a new image from GeoServer of a higher reso-
lution for that zoom level. As the new image is downloaded, the old image is replaced by the new image.

Raster Super-Overlays and GeoWebCache

GeoServer implements super-overlays in a way that is compatible with the WMS Tiling Client Recommen-
dation. Super-overlays are generated such that the tiles of the super-overlay are the same tiles that a WMS
tiling client would request. One can therefore use existing tile caching mechanisms and reap a potentially
large performance benefit.

The easiest way to tile cache a raster super overlay is to use GeoWebCache which is built into GeoServer:

http://GEOSERVER_URL/gwc/service/kml/<layername>.<imageformat>.kmz

where GEOSERVER_URL is the URL of your GeoServer instance.

Vector Super-Overlays

GeoServer can include the feature information directly in the KML document. This has lots of benefits. It
allows the user to select (click on) features to see descriptions, toggle the display of individual features, as
well as have better rendering, regardless of zoom level. For large datasets, however, the feature information
can take a long time to download and use a lot of client-side resources. Vector super-overlays allow the
client to only download part of a dataset, and request more features as necessary.

Vector super-overlays can use the process of KML Regionation to organize features into a hierarchy. The
regionation process can operate in a variety of modes. Most of the modes require a “regionation attribute”
which is used to determine which features should be visible at a particular zoom level. Please see the KML
Regionation page for more details.

Vector Super-Overlays and GeoWebCache

As with raster super-overlays, it is possible to cache vector super-overlays using GeoWebCache. Below is
the syntax for generating a vector super-overlay KML document via GeoWebCache:

http://GEOSERVER_URL/gwc/service/kml/<layername>.kml.kmz

where GEOSERVER_URL is the URL of your GeoServer instance.

658 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

Unlike generating a super-overlay with the standard KML Reflector, it is not possible to specify the region-
ation properties as part of the URL. These parameters must be set in the Layers configuration which can be
navigated to by clicking on ‘Layers’ in the left hand sidebar and then selecting your vector layer.

19.5.8 KML Regionation

Displaying vector features on Google Earth is a very powerful way of creating nicely-styled maps. How-
ever, it is not always optimal to display all features at all times. Displaying too many features can create
an unsightly map, and can adversely affect Google Earth’s performance. To combat this, GeoServer’s KML
output includes the ability to limit features based on certain criteria. This process is known as regionation.
Regionation is active by default when using the superoverlay KML reflector mode.

Regionation Attributes

The most important aspect of regionation is to decide how to determine which features show up more
prominently than others. This can be done either by geometry, or by attribute. One should choose the
option that best exemplifies the relative “importance” of the feature. When choosing to regionate by geom-
etry, only the larger lines and polygons will be displayed at higher zoom levels, with smaller ones being
displayed when zooming in. When regionating by an attribute, the higher value of this attribute will make
those features show up at higher zoom levels. (Choosing an attribute with a non-numeric value will be
ignored, and will instead default to regionation by geometry.)

Regionation Strategies

Regionation strategies sets how to determine which features should be shown at any given time or zoom
level. There are five types of regionation strategies:

Strategy Description
best_guess (default) The actual strategy is determined by the type of data being operated on. If the

data consists of points, the random strategy is used. If the data consists of lines or
polygons, the geometry strategy is used.

external-sortingCreates a temporary auxiliary database within GeoServer. It takes slightly extra time to
build the index upon first request.

native-sortingUses the default sorting algorithm of the backend where the data is hosted. It is faster
than external-sorting, but will only work with PostGIS datastores.

geometry Externally sorts by length (if lines) or area (if polygons).
random Uses the existing order of the data and does not sort.

In most cases, the best_guess strategy is sufficient.

Setting Regionation Parameters

Regionation strategies and attributes are featuretype-specific, and therefore are set in the Layers editing
page of the Web Administration Interface. This can be navigated to by selecting ‘Layers’ on the left sidebar.

19.5.9 KML Scoring

Note: KML scoring only applies when using the super-overlay mode refresh. See KML Super-Overlays
for more information.

19.5. Features 659

GeoServer User Manual, Release 2.5.x

GeoServer can return KML in one of two forms. The first is as a number of placemark elements (vec-
tors). Each placemark corresponds to a feature in the underlying dataset. This form only applies to vector
datasets.

The second form is as an overlay (image). In this form the rendering is done by the GeoServer WMS and
only the resulting graphic is sent to Google Earth. This is the only form available for raster datasets, but
can be applied to vector datasets as well.

There are advantages to and disadvantages to each output mode when rendering vector data. Placemarks
look nicer, but there can be performance problems with Google Earth if the data set is large. Overlays put
less of a strain on Google Earth, but aren’t as nice looking.

The following shows the same dataset rendered in Placemark form on the top and Overlay form on the
bottom.

KML scoring is the process of determing whether to render features as rasters or as vectors.

660 Chapter 19. Google Earth

GeoServer User Manual, Release 2.5.x

The kmscore attribute

GeoServer makes the determination on whether to render a layer as raster or vector based on how many
features are in the data set and an attribute called kmscore. The kmscore attribute determines the maxi-
mum amount of vector features rendered. It is calculated by this formula:

maximum number of features = 10^(kmscore/15)

The following table shows the values of this threashold for various values of the kmscore parameter:

kmscore Maximum # of features
0 Force overlay/raster output
10 4
20 21
30 100
40 Approx. 450
50 (default) Approx. 2150
60 Approx. 10,000
70 Approx. 45,000
80 Approx. 200,000
90 Approx. 1,000,000
100 Force placemark/vector output

The syntax for specifying kmscore is:

kmscore=<value>

where <value> is an integer between 0 and 100. For example:

http://localhost:8080/geoserver/wms/kml?layers=topp:states&mode=refresh&kmscore=20

The kmscore attribute will be ignored if using a reflector mode other than refresh.

19.5. Features 661

GeoServer User Manual, Release 2.5.x

662 Chapter 19. Google Earth

CHAPTER 20

Extensions

Extensions are modules that add functionality to GeoServer. They are installed as add-ons to the bsae
GeoServer installation.

This section describes most of the extensions available for GeoServer. For information about extensions that
add support for additional data formats, such as ArcSDE or SQL Server, see the Working with Vector Data,
Working with Raster Data, and Working with Databases sections.

20.1 Control flow module

The control-flow module for GeoServer allows the administrator to control the amount of concurrent
requests actually executing inside the server. This kind of control is useful for a number of reasons:

• Performance: tests show that, with local data sources, the maximum throughput in GetMap requests is
achieved when allowing at most 2 times the number of CPU cores requests to run in parallel.

• Resource control: requests such as GetMap can use a significant amount of memory. The WMS request
limits allow to control the amount of memory used per request, but an OutOfMemoryError is still
possible if too many requests run in parallel. By controlling also the amount of requests executing it’s
possible to limit the total amount of memory used below the memory that was actually given to the
Java Virtual Machine.

• Fairness: a single user should not be able to overwhelm the server with a lot of requests, leaving other
users with tiny slices of the overall processing power.

The control flow method does not normally reject requests, it just queues up those in excess and executes
them late. However, it’s possible to configure the module to reject requests that have been waited in queue
for too long.

20.1.1 Rule syntax reference

The current implementation of the control flow module reads its rules from a controlflow.properties
property file located in the GeoServer data directory.

Total OWS request count

The global number of OWS requests executing in parallel can be specified with:

ows.global=<count>

663

GeoServer User Manual, Release 2.5.x

Every request in excess will be queued and executed when other requests complete leaving some free
execution slot.

Per request control

A per request type control can be demanded using the following syntax:

ows.<service>[.<request>[.<outputFormat>]]=<count>

Where:

• <service> is the OWS service in question (at the time of writing can be wms, wfs, wcs)

• <request>, optional, is the request type. For example, for the wms service it can be GetMap,
GetFeatureInfo, DescribeLayer, GetLegendGraphics, GetCapabilities

• <outputFormat>, optional, is the output format of the request. For example, for the wms GetMap
request it could be image/png, image/gif and so on

A few examples:

don’t allow more than 16 WCS requests in parallel
ows.wcs=16
don’t allow more than 8 GetMap requests in parallel
ows.wms.getmap=8
don’t allow more than 2 WFS GetFeature requests with Excel output format
ows.wfs.getfeature.application/msexcel=2

Per user control

There are two mechanisms to identify user requests. The first one is cookie based, so it will work fine for
browsers but not as much for other kinds of clients. The second one is ip based, which works for any type
of client but that can limit all the users sitting behind the same router

This avoids a single user (as identified by a cookie) to make too many requests in parallel:

user=<count>

Where <count> is the maximum number of requests a single user can execute in parallel.

The following avoids a single ip address from making too many requests in parallel:

ip=<count>

Where <count> is the maximum number of requests a single ip address can execute in parallel.

It is also possible to make this a bit more specific and throttle a single ip address instead by using the
following:

ip.<ip_addr>=<count>

Where <count> is the maximum number of requests the ip speficied in <ip_addr>will execute in parallel.

To reject requests from a list of ip addresses:

ip.blacklist=<ip_addr1>,<ip_addr2>,...

664 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Timeout

A request timeout is specified with the following syntax:

timeout=<seconds>

where <seconds> is the number of seconds a request can stay queued waiting for execution. If the request
does not enter execution before the timeout expires it will be rejected.

20.1.2 Throttling tile requests (WMS-C, TMS, WMTS)

GeoWebCache contributes three cached tiles services to GeoServer: WMS-C, TMS, and WMTS. It is also
possible to use the Control flow module to throttle them, by adding the following rule to the configuration
file:

ows.gwc=<count>

Where <count> is the maximum number of concurrent tile requests that will be delivered by GeoWeb-
Cache at any given time.

Note also that tile request are sensitive to the other rules (user based, ip based, timeout, etc).

20.1.3 A complete example

Assuming the server we want to protect has 4 cores a sample configuration could be:

if a request waits in queue for more than 60 seconds it’s not worth executing,
the client will likely have given up by then
timeout=60
don’t allow the execution of more than 100 requests total in parallel
ows.global=100
don’t allow more than 10 GetMap in parallel
ows.wms.getmap=10
don’t allow more than 4 outputs with Excel output as it’s memory bound
ows.wfs.getfeature.application/msexcel=4
don’t allow a single user to perform more than 6 requests in parallel
(6 being the Firefox default concurrency level at the time of writing)
user=6
don’t allow the execution of more than 16 tile requests in parallel
(assuming a server with 4 cores, GWC empirical tests show that throughput
peaks up at 4 x number of cores. Adjust as appropriate to your system)
ows.gwc=16

20.2 CSS Styling

The css module for GeoServer adds an alternative style editor to GeoServer that uses a CSS-derived lan-
guage instead of SLD. These CSS styles are internally converted to SLD, which is then used as normal by
GeoServer. The CSS syntax is duplicated from SVG styling where appropriate, but extended to avoid los-
ing facilities provided by SLD when possible. As an example, it provides facilities for extracting feature
attributes to use in labelling, sizing point markers according to data values, etc.

Read on for information about:

20.2. CSS Styling 665

GeoServer User Manual, Release 2.5.x

20.2.1 Installing the CSS Module

The CSS extension is listed among the other extension downloads on the GeoServer download page. Please
ensure that you download a version of the extension that corresponds to the version of GeoServer that you
use.

The installation process is similar to other GeoServer plugins:

1. Download the ZIP archive. Please verify that the version number in the filename corresponds to the
one reported in GeoServer’s admin UI.

2. Extract the contents of the ZIP archive into the /WEB-INF/lib/ direcotry in the
GeoServer webapp. For example, if you have installed the GeoServer binary
to /opt/geoserver-2.4.0/, you should place the CSS extension’s JAR files in
/opt/geoserver-2.4.0/webapps/geoserver/WEB-INF/lib/.

3. After extracting the extension, restart GeoServer in order for the changes to take effect. All further
configuration can be done through the GeoServer web UI.

After installation, you may find the following useful to get you started - Tutorial: Styling Data with CSS.

Nightly builds

For those interested in trying out new features and other experimental changes, nightly builds are available
from the GeoServer continuous integration system at http://ares.boundlessgeo.com/geoserver/ . After
downloading the ZIP archive, the steps to install are the same as above.

20.2.2 Tutorial: Styling Data with CSS

This tutorial will walk through using CSS to style the (USA) states example data that is included with the
default GeoServer installation. It also shows you the equivalent SLD code.

What you need before starting this tutorial:

• An installed copy of GeoServer 2.0 or greater. See Installation if you have not already installed
GeoServer.

• The states layer from the default GeoServer configuration

• The CSS plugin installed. See Installing the CSS Module if you have not already installed the plugin.

What’s in the Box?

The CSS extension adds a page to the GeoServer web UI, linked from the sidebar. This page is only visible
to logged-in administrators since it can modify the styles in GeoServer.

After loading the CSS page, you can view any of the layers and styles in GeoServer by selecting them in the
drop-down boxes directly beneath the map, then clicking the Switch link. You can overwrite any style by
entering CSS into the form, but it is recommended that you avoid editing pre-existing styles since existing
SLD styles are not reflected in the CSS. The Create link allows creating a new style with a CSS file attached
to it.

Creating a States Style

The SLD file for the default states layer looks like this:

666 Chapter 20. Extensions

http://ares.boundlessgeo.com/geoserver/
https://github.com/geoserver/geoserver/tree/master/data/release/data/shapefiles

GeoServer User Manual, Release 2.5.x

Figure 20.1: The CSS demo page can be used to switch between layers and styles. Note the sidebar link, highlighted
in red.

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor

version="1.0.0"
xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.opengis.net/sld
http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd

">
<NamedLayer>
<Name>USA states population</Name>
<UserStyle>

<Name>population</Name>
<Title>Population in the United States</Title>
<Abstract>A sample filter that filters the United States into three

categories of population, drawn in different colors</Abstract>
<FeatureTypeStyle>

<Rule>
<Title>< 2M</Title>
<ogc:Filter>

<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4DFF4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>
<Title>2M - 4M</Title>
<ogc:Filter>

20.2. CSS Styling 667

GeoServer User Manual, Release 2.5.x

<ogc:PropertyIsBetween>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:LowerBoundary>
<ogc:Literal>2000000</ogc:Literal>

</ogc:LowerBoundary>
<ogc:UpperBoundary>
<ogc:Literal>4000000</ogc:Literal>

</ogc:UpperBoundary>
</ogc:PropertyIsBetween>

</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#FF4D4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>

<Title>> 4M</Title>
<!-- like a linesymbolizer but with a fill too -->
<ogc:Filter>

<ogc:PropertyIsGreaterThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>4000000</ogc:Literal>

</ogc:PropertyIsGreaterThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4D4DFF</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>
<Rule>
<Title>Boundary</Title>
<LineSymbolizer>

<Stroke>
<CssParameter name="stroke-width">0.2</CssParameter>

</Stroke>
</LineSymbolizer>
<TextSymbolizer>

<Label>
<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>

</Label>

<CssParameter name="font-family">Times New Roman</CssParameter>
<CssParameter name="font-style">Normal</CssParameter>
<CssParameter name="font-size">14</CssParameter>

<LabelPlacement>
<PointPlacement>
<AnchorPoint>
<AnchorPointX>0.5</AnchorPointX>
<AnchorPointY>0.5</AnchorPointY>

</AnchorPoint>
</PointPlacement>

668 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

</LabelPlacement>
</TextSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Now, let’s start on a CSS file that accomplishes the same thing. First, use the Create link to start a new style.

This creates an example style with the following source:

* {
fill: lightgrey;

}

This demonstrates the basic elements of a CSS style:

A selector that identifies some part of the data to style. Here, the selector is *, indicating that all data should
use the style properties.

Properties inside curly braces ({}) which specify how the affected features should be styled. Properties
consist of name/value pairs separated by colons (:).

We can also see the basics for styling a polygon (fill), line (stroke), or point marker (mark). Note that
while the stroke and fill use colors, the marker simply identifies a Well-Known Mark with the symbol
function.

See also:

The Filter Syntax and Property Listing pages in this manual provide more information about the options
available in CSS styles.

Let’s use these basics to start translating the states style. The first Rule in the SLD applies to states where
the PERSONS field is less than two million:

<Rule>
<Title>< 2M</Title>
<ogc:Filter>
<ogc:PropertyIsLessThan>
<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:Literal>2000000</ogc:Literal>

</ogc:PropertyIsLessThan>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#4DFF4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>

Using a CQL-based selector, and copying the names and values of the CssParameters over, we get:

[PERSONS < 2000000] {
fill: #4DFF4D;
fill-opacity: 0.7;

}

For the second style, we have a PropertyIsBetween filter, which doesn’t directly translate to CSS:

20.2. CSS Styling 669

GeoServer User Manual, Release 2.5.x

<Rule>
<Title>2M - 4M</Title>
<ogc:Filter>
<ogc:PropertyIsBetween>

<ogc:PropertyName>PERSONS</ogc:PropertyName>
<ogc:LowerBoundary>

<ogc:Literal>2000000</ogc:Literal>
</ogc:LowerBoundary>
<ogc:UpperBoundary>

<ogc:Literal>4000000</ogc:Literal>
</ogc:UpperBoundary>

</ogc:PropertyIsBetween>
</ogc:Filter>
<PolygonSymbolizer>

<Fill>
<!-- CssParameters allowed are fill (the color) and fill-opacity -->
<CssParameter name="fill">#FF4D4D</CssParameter>
<CssParameter name="fill-opacity">0.7</CssParameter>

</Fill>
</PolygonSymbolizer>

</Rule>

However, PropertyIsBetween can easily be replaced by a combination of two comparison selectors.
In CSS, you can apply multiple selectors to a rule by simply placing them one after the other. Selectors
separated by only whitespace must ALL be satisfied for a style to apply. Multiple such groups can be
attached to a rule by separating them with commas (,). If a feature matches any of the comma-separated
groups for a rule then that style is applied. Thus, the CSS equivalent of the second rule is:

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;
fill-opacity: 0.7;

}

The third rule can be handled in much the same manner as the first:

[PERSONS > 4000000] {
fill: #4D4DFF;
fill-opacity: 0.7;

}

The fourth and final rule is a bit different. It applies a label and outline to all the states:

<Rule>
<Title>Boundary</Title>
<LineSymbolizer>
<Stroke>

<CssParameter name="stroke-width">0.2</CssParameter>
</Stroke>

</LineSymbolizer>
<TextSymbolizer>
<Label>

<ogc:PropertyName>STATE_ABBR</ogc:PropertyName>
</Label>

<CssParameter name="font-family">Times New Roman</CssParameter>
<CssParameter name="font-style">Normal</CssParameter>
<CssParameter name="font-size">14</CssParameter>

<LabelPlacement>

670 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

<PointPlacement>
<AnchorPoint>
<AnchorPointX>0.5</AnchorPointX>
<AnchorPointY>0.5</AnchorPointY>

</AnchorPoint>
</PointPlacement>

</LabelPlacement>
</TextSymbolizer>

</Rule>

This introduces the idea of rendering an extracted value (STATE_ABBR) directly into the map, unlike all of
the rules thus far. For this, you can use a CQL expression wrapped in square braces ([]) as the value of a
CSS property. It is also necessary to surround values containing whitespace, such as Times New Roman,
with single- or double-quotes (", ’). With these details in mind, let’s write the rule:

* {
stroke-width: 0.2;
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Putting it all together, you should now have a style that looks like:

[PERSONS < 2000000] {
fill: #4DFF4D;
fill-opacity: 0.7;

}

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;
fill-opacity: 0.7;

}

[PERSONS > 4000000] {
fill: #4D4DFF;
fill-opacity: 0.7;

}

* {
stroke-width: 0.2;
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Press the Submit button at the bottom of the CSS form to save your changes and see your style applied to
the states layer.

Surprise! The borders are missing. What happened? In the GeoServer CSS module, each type of symbolizer
has a “key” property which controls whether it is applied. Without these “key” properties, subordinate
properties are ignored. These “key” properties are:

• fill, which controls whether or not Polygon fills are applied. This specified the color or graphic to use
for the fill.

20.2. CSS Styling 671

GeoServer User Manual, Release 2.5.x

• stroke, which controls whether or not Line and Polygon outline strokes are applied. This specifies the
color (or graphic fill) of the stroke.

• mark, which controls whether or not point markers are drawn. This identifies a Well-Known Mark or
image URL to use.

• label, which controls whether or not to draw labels on the map. This identifies the text to use for
labeling the map, usually as a CQL expression.

• halo-radius, which controls whether or not to draw a halo around labels. This specifies how large
such halos should be.

See also:

The Property Listing page in this manual for information about the other properties.

Since we don’t specify a stroke color, no stroke is applied. Let’s add it, so that that last rule ends up
looking like:

* {
stroke: black;
stroke-width: 0.2;
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Refining the Style

Removing Duplicated Properties

The style that we have right now is only 23 lines, a nice improvement over the 103 lines of XML that we
started with. However, we are still repeating the fill-opacity attribute everywhere. We can move it
into the * rule and have it applied everywhere. This works because the GeoServer CSS module emulates
cascading, the “C” part of “CSS”. While SLD uses a painter’s model where each rule is processed indepen-
dently, a cascading style allows you to provide general style properties and override only specific properties
for particular features. Anyway, this takes the style down to only 21 lines:

[PERSONS < 2000000] {
fill: #4DFF4D;

}

[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;

}

[PERSONS > 4000000] {
fill: #4D4DFF;

}

* {
fill-opacity: 0.7;
stroke-width: 0.2;
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";

672 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

font-style: normal;
font-size: 14;

}

Scale-Dependent Styles

The labels for this style are nice, but at lower zoom levels they seem a little crowded. We can easily move
the labels to a rule that doesn’t activate until the scale denominator is below 2000000. We do want to keep
the stroke and fill-opacity at all zoom levels, so we can separate them from the label properties:

* {
fill-opacity: 0.7;
stroke-width: 0.2;

}

[@scale < 20000000] {
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";
font-style: normal;
font-size: 14;

}

Setting Titles for the Legend

So far, we haven’t set titles for any of the style rules. This doesn’t really cause any problems while viewing
maps, but GeoServer uses the title in auto-generating legend graphics. Without the titles, GeoServer falls
back on the names, which in the CSS module are generated from the filters for each rule. Titles are not
normally a part of CSS, so GeoServer looks for them in specially formatted comments before each rule. We
can add titles like so:

/* @title Population < 2M */
[PERSONS < 2000000] {
fill: #4DFF4D;
fill-opacity: 0.7;

}

/* @title 2M < Population < 4M */
[PERSONS > 2000000] [PERSONS < 4000000] {
fill: #FF4D4D;
fill-opacity: 0.7;

}

/* @title Population > 4M */
[PERSONS > 4000000] {
fill: #4D4DFF;
fill-opacity: 0.7;

}

/* @title Boundaries */

* {
stroke-width: 0.2;
label: [STATE_ABBR];
label-anchor: 0.5 0.5;
font-family: "Times New Roman";

20.2. CSS Styling 673

GeoServer User Manual, Release 2.5.x

font-style: normal;
font-size: 14;

}

Because of the way that CSS is translated to SLD, each SLD rule is a combination of several CSS rules. This
is handled by combining the titles with the word “with”. If the title is omitted for a rule, then it is simply
not included in the SLD output.

20.2.3 Filter Syntax

Filters limit the set of features affected by a rule’s properties. There are several types of simple filters, which
can be combined to provide more complex filters for rules.

Combining Filters

Combination is done in the usual CSS way. A rule with two filters separated by a comma affects any features
that match either filter, while a rule with two filters separated by only whitespace affects only features that
match both filters. Here’s an example using a basic attribute filter (described below):

/* Matches places where the lake is flooding */
[rainfall>12] [lakes>1] {

fill: black;
}

/* Matches wet places */
[rainfall>12], [lakes>1] {

fill: blue;
}

Filtering on Data Attributes

An attribute filter matches some attribute of the data (for example, a column in a database table). This is
probably the most common type of filter. An attribute filter takes the form of an attribute name and a data
value separated by some predicate operator (such as the less-than operator <).

Supported predicate operators include the following:

Op-
era-
tor

Meaning

= The property must be exactly equal to the specified value.
<> The property must not be exactly equal to the specified value.
> The property must be greater than (or alphabetically later than) the specified value.
>= The property must be greater than or equal to the specified value.
< The property must be less than (or alphabetically earlier than) the specified value.
<= The property must be less than or equal to the specified value.
LIKE The property must match the pattern described by the specified value. Patterns use _ to

indicate a single unspecified character and % to indicate an unknown number of unspecified
characters.

For example, to only render outlines for the states whose names start with letters in the first half of the
alphabet, the rule would look like:

674 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

[STATE_NAME<=’M’] {
stroke: black;

}

Note: The current implementation of property filters uses ECQL syntax, described on the GeoTools docu-
mentation.

Filtering on Type

When dealing with data from multiple sources, it may be useful to provide rules that only affect one of
those sources. This is done very simply; just specify the name of the layer as a filter:

states {
stroke: black;

}

Filtering by ID

For layers that provide feature-level identifiers, you can style specific features simply by specifying the ID.
This is done by prefixing the ID with a hash sign (#):

#states.2 {
stroke: black;

}

Note: In CSS, the . character is not allowed in element ids; and the #states.foo selector matches the
element with id states only if it also has the class foo. Since this form of identifier comes up so frequently
in GeoServer layers, the CSS module deviates from standard CSS slightly in this regard. Future revisions
may use some form of munging to avoid this deviation.

Filtering by Rendering Context (Scale)

Often, there are aspects of a map that should change based on the context in which it is being viewed. For
example, a road map might omit residential roads when being viewed at the state level, but feature them
prominently at the neighborhood level. Details such as scale level are presented as pseudo-attributes; they
look like property filters, but the property names start with an @ symbol:

[roadtype=’Residential’][@scale>100000] {
stroke: black;

}

The context details that are provided are as follows:

Pseudo-
Attribute

Meaning

@scale The scale denominator for the current rendering. More explicitly, this is the ratio of
real-world distance to screen/rendered distance.

Note: While property filters (currently) use the more complex ECQL syntax, pseudo-attributes cannot use
complex expressions and MUST take the form of <PROPERTY><OPERATOR><LITERAL>.

20.2. CSS Styling 675

http://docs.geotools.org/latest/userguide/library/cql/index.html
http://docs.geotools.org/latest/userguide/library/cql/index.html

GeoServer User Manual, Release 2.5.x

Filtering Symbols

When using symbols to create graphics inline, you may want to apply some styling options to them. You
can specify style attributes for built-in symbols by using a few special selectors:

PseudoSe-
lector

Meaning

:mark specifies that a rule applies to symbols used as point markers
:stroke specifies that a rule applies to symbols used as stroke patterns
:fill specifies that a rule applies to symbols used as fill patterns
:symbol specifies that a rule applies to any symbol, regardless of which context it is used in
:nth-
mark(n)

specifies that a rule applies to the symbol used for the nth stacked point marker on a
feature.

:nth-
stroke(n)

specifies that a rule applies to the symbol used for the nth stacked stroke pattern on a
feature.

:nth-fill(n) specifies that a rule applies to the symbol used for the nth stacked fill pattern on a feature.
:nth-
symbol(n)

specifies that a rule applies to the symbol used for the nth stacked symbol on a feature,
regardless of which context it is used in.

For more discussion on using these selectors, see Styled Marks in CSS.

Not Filtering at All

Sometimes it is useful to have a rule that matches all features, for example, to provide some default styling
for your map (remember, by default nothing is rendered). This is accomplished using a single asterisk * in
place of the usual filter. This catch-all rule can be used in complex expressions, which may be useful if you
want a rule to provide defaults as well as overriding values for some features:

* {
stroke: black;

}

20.2.4 Providing Metadata

One feature that appears in SLD that has no analog in CSS is the ability to provide metadata for styles and
style rules. For example, this SLD embeds a title for its single rule:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"

xmlns="http://www.opengis.net/sld"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:gml="http://www.opengis.net/gml"
xsi:schemaLocation="http://www.opengis.net/sld

http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd"
>

<NamedLayer>
<Name>Country Borders</Name>
<UserStyle>

<Name>borders</Name>
<Title>Country Borders</Title>
<Abstract>

Borders of countries, in an appropriately sovereign aesthetic.
</Abstract>

676 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

<FeatureTypeStyle>
<Rule>
<Title>Borders</Title>
<LineSymbolizer>

<Stroke>
<CssParameter name="stroke-width">0.2</CssParameter>

</Stroke>
</LineSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

Software such as GeoServer can use this metadata to automatically generate nice legend images directly
from the style. You don’t have to give up this ability when styling maps in CSS; just add comment before
your rules including lines that start with ‘@title‘ and ‘@abstract‘. Here is the analogous style in CSS:

/*
* @title This is a point layer.

* @abstract This is an abstract point layer.

*/

* {
mark: mark(circle);

}

Rules can provide either a title, an abstract, both, or neither. The SLD Name for a rule is autogenerated
based on the filters from the CSS rules that combined to form it, for aid in troubleshooting.

Combined Rules

One thing to keep in mind when dealing with CSS styles is that multiple rules may apply to the same
subset of map features, especially as styles get more complicated. Metadata is inherited similarly to CSS
properties, but metadata fields are combined instead of overriding less specific rules. That means that
when you have a style like this:

/* @title Borders */

* {
stroke: black;

}

/* @title Parcels */
[category=’parcel’] {

fill: blue;
}

The legend entry for parcels will have the title ’Parcels with Borders’. If you don’t like this behavior,
then only provide titles for the most specific rules in your style. (Or, suggest something better in an issue
report!) Rules that don’t provide titles are simply omitted from title aggregation.

20.2.5 Multi-Valued Properties

When rendering maps, it is sometimes useful to draw the same feature multiple times. For example, you
might want to stroke a roads layer with a thick line and then a slimmer line of a different color to create a
halo effect.

20.2. CSS Styling 677

mailto:'@title
mailto:'@abstract

GeoServer User Manual, Release 2.5.x

In GeoServer’s css module, all properties may have multiple values. There is a distinction between com-
plex properties, and multi-valued properties. Complex properties are separated by spaces, while multi-
valued properties are separated by commas. So, this style fills a polygon once:

* {
fill: url("path/to/img.png") red;

}

Using red as a fallback color if the image cannot be loaded. If you wanted to draw red on top of the image,
you would have to style like so:

* {
fill: url("path/to/img.png"), red;
/* set a transparency for the second fill,

leave the first fully opaque. */
fill-opacity: 100%, 20%;

}

For each type of symbolizer (fill, mark, stroke, and label) the number of values determines the num-
ber of times the feature will be drawn. For example, you could create a bulls-eye effect by drawing multiple
circles on top of each other with decreasing sizes:

* {
mark: symbol(circle), symbol(circle), symbol(circle), symbol(circle);
mark-size: 40px, 30px, 20px, 10px;

}

If you do not provide the same number of values for an auxiliary property, the list will be repeated as many
times as needed to finish. So:

* {
mark: symbol(circle), symbol(circle), symbol(circle), symbol(circle);
mark-size: 40px, 30px, 20px, 10px;
mark-opacity: 12%;

}

makes all those circles 12% opaque. (Note that they are all drawn on top of each other, so the center one
will appear 4 times as solid as the outermost one.)

Inheritance

For purposes of inheritance/cascading, property lists are treated as indivisible units. For example:

* {
stroke: red, green, blue;
stroke-width: 10px, 6px, 2px;

}

[type=’special’] {
stroke: pink;

}

This style will draw the ‘special’ features with only one outline. It has stroke-width: 10px, 6px,
2px; so that outline will be 10px wide.

678 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

20.2.6 Property Listing

This page lists the supported rendering properties. See CSS Value Types for more information about the
value types for each.

Point Symbology

Property Type Meaning Accepts
Express -ion?

mark url,
symbol

The image or well-known shape to render for points yes

mark-mime string
(MIME
Type)

The type of the image referenced by a url() No, defaults to
‘image/jpeg’

mark-
geometry

expres-
sion

An expression to use for the geometry when rendering
features

yes

mark-size length The width to assume for the provided image. The height
will be adjusted to preserve the source aspect ratio.

yes

mark-
rotation

angle A rotation to be applied (clockwise) to the mark image. yes

-gt-mark-
label-
obstacle

boolean If true the point symbol will be consider an obstable for
labels, no label will overlap it

no

20.2. CSS Styling 679

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/MIME

GeoServer User Manual, Release 2.5.x

Line Symbology

Property Type Meaning Accepts
Express
-ion?

stroke color, url,
symbol

The color, graphic, or well-known shape to use to stroke lines
or outlines

yes

stroke-
geometry

expression An expression to use for the geometry when rendering
features.

yes

stroke-
mime

string
(MIME
Type)

The type of the image referenced by a url() No,
defaults to
‘im-
age/jpeg’

stroke-
opacity

percentage A value in the range of 0 (fully transparent) to 1.0 (fully
opaque)

yes

stroke-
width

length The width to use for stroking the line. yes

stroke-
size

length An image or symbol used for the stroke pattern will be
stretched or squashed to this size before rendering. If this
value differs from the stroke-width, the graphic will be
repeated or clipped as needed.

yes

stroke-
rotation

angle A rotation to be applied (clockwise) to the stroke image. See
also the stroke- repeat property.

yes

stroke-
linecap

keyword:
butt,
square,
round

The style to apply to the ends of lines drawn yes

stroke-
linejoin

keyword:
miter,
round,
bevel

The style to apply to the “elbows” where segments of
multi-line features meet.

yes

stroke-
dasharray

list of
lengths

The lengths of segments to use in a dashed line. no

stroke-
dashoffset

length How far to offset the dash pattern from the ends of the lines. yes|

stroke-
repeat

keyword:
repeat,
stipple

How to use the provided graphic to paint the line. If repeat,
then the graphic is repeatedly painted along the length of the
line (rotated appropriately to match the line’s direction). If
stipple, then the line is treated as a polygon to be filled.

yes

-gt-
stroke-
label-
obstacle

boolean If true the line will be consider an obstable for labels, no label
will overlap it

no

680 Chapter 20. Extensions

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/MIME

GeoServer User Manual, Release 2.5.x

Polygon Symbology

Property Type Meaning Accepts
Express
-ion?

fill color, url,
symbol

The color, graphic, or well-known shape to use to stroke lines
or outlines

yes

fill-
geometry

expres-
sion

An expression to use for the geometry when rendering
features.

yes

fill-mime string
(MIME
Type)

The type of the image referenced by a url() No,
defaults to
‘im-
age/jpeg’

fill-
opacity

percent-
age

A value in the range of 0 (fully transparent) to 1.0 (fully
opaque)

yes

fill-size length The width to assume for the image or graphic provided. yes
fill-
rotation

angle A rotation to be applied (clockwise) to the fill image. yes

-gt-fill-
label-
obstacle

boolean If true the polygon will be consider an obstable for labels, no
label will overlap it

no

-gt-
graphic-
marging

List of
lengths

A list of 1 to 4 values, specifying the space between repeated
graphics in a texture paint. One value is uniform spacing in all
directions, two values are considered top/bottom and
right/left, three values are considered top, right/left, bottom,
four values are read as top,right,bottom,left.

no

-gt-
graphic-
marging

List of
lengths

A list of 1 to 4 values, specifying the space between repeated
graphics in a texture paint. One value is uniform spacing in all
directions, two values are considered top/bottom and
right/left, three values are considered top, right/left, bottom,
four values are read as top,right,bottom,left.

no

-gt-
random

none,grid,freeActivates random distribution of symbols in a texture fill tile.
See Fills with randomized symbols for details. Defaults to “none”

no

-gt-
random-
seed

integer
number

The seed for the random generator. Defaults to 0 no

-gt-
random-
rotation

none/free When set to “free” activates random rotation of the symbol in
addition to random distribution. Defaults to “none”

no

-gt-
random-
symbol-
count

positive
integer
number

Number of suymbols to be placed in the texture fill tile. May
not be respected due to location conflicts (no two symbols are
allowed to overlap). Defaults to 16.

no

-gt-
random-
tile-size

positive
integer
number

Size of the texture paint tile that will be filled with the random
symbols. Defaults to 256.

no

20.2. CSS Styling 681

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/MIME

GeoServer User Manual, Release 2.5.x

682 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Text Symbology (Labeling)

Property Type Meaning Accepts
Express
-ion?

label string The text to display as labels for features yes
label-
geometry

expression An expression to use for the geometry when rendering
features.

yes

label-
anchor

expression The part of the label to place over the point or middle of the
polygon. This takes 2 values - x y where x=0 is the left edge
of the label, x=1 is the right edge. y=0 is the bottom edge of
the label, y=1 is the top edge. Specify 0.5 0.5 to centre a label.

yes

label-
offset

expression This is for fine-tuning label-anchor. x and y values specify
pixels to adjust the label position. For lines, a single value
will make the label be parallel to the line, at the given
distance, while two values will force a point style
placement, with the label painted horizonally at the center
of the line (plus the given offsets)

yes

label-
rotation

expression Clockwise rotation of label in degrees. yes

label-z-
index

expression Used to determine which labels are drawn on top of other
labels. Lower z-indexes are drawn on top.

yes

shield mark,
symbol

A graphic to display behind the label, such as a highway
shield.

yes

shield-
mime

string
(MIME
Type)

The type of the image referenced by a url() No,
defaults to
‘im-
age/jpeg’

font-
family

string The name of the font or font family to use for labels yes

font-fill fill The fill to use when rendering fonts yes
font-style keyword:

normal,
italic,
oblique

The style for the lettering yes

font-
weight

keyword:
normal,
bold

The weight for the lettering yes

font-size length The size for the font to display. yes
halo-
radius

length The size of a halo to display around the lettering (to enhance
readability). This is required to activate the halo feature.

yes

halo-color color The color for the halo yes
halo-
opacity

percentage The opacity of the halo, from 0 (fully transparent) to 1.0
(fully opaque).

yes

-gt-label-
padding

length The amount of ‘padding’ space to provide around labels.
Labels will not be rendered closer together than this
threshold. This is equivalent to the spaceAround vendor
parameter.

no

-gt-label-
group

one of:
true or
false

If true, the render will treat features with the same label text
as a single feature for the purpose of labeling. This is
equivalent to the group vendor parameter.

no

-gt-label-
max-
displacement

length If set, this is the maximum displacement that the renderer
will apply to a label. Labels that need larger displacements
to avoid collisions will simply be omitted. This is equivalent
to the maxDisplacement vendor parameter.

no

20.2. CSS Styling 683

http://en.wikipedia.org/wiki/MIME
http://en.wikipedia.org/wiki/MIME

GeoServer User Manual, Release 2.5.x

Text Symbology (Labeling) - continued

Property Type Meaning Accepts
Express
-ion?

-gt-label-
min-group-
distance

length This is equivalent to the minGroupDistance vendor parameter
in SLD.

no

-gt-label-
repeat

length If set, the renderer will repeat labels at this interval along a line.
This is equivalent to the repeat vendor parameter.

no

-gt-label-
all-group

one of
true or
false

when using grouping, whether to label only the longest line that
could be built by merging the lines forming the group, or also
the other ones. This is equivalent to the allGroup vendor
parameter.

no

-gt-label-
remove-
overlaps

one of
true or
false

If enabled, the renderer will remove overlapping lines within a
group to avoid duplicate labels. This is equivalent to the
removeOverlaps vendor parameter.

no

-gt-label-
allow-
overruns

one of
true or
false

Determines whether the renderer will show labels that are
longer than the lines being labelled. This is equivalent to the
allowOverrun vendor parameter.

no

-gt-label-
follow-line

one of
true or
false

If enabled, the render will curve labels to follow the lines being
labelled. This is equivalent to the followLine vendor parameter.

no

-gt-label-
max-angle-
delta

one of
true or
false

The maximum amount of curve allowed between two
characters of a label; only applies when ‘-gt-follow-line: true’ is
set. This is equivalent to the maxAngleDelta vendor parameter.

no

-gt-label-
auto-wrap

length Labels will be wrapped to multiple lines if they exceed this
length in pixels. This is equivalent to the autoWrap vendor
parameter.

no

-gt-label-
force-ltr

one of
true or
false

By default, the renderer will flip labels whose normal
orientation would cause them to be upside-down. Set this
parameter to false if you are using some icon character label like
an arrow to show a line’s direction. This is equivalent to the
forceLeftToRight vendor parameter.

no

-gt-label-
conflict-
resolution

one of
true or
false

Set this to false to disable label conflict resolution, allowing
overlapping labels to be rendered. This is equivalent to the
conflictResolution vendor parameter.

no

-gt-label-fit-
goodness

scale The renderer will omit labels that fall below this “match
quality” score. The scoring rules differ for each geometry type.
This is equivalent to the goodnessOfFit vendor parameter.

no

-gt-label-
priority

expres-
sion

Specifies an expression to use in determining which features to
prefer if there are labeling conflicts. This is equivalent to the
Priority SLD extension.

yes

684 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Text Symbology (Labeling) - continued

Prop-
erty

Type Meaning Accepts
Express
-ion?

-gt-
shield-
resize

string, one of
none, stretch, or
proportional

Specifies a mode for resizing label graphics (such as
highway shields) to fit the text of the label. The default
mode, ‘none’, never modifies the label graphic. In stretch
mode, GeoServer will resize the graphic to exactly surround
the label text, possibly modifying the image’s aspect ratio.
In proportional mode, GeoServer will expand the image
to be large enough to surround the text while preserving its
original aspect ratio.

none

-gt-
shield-
margin

list of lengths, one
to four elements
long.

Specifies an extra margin (in pixels) to be applied to the
label text when calculating label dimensions for use with
the -gt-shield-resize option. Similar to the margin
shorthand property in CSS for HTML, its interpretation
varies depending on how many margin values are
provided: 1 = use that margin length on all sides of the label
2 = use the first for top & bottom margins and the second
for left & right margins. 3 = use the first for the top margin,
second for left & right margins, third for the bottom margin.
4 = use the first for the top margin, second for the right
margin, third for the bottom margin, and fourth for the left
margin.

none

20.2. CSS Styling 685

GeoServer User Manual, Release 2.5.x

Raster Symbology

Property Type Meaning Accepts
Express
-ion?

raster-
channels

string The list of raster channels to be used in the output. It can be “auto”
to make the renderer choose the best course of action, or a list of
band numbers, a single one will generate a gray image, three will
generate an RGB one, four will generate a RGBA one. E.g., “1 3 7”
to choose the first, third and seventh band of the input raster to
make a RGB image

no

raster-
geometry

ex-
pres-
sion

The attribute containing the raster to be painted. Normally not
needed, but it would work if you had a custom vector data source
that contains a GridCoverage attribute, in order to select it

yes

raster-
opacity

float-
ing
point

A value comprised between 0 and 1, 0 meaning completely
transparent, 1 meaning completely opaque. This controls the
whole raster trasparency.

no

raster-
contrast-
enhancement

string Allows to stretch the range of data/colors in order to enhance tiny
differences. Possible values are ‘normalize’, ‘histogram’ and ‘none’

no

raster-
gamma

float-
ing
point

Gamma adjustment for the output raster no

raster-z-
index

inte-
ger

Controls the z ordering of the raster output no

raster-color-
map

string Applies a color map to single banded input. The contents is a space
separate list of color-map-entry(color, value) (opacity
assumed to be 1), or color-map-entry(color, value,
opacity). The values must be provided in increasing order.

no

raster-color-
map-type

string Controls how the color map entries are interpreted, the possible
values are “ramp”, “intervals” and “values”, with ramp being the
default if no “raster-color-map-type” is provided. The default
“ramp” behavior is to linearly interpolate color between the
provided values, and assign the lowest color to all values below
the lowest value, and the highest color to all values above the
highest value. The “intervals” behavior instead assigns solid
colors between values, whilst “values” only assigns colors to the
specified values, every other value in the raster is not painted at all

no

Shared

Prop-
erty

Type Meaning Accepts
Express
-ion?

ge-
om-
etry

ex-
pres-
sion

An expression to use for the geometry when rendering features. This
provides a geometry for all types of symbology, but can be overridden by
the symbol-specific geometry properties.

yes

Symbol Properties

These properties are applied only when styling built-in symbols. See Styled Marks in CSS for details.

686 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Property Type Meaning Accepts Expression?
size length The size at which to render the symbol. yes
rotation angle An angle through which to rotate the symbol. yes

20.2.7 CSS Value Types

This page presents a brief overview of CSS types as used by this project. Note that these can be repeated as
described in Multi-Valued Properties.

Numbers

Numeric values consist of a number, or a number annotated with a measurement value. In general, it is
wise to use measurement annotations most of the time, to avoid ambiguity and protect against potential
future changes to the default units.

Currently, the supported units include:

• Length

– px pixels

– m meters

– ft feet

• Angle

– deg degrees

• Ratio

– % percentage

When using expressions in place of numeric values, the first unit listed for the type of measure is assumed.

Since the CSS module translates styles to SLD before any rendering occurs, its model of unit-of-measure is
tied to that of SLD. In practice, this means that for any particular symbolizer, there only one unit-of-measure
applied for the style. Therefore, the CSS module extracts that unit-of-measure from one special property
for each symbolizer type. Those types are listed below for reference:

• fill-size determines the unit-of-measure for polygon symbolizers (but that doesn’t matter so
much since it is the only measure associated with fills)

• stroke-width determines the unit-of-measure for line symbolizers

• mark-size determines the unit-of-measure for point symbolizers

• font-size determines the unit-of-measure for text symbolizers and the associated halos

Strings

String values consist of a small snippet of text. For example, a string could be a literal label to use for a
subset of roads:

[lanes>20] {
label: "Serious Freaking Highway";

}

20.2. CSS Styling 687

GeoServer User Manual, Release 2.5.x

Strings can be enclosed in either single or double quotes. It’s easiest to simply use whichever type of quotes
are not in your string value, but you can escape quote characters by prefixing them with a backslash \.
Backslash characters themselves must also be prefixed. For example, ’\\\’’ is a string value consisting of
a single backslash followed by a single single quote character.

Labels

While labels aren’t really a special type of value, they deserve a special mention since labels are more likely
to require special string manipulation than other CSS values.

If a label is a simple string value, then it works like any other string would:

[lanes > 20] {
label: "Serious Freaking Highway";

}

However, if a label has multiple values, all of those values will be concatenated to form a single label:

[lanes > 20] {
label: "Serious " "Freaking " "Highway";

}

Note the whitespace within the label strings here; no whitespace is added when concatenating strings, so you
must be explicit about where you want it included. You can also mix CQL expressions in with literal string
values here:

states {
label: [STATE_NAME] " (" [STATE_ABBR] ")";

}

Note: This automatic concatenation is currently a special feature only provided for labels. However, string
concatenation is also supported directly in CQL expressions by using the strConcat filter function:

* { fill: [strConcat(’#’, color_hex)]; }

This form of concatenation works with any property that supports expressions.

Colors

Color values are relatively important to styling, so there are multiple ways to specify them.

Format Interpretation
#RRGGBB A hexadecimal-encoded color value, with two digits each for red, green, and blue.
#RGB A hexadecimal-encoded color value, with one digits each for red, green, and blue. This is

equivalent to the two-digit-per-channel encoding with each digit duplicated.
rgb(r,
g, b)

A three-part color value with each channel represented by a value in the range 0 to 1, or in
the range 0 to 255. 0 to 1 is used if any of the values include a decimal point, otherwise it is
0 to 255.

Simple
name

The simple English name of the color. A full list of the supported colors is available at
http://www.w3.org/TR/SVG/types.html#ColorKeywords

External References

When using external images to decorate map features, it is necessary to reference them by URL. This is
done by a call to the url function. The URL value may be wrapped in single or double-quotes, or not at all.

688 Chapter 20. Extensions

http://www.w3.org/TR/SVG/types.html#ColorKeywords

GeoServer User Manual, Release 2.5.x

The same escaping rules as for string values. The url function is also a special case where the surrounding
quote marks can usually be omitted. Some examples:

/* These properties are all equivalent. */

* {
stroke: url("http://example.com/");
stroke: url(’http://example.com/’);
stroke: url(http://example.com/);

}

Note: While relative URLs are supported, they will be fully resolved during the conversion process to
SLD and written out as absolute URLs. This may be cause problems when relocating data directories, etc.
The style can be regenerated with the current correct URL by opening it in the demo editor and using the
Submit button there.

Well-Known Marks

As defined in the SLD standard, GeoServer’s css module also allows using a certain set of well-known
mark types without having to provide graphic resources explicitly. These include:

• circle

• square

• cross

• star

• arrow

And others. Additionally, vendors can provide an extended set of well-known marks, a facet of the standard
that is exploited by some GeoTools plugins to provide dynamic map features such as using characters from
TrueType fonts as map symbols, or dynamic charting. In support of these extended mark names, the css
module provides a symbol function similar to url. The syntax is the same, aside from the function name:

* {
mark: symbol(circle);
mark: symbol(’ttf://Times+New+Roman&char=0x19b2’);
mark: symbol("chart://type=pie&x&y&z");

}

20.2.8 Styled Marks in CSS

GeoServer’s CSS module provides a collection of predefined symbols that you can use and combine to
create simple marks, strokes, and fill patterns without needing an image editing program. You can access
these symbols via the symbol() CSS function. For example, the built-in circle symbol makes it easy to create
a simple ‘dot’ marker for a point layer:

* {
mark: symbol(circle);

}

Symbols work anywhere you can use a url() to reference an image (ie, you can use symbols for stroke
and fill patterns as well as markers.)

20.2. CSS Styling 689

GeoServer User Manual, Release 2.5.x

Symbol Names

GeoServer extensions can add extra symbols (such as the chart:// symbol family which allows the use
of charts as symbols via a naming scheme similar to the Google Charts API). However, there are a few
symbols that are always available:

• circle

• square

• triangle

• arrow

• cross

• star

• x

• shape://horizline

• shape://vertline

• shape://backslash

• shape://slash

• shape://plus

• shape://times

Symbol Selectors

Symbols offer some additional styling options beyond those offered for image references. To specify these
style properties, just add another rule with a special selector. There are 8 “pseudoclass” selectors that are
used to style selectors:

• :mark specifies that a rule applies to symbols used as point markers

• :shield specifies that a rule applies to symbols used as label shields (icons displayed behind label
text)

• :stroke specifies that a rule applies to symbols used as stroke patterns

• :fill specifies that a rule applies to symbols used as fill patterns

• :symbol specifies that a rule applies to any symbol, regardless of which context it is used in

• :nth-mark(n) specifies that a rule applies to the symbol used for the nth stacked point marker on a
feature.

• :nth-shield(n) specifies that a rule applies to the symbol used for the background of the nth
stacked label on a feature

• :nth-stroke(n) specifies that a rule applies to the symbol used for the nth stacked stroke pattern
on a feature.

• :nth-fill(n) specifies that a rule applies to the symbol used for the nth stacked fill pattern on a
feature.

• :nth-symbol(n) specifies that a rule applies to the symbol used for the nth stacked symbol on a
feature, regardless of which context it is used in.

690 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Symbol Styling Properties

Styling a built-in symbol is similar to styling a polygon feature. However, the styling options are slightly
different from those available to a true polygon feature:

• The mark and label families of properties are unavailable for symbols.

• Nested symbol styling is not currently supported.

• Only the first stroke and fill will be used.

• Additional size (as a length) and rotation (as an angle) properties are available. These are analo-
gous to the (mark|stroke|fill)-size and (mark|stroke|fill)-rotation properties avail-
able for true geometry styling.

Note: The various prefixed ‘-size’ and ‘-rotation’ properties on the containing style override those for the
symbol if they are present.

Example Styled Symbol

As an example, consider a situation where you are styling a layer that includes data about hospitals in
your town. You can create a simple hospital logo by placing a red cross symbol on top of a white circle
background:

[usage=’hospital’] {
mark: symbol(’circle’), symbol(’cross’);

}

[usage=’hospital’] :nth-mark(1) {
size: 16px;
fill: white;
stroke: red;

}

[usage=’hospital’] :nth-mark(2) {
size: 12px;
fill: red;

}

20.2.9 CSS Cookbook

The CSS Cookbook is a collection of CSS “recipes” for creating various types of map styles. Wherever
possible, each example is designed to show off a single CSS feature so that code can be copied from the
examples and adapted when creating CSS styles of your own. Most examples are shared with the SLD
Cookbook, to make a comparison between the two syntaxes immediate.

The CSS Cookbook is divided into four sections: the first three for each of the vector types (points, lines, and
polygons) and the fourth section for rasters. Each example in every section contains a screen-shot showing
actual GeoServer WMS output and the full CSS code for reference.

Each section uses data created especially for the Cookbooks (both CSS and SLD), with shapefiles for vector
data and GeoTIFFs for raster data. The projection for data is EPSG:4326. All files can be easily loaded into
GeoServer in order to recreate the examples.

20.2. CSS Styling 691

GeoServer User Manual, Release 2.5.x

Data Type Shapefile
Point sld_cookbook_point.zip
Line sld_cookbook_line.zip
Polygon sld_cookbook_polygon.zip
Raster sld_cookbook_raster.zip

Points

While points are seemingly the simplest type of shape, possessing only position and no other dimensions,
there are many different ways that a point can be styled in CSS.

Example points layer

The points layer used for the examples below contains name and population information for the major
cities of a fictional country. For reference, the attribute table for the points in this layer is included below.

fid (Feature ID) name (City name) pop (Population)
point.1 Borfin 157860
point.2 Supox City 578231
point.3 Ruckis 98159
point.4 Thisland 34879
point.5 Synopolis 24567
point.6 San Glissando 76024
point.7 Detrania 205609

Download the points shapefile

Simple point

This example specifies points be styled as red circles with a diameter of 6 pixels.

Figure 20.2: Simple point

Code
1 * {
2 mark: symbol(circle);
3 mark-size: 6px;

692 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

4 }
5

6 :mark {
7 fill: red;
8 }

Details There are two rules in this CSS, the first one (lines 1-4) matches all features, and asks them to be
depicted with a circular mark, 6 pixels wide. The second rule uses a symbol selector, :mark, which selects
all marks in the previous rules, and allows to specify how to fill the contents of the circle, in this case, with
a solid red fill (a stand alone fill property would have been interpreted as the request to fill all polygons in
the input with solid red instead).

Simple point with stroke

This example adds a stroke (or border) around the Simple point, with the stroke colored black and given a
thickness of 2 pixels.

Figure 20.3: Simple point with stroke

Code
1 * {
2 mark: symbol(circle);
3 mark-size: 6px;
4 }
5

6 :mark {
7 fill: red;
8 stroke: black;
9 stroke-width: 2px;

10 }

Details This example is similar to the Simple point example, in this case a stroke and a stroke width have
been specified in the mark selector in order to apply them to the circle symbols.

20.2. CSS Styling 693

GeoServer User Manual, Release 2.5.x

Rotated square

This example creates a square instead of a circle, colors it green, sizes it to 12 pixels, and rotates it by 45
degrees.

Figure 20.4: Rotated square

Code
1 * {
2 mark: symbol(square);
3 mark-size: 12px;
4 mark-rotation: 45;
5 }
6

7 :mark {
8 fill: #009900;
9 }

Details In this example, line 2 sets the shape to be a square, with line 8 setting the color to a dark green
(#009900). Line 3 sets the size of the square to be 12 pixels, and line 4 set the rotation is to 45 degrees.

Transparent triangle

This example draws a triangle, creates a black stroke identical to the Simple point with stroke example, and
sets the fill of the triangle to 20% opacity (mostly transparent).

Code
1 * {
2 mark: symbol(triangle);
3 mark-size: 12;
4 }
5

6 :mark {
7 fill: #009900;
8 fill-opacity: 0.2;
9 stroke: black;

694 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.5: Transparent triangle

10 stroke-width : 2px;
11 }

Details In this example, line 2 once again sets the shape, in this case to a triangle, where line 3 sets the
mark size to 12 pixels. Line 6 sets the fill color to a dark green (#009900) and line 7 sets the opacity to 0.2
(20% opaque). An opacity value of 1 means that the shape is drawn 100% opaque, while an opacity value
of 0 means that the shape is drawn 0% opaque, or completely transparent. The value of 0.2 (20% opaque)
means that the fill of the points partially takes on the color and style of whatever is drawn beneath it. In
this example, since the background is white, the dark green looks lighter. Were the points imposed on a
dark background, the resulting color would be darker. Line 8 set the stroke color to black and width to 2
pixels.

Point as graphic

This example styles each point as a graphic instead of as a simple shape.

Figure 20.6: Point as graphic

Code

20.2. CSS Styling 695

GeoServer User Manual, Release 2.5.x

1 * {
2 mark: url(smileyface.png);
3 mark-mime: "image/png";
4 }

Details This style uses a graphic instead of a simple shape to render the points. Line 2 sets the path and
file name of the graphic, while line 3 indicates the format (MIME type) of the graphic (image/png). In this
example, the graphic is contained in the same directory as the SLD, so no path information is necessary,
although a full URL could be used if desired.

Figure 20.7: Graphic used for points

Point with default label

This example shows a text label on the Simple point that displays the “name” attribute of the point. This is
how a label will be displayed in the absence of any other customization.

Figure 20.8: Point with default label

Code
1 * {
2 mark: symbol(circle);
3 mark-size: 6px;
4 label: [name];
5 font-fill: black;
6 }
7

8 :mark {
9 fill: red;

10 }

Details This style is quite similar to the Simple point, but two new properties have been added to specify
the labelling options. Line 4 indicates that the label contents come from the “name” attribute (anything in

696 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

square brackets is a CQL expression, the attribute name being the simplest case) while Line 5 sets the label
color to black.

Point with styled label

This example improves the label style from the Point with default label example by centering the label above
the point and providing a different font name and size.

Figure 20.9: Point with styled label

Code
1 * {
2 mark: symbol(circle);
3 mark-size: 6px;
4 label: [name];
5 font-fill: black;
6 font-family: Arial;
7 font-size: 12;
8 font-weight: bold;
9 label-anchor: 0.5 0;

10 label-offset: 0 5;
11 }
12

13 :mark {
14 fill: red;
15 }

Details This example expands on Point with default label and specifies the font attributes, in particular, the
text is Aria, bold, 12px wide. Moreover, the label is moved on top of the point, by specifying an anchor of
0.5 0, which sets the point to be centered (0.5) horizontally axis and bottom aligned (0.0) vertically with
the label, and an offset which moves the label 5 pixels up vertically.

The result is a centered bold label placed slightly above each point.

Point with rotated label

This example builds on the previous example, Point with styled label, by rotating the label by 45 degrees,
positioning the labels farther away from the points, and changing the color of the label to purple.

20.2. CSS Styling 697

GeoServer User Manual, Release 2.5.x

Figure 20.10: Point with rotated label

Code
1 * {
2 mark: symbol(circle);
3 mark-size: 6px;
4 label: [name];
5 font-fill: #990099;
6 font-family: Arial;
7 font-size: 12;
8 font-weight: bold;
9 label-anchor: 0.5 0;

10 label-offset: 0 25;
11 label-rotation: -45;
12 }
13

14 :mark {
15 fill: red;
16 }

Details This example is similar to the Point with styled label, but there are three important differences. Line
** specifies 25 pixels of vertical displacement. **Line 11 specifies a rotation of “-45” or 45 degrees counter-
clockwise. (Rotation values increase clockwise, which is why the value is negative.) Finally, line 5 sets the
font color to be a shade of purple (#99099).

Note that the displacement takes effect before the rotation during rendering, so in this example, the 25 pixel
vertical displacement is itself rotated 45 degrees.

Attribute-based point

This example alters the size of the symbol based on the value of the population (“pop”) attribute.

Code
1 * {
2 mark: symbol(circle);
3 }
4

5 :mark {
6 fill: #0033CC;

698 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.11: Attribute-based point

7 }
8

9 [pop < 50000] {
10 mark-size: 8;
11 }
12

13 [pop >= 50000] [pop < 100000] {
14 mark-size: 12;
15 }
16

17 [pop >= 100000] {
18 mark-size: 16;
19 }

Details
Note: Refer to the Example points layer to see the attributes for this data. This example has eschewed labels
in order to simplify the style, but you can refer to the example Point with styled label to see which attributes
correspond to which points.

This style shows how the basic mark setup (red circle, default size) can be overridden via cascading, chang-
ing the size depending on the pop attribute value, with smaller values yielding a smaller circle, and larger
values yielding a larger circle.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Size
1 SmallPop Less than 50,000 8
2 MediumPop 50,000 to 100,000 12
3 LargePop Greater than 100,000 16

The result of this style is that cities with larger populations have larger points. In particular, the rule at
Line 9 matches all features whose “pop” attribute is less than 50000, the rule at Line 13 matches all fea-
tures whose “pop” attribute is between 50000 and 100000 (mind the space between the two predicates, it is
equivalent to and AND, if we had used a comma it would have been an OR instead), while the rule at Line
17 matches all features with more than 100000 inhabitants.

20.2. CSS Styling 699

GeoServer User Manual, Release 2.5.x

Zoom-based point

This example alters the style of the points at different zoom levels.

Figure 20.12: Zoom-based point: Zoomed in

Figure 20.13: Zoom-based point: Partially zoomed

Code
1 * {
2 mark: symbol(circle);
3 }
4

5 :mark {

700 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.14: Zoom-based point: Zoomed out

6 fill: #CC3300;
7 }
8

9 [@scale < 16000000] {
10 mark-size: 12;
11 }
12

13 [@scale > 16000000] [@scale < 32000000] {
14 mark-size: 8;
15 }
16

17 [@scale > 32000000] {
18 mark-size: 4;
19 }

Details It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking
map. This example styles the points to vary in size based on the zoom level (or more accurately, scale
denominator). Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the
map has a scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules matching the scale. The three rules are designed as follows:

Rule order Rule name Scale denominator Point size
1 Large 1:16,000,000 or less 12
2 Medium 1:16,000,000 to 1:32,000,000 8
3 Small Greater than 1:32,000,000 4

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The rules use the “@scale” pseudo-attribute, which refers to the current scale denominator, and which can
be compared using the ‘<’ and ‘>’ operators only (using any other operator or function will result in errors).

The result of this style is that points are drawn larger as one zooms in and smaller as one zooms out.

20.2. CSS Styling 701

GeoServer User Manual, Release 2.5.x

Lines

While lines can also seem to be simple shapes, having length but no width, there are many options and
tricks for making lines display nicely.

Example lines layer

The lines layer used in the examples below contains road information for a fictional country. For refer-
ence, the attribute table for the points in this layer is included below.

fid (Feature ID) name (Road name) type (Road class)
line.1 Latway highway
line.2 Crescent Avenue secondary
line.3 Forest Avenue secondary
line.4 Longway highway
line.5 Saxer Avenue secondary
line.6 Ridge Avenue secondary
line.7 Holly Lane local-road
line.8 Mulberry Street local-road
line.9 Nathan Lane local-road
line.10 Central Street local-road
line.11 Lois Lane local-road
line.12 Rocky Road local-road
line.13 Fleet Street local-road
line.14 Diane Court local-road
line.15 Cedar Trail local-road
line.16 Victory Road local-road
line.17 Highland Road local-road
line.18 Easy Street local-road
line.19 Hill Street local-road
line.20 Country Road local-road
line.21 Main Street local-road
line.22 Jani Lane local-road
line.23 Shinbone Alley local-road
line.24 State Street local-road
line.25 River Road local-road

Download the lines shapefile

Simple line

This example specifies lines be colored black with a thickness of 3 pixels.

Code
1 * {
2 stroke: black;
3 stroke-width: 3px;
4 }

Details The only rule asks for a black stroke (this attribute is mandatory to get strokes to actually show
up), 3 pixels wide.

702 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.15: Simple line

Line with border

This example shows how to draw lines with borders (sometimes called “cased lines”). In this case the lines
are drawn with a 3 pixel blue center and a 1 pixel wide gray border.

Code
1 * {
2 stroke: #333333, #6699FF;
3 stroke-width: 5px, 3px;
4 stroke-linecap: round;
5 z-index: 0, 1;
6 }

Details Lines in CSS have no notion of a “fill”, only “stroke”. Thus, unlike points or polygons, it is not
possible to style the “edge” of the line geometry. It is, however, possible to achieve this effect by drawing
each line twice: once with a certain width and again with a slightly smaller width. This gives the illusion
of fill and stroke by obscuring the larger lines everywhere except along the edges of the smaller lines.

The style uses the “multi-valued properties” CSS support by specifying two strokes and two stroke-widths.
This causes each feature to be painted twice, first with a dark gray (#333333) line 5 pixels wide, and then
a thinner blue (#6699FF) line 3 pixels wide.

Since every line is drawn twice, the order of the rendering is very important. Without the z-index indication,
each feature would first draw the gray stroke and then the blue one, and then the rendering engine would
move to the next feature, and so on. This would result in ugly overlaps when lines do cross. By using the
z-index property (Line 3) instead, all gray lines will be painted first, and then all blue lines will painted on
top, thus making sure the blue lines visually connect.

The “stroke-linecap” property is the only one having a single value, this is because the value is the same for
both the gray and blue line.

20.2. CSS Styling 703

GeoServer User Manual, Release 2.5.x

Figure 20.16: Line with border

The result is a 3 pixel blue line with a 1 pixel gray border, since the 5 pixel gray line will display 1 pixel on
each side of the 3 pixel blue line.

Dashed line

This example alters the Simple line to create a dashed line consisting of 5 pixels of drawn line alternating
with 2 pixels of blank space.

Code
1 * {
2 stroke: blue;
3 stroke-width: 3px;
4 stroke-dasharray: 5 2;
5 }

Details In this example the we create a blue line, 3 pixels wide, and specify a dash array with value “5 2”,
which creates a repeating pattern of 5 pixels of drawn line, followed by 2 pixels of omitted line.

Railroad (hatching)

This example uses hatching to create a railroad style. Both the line and the hatches are black, with a 2 pixel
thickness for the main line and a 1 pixel width for the perpendicular hatches.

Code
1 * {
2 stroke: #333333, symbol("shape://vertline");
3 stroke-width: 3px;
4 }

704 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.17: Dashed line

Figure 20.18: Railroad (hatching)

20.2. CSS Styling 705

GeoServer User Manual, Release 2.5.x

5

6 :nth-stroke(2) {
7 size: 12;
8 stroke: #333333;
9 stroke-width: 1px;

10 }

Details In this example a multi-valued stroke is used: the fist value makes the renderer paint a dark gray
line (3 pixels wide, according to the “stroke-width” attribute), whilst the second value makes the line be
painted by repeating the “shape://vertline” symbol over and over, creating the hatching effect.

In order to specify how the symbol itself should be painted, the ”:nth-stroke(2)” pseudo-selector is used
at Line 6 to specify the options for the repeated symbol: in particular with are instructing the renderer to
create a 12px wide symbol, with a dark gray stroke 1 pixel wide.

Spaced graphic symbols

This example uses a graphic stroke along with dash arrays to create a “dot and space” line type. Adding the
dash array specification allows to control the amount of space between one symbol and the next one. With-
out using the dash array the lines would be densely populated with dots, each one touching the previous
one.

Figure 20.19: Spaced symbols along a line

Code
1 * {
2 stroke: symbol(circle);
3 stroke-dasharray: 4 6;
4 }
5

6 :stroke {
7 size: 4;
8 fill: #666666;
9 stroke: #333333;

10 stroke-width: 1px;
11 }

706 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Details This example, like others before, uses symbol(circle) to place a graphic symbol along a line.

The symbol details are specified in the rule at Line 6 using the ”:stroke” pseudo-selector, creating a gray fill
circle, 4 pixels wide, with a dark gray outline.

The spacing between symbols is controlled with the stroke-dasharray at line 3, which specifies 4 pixels
of pen-down (just enough to draw the circle) and 6 pixels of pen-up, to provide the spacing.

Alternating symbols with dash offsets

This example shows how to create a complex line style which alternates a dashed line and a graphic symbol.
The code builds on features shown in the previous examples:

• stroke-dasharray controls pen-down/pen-up behavior to generate dashed lines

• symbol(...) places symbols along a line combining the two allows control of symbol spacing

This also shows the usage of a dash offset, which controls where rendering starts in the dash array. For
example, with a dash array of 5 10 and a dash offset of 7 the renderer starts drawing the pattern 7 pixels
from the beginning. It skips the 5 pixels pen-down section and 2 pixels of the pen-up section, then draws
the remaining 8 pixels of pen-up, then 5 down, 10 up, and so on.

The example shows how to use these features to create two synchronized sequences of dash arrays, one
drawing line segments and the other symbols.

Figure 20.20: Alternating dash and symbol

Code
1 * {
2 stroke: blue, symbol(circle);
3 stroke-width: 1px;
4 stroke-dasharray: 10 10, 5 15;
5 stroke-dashoffset: 0, 7.5;
6 }
7

8 :nth-stroke(2) {
9 stroke: #000033;

10 stroke-width: 1px;

20.2. CSS Styling 707

GeoServer User Manual, Release 2.5.x

11 size: 5px;
12 }

Details

This example uses again multi-valued properties to create two subsequent strokes applied to the same
lines.
The first stroke is a solid blue line, 1 pixel wide, with a dash array of “10 10”.
The second one instead is a repeated circle, using a dash array of “5 15” and with a dash offset of 7.5. This
makes the sequence start with 12.5 pixels of white space, then a circle (which is then centered between the
two line segments of the other pattern), then 15 pixels of white space, and so on.

The circle portrayal details are specified using the pseudo selector “nth-stroke(2)” at line 8, asking for circles
that are 5 pixels wide, not filled, and with a dark blue outline.

Line with default label

This example shows a text label on the simple line. This is how a label will be displayed in the absence of
any other customization.

Figure 20.21: Line with default label

Code
1 * {
2 stroke: red;
3 label: [name];
4 font-fill: black;
5 }

708 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Details This example paints lines with a red stroke, and then adds horizontal black labels at the center of
the line, using the “name” attribute to fill the label.

_css_line_

Labels along line with perpendicular offset

This example shows a text label on the simple line, just like the previous example, but will force the label
to be parallel to the lines, and will offset them a few pixels away.

Figure 20.22: Line with default label

Code
1 * {
2 stroke: red;
3 label: [name];
4 label-offset: 7px;
5 font-fill: black;
6 }

Details This example is line by line identical to the previous one, but it add a new attribute “label-offset”,
which in the case of lines, when having a single value, is intepreted as a perpendicular offset from the line.
The label is painted along a straight line, parallel to the line orientation in the center point of the label.

Label following line

This example renders the text label to follow the contour of the lines.

Code
1 * {
2 stroke: red;
3 label: [name];
4 font-fill: black;
5 -gt-label-follow-line: true;
6 }

20.2. CSS Styling 709

GeoServer User Manual, Release 2.5.x

Figure 20.23: Label following line

Details As the Line with default label example showed, the default label behavior isn’t optimal.

This example is similar to the Line with default label example with the exception of line 5 where the “-gt-
label-follow-line” option is specified, which forces the labels to strickly follow the line.

Not all labels are visible partly because of conflict resolution, and partly because the renderer cannot find
a line segment long and “straight” enough to paint the label (labels are not painted over sharp turns by
default).

Optimized label placement

This example optimizes label placement for lines such that the maximum number of labels are displayed.

Code
1 * {
2 stroke: red;
3 label: [name];
4 font-fill: black;
5 -gt-label-follow-line: true;
6 -gt-label-max-angle-delta: 90;
7 -gt-label-max-displacement: 400;
8 -gt-label-repeat: 150;
9 }

Details This example is similar to the previous example, Label following line. The only differences are
contained in lines 6-8. Line 6 sets the maximum angle that the label will follow. This sets the label to never
bend more than 90 degrees to prevent the label from becoming illegible due to a pronounced curve or
angle. Line 7 sets the maximum displacement of the label to be 400 pixels. In order to resolve conflicts with
overlapping labels, GeoServer will attempt to move the labels such that they are no longer overlapping.
This value sets how far the label can be moved relative to its original placement. Finally, line 8 sets the

710 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.24: Optimized label

labels to be repeated every 150 pixels. A feature will typically receive only one label, but this can cause
confusion for long lines. Setting the label to repeat ensures that the line is always labeled locally.

Optimized and styled label

This example improves the style of the labels from the Optimized label placement example.

Figure 20.25: Optimized and styled label

Code
1 * {
2 stroke: red;
3 label: [name];
4 font-family: Arial;
5 font-weight: bold;
6 font-fill: black;
7 font-size: 10;

20.2. CSS Styling 711

GeoServer User Manual, Release 2.5.x

8 halo-color: white;
9 halo-radius: 1;

10 -gt-label-follow-line: true;
11 -gt-label-max-angle-delta: 90;
12 -gt-label-max-displacement: 400;
13 -gt-label-repeat: 150;
14 }

Details This example is similar to the Optimized label placement. The only differences are:

• The font family and weight have been specified

• In order to make the labels easier to read, a white “halo” has been added. The halo draws a thin 1
pixel white border around the text, making it stand out from the background.

Attribute-based line

This example styles the lines differently based on the “type” (Road class) attribute.

Figure 20.26: Attribute-based line

Code
1 [type = ’local-road’] {
2 stroke: #009933;
3 stroke-width: 2;
4 z-index: 0;
5 }
6

7 [type = ’secondary’] {
8 stroke: #0055CC;
9 stroke-width: 3;

10 z-index: 1;

712 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

11 }
12

13 [type = ’highway’] {
14 stroke: #FF0000;
15 stroke-width: 6;
16 z-index: 2;
17 }

Details
Note: Refer to the Example lines layer to see the attributes for the layer. This example has eschewed labels in
order to simplify the style, but you can refer to the example Optimized and styled label to see which attributes
correspond to which points.

There are three types of road classes in our fictional country, ranging from back roads to high-speed free-
ways: “highway”, “secondary”, and “local-road”. In order to make sure the roads are rendered in the
proper order of importance, a “z-index” attribute has been placed in each rule.

The three rules are designed as follows:

Rule order Rule name / type Color Size
1 local-road #009933 (green) 2
2 secondary #0055CC (blue) 3
3 highway #FF0000 (red) 6

Lines 1-5 comprise the first rule, the filter matches all roads that the “type” attribute has a value of “local-
road”. If this condition is true for a particular line, the rule renders it dark green, 2 pixels wide. All these
lines are rendered first, and thus sit at the bottom of the final map.

Lines 7-11 match the “secondary” roads, painting them dark blue, 3 pixels wide. Given the “z-index” is 1,
they are rendered after the local roads, but below the highways.

Lines 13-17 match the “highway” roads, painting them red 6 pixels wide. These roads are pained last, thus,
on top of all others.

Zoom-based line

This example alters the Simple line style at different zoom levels.

Code
1 * {
2 stroke: #009933;
3 }
4

5 [@scale < 180000000] {
6 stroke-width: 6;
7 }
8

9 [@scale > 180000000] [@scale < 360000000] {
10 stroke-width: 4;
11 }
12

13 [@scale > 360000000] {
14 stroke-width: 2;
15 }

20.2. CSS Styling 713

GeoServer User Manual, Release 2.5.x

Figure 20.27: Zoom-based line: Zoomed in

Figure 20.28: Zoom-based line: Partially zoomed

714 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.29: Zoom-based line: Zoomed out

Details It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking
map. This example varies the thickness of the lines according to the zoom level (or more accurately, scale
denominator). Scale denominators refer to the scale of the map. A scale denominator of 10,000 means the
map has a scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules. The three rules are designed as follows:

Rule order Rule name Scale denominator Line width
1 Large 1:180,000,000 or less 6
2 Medium 1:180,000,000 to 1:360,000,000 4
3 Small Greater than 1:360,000,000 2

The order of these rules does not matter since the scales denominated in each rule do not overlap.

The first rule provides the stroke color used at all zoom levels, dark gray, while the other three rules cascade
over it applying the different stroke widths based on the current zoom level leveraging the “@scale” pseudo
attribute. The “@scale” pseudo attribute can only be compared using the “<” and “>” operators, using any
other operator will result in errors.

The result of this style is that lines are drawn with larger widths as one zooms in and smaller widths as one
zooms out.

Polygons

Polygons are two dimensional shapes that contain both an outer edge (or “stroke”) and an inside (or “fill”).
A polygon can be thought of as an irregularly-shaped point and is styled in similar ways to points.

20.2. CSS Styling 715

GeoServer User Manual, Release 2.5.x

Example polygons layer

The polygons layer used below contains county information for a fictional country. For reference, the
attribute table for the polygons is included below.

fid (Feature ID) name (County name) pop (Population)
polygon.1 Irony County 412234
polygon.2 Tracker County 235421
polygon.3 Dracula County 135022
polygon.4 Poly County 1567879
polygon.5 Bearing County 201989
polygon.6 Monte Cristo County 152734
polygon.7 Massive County 67123
polygon.8 Rhombus County 198029

Download the polygons shapefile

Simple polygon

This example shows a polygon filled in blue.

Figure 20.30: Simple polygon

Code
1 * {
2 fill: #000080;
3 }

Details This simple rule applies a dark blue (#000080) fill to all the polygons in the dataset.

Note: The light-colored borders around the polygons in the figure are artifacts of the renderer caused by
the polygons being adjacent. There is no border in this style.

716 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Simple polygon with stroke

This example adds a 2 pixel white stroke to the Simple polygon example.

Figure 20.31: Simple polygon with stroke

Code
1 * {
2 fill: #000080;
3 stroke: #FFFFFF;
4 stroke-width: 2;
5 }

Details This example is similar to the Simple polygon example above, with the addition of the “stroke” and
“stroke-width” attributes, that add a white, 2 pixels wide border around each polygon.

Transparent polygon

This example builds on the Simple polygon with stroke example and makes the fill partially transparent by
setting the opacity to 50%.

Code
1 * {
2 fill: #000080;
3 fill-opacity: 0.5;
4 stroke: #FFFFFF;
5 stroke-width: 2;
6 }

20.2. CSS Styling 717

GeoServer User Manual, Release 2.5.x

Figure 20.32: Transparent polygon

Details This example is similar to the Simple polygon with stroke example, save for defining the fill’s opacity
in line 3. The value of 0.5 results in partially transparent fill that is 50% opaque. An opacity value of 1
would draw the fill as 100% opaque, while an opacity value of 0 would result in a completely transparent
(0% opaque) fill. In this example, since the background is white, the dark blue looks lighter. Were the points
imposed on a dark background, the resulting color would be darker.

Graphic fill

This example fills the polygons with a tiled graphic.

Code
1 * {
2 fill: url("colorblocks1.png");
3 fill-mime: ’image/png’;
4 }

Details This style fills the polygon with a tiled graphic. The graphic is selected providing a url for the
fill, which in this case is meant to the relative to the styles directory contained within the data directory
(an absolute path could have been provided, as well as a internet reference). Line 3 specifies that the image
itself is a png (by default the code assumes jpegs are used and will fail to parse the file unless we specify
its mime type). The size of the image is not specified, meaning the native size is going to be used. In case a
rescale is desired, the “fill-size” attribute can be used to force a different size.

Hatching fill

This example fills the polygons with a hatching pattern.

718 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.33: Graphic fill

Figure 20.34: Graphic used for fill

Figure 20.35: Hatching fill

20.2. CSS Styling 719

GeoServer User Manual, Release 2.5.x

Code
1 * {
2 fill: symbol("shape://times");
3 }
4

5 :nth-fill(1) {
6 size: 16;
7 stroke: #990099;
8 stroke-width: 1px;
9 }

Details In this example the fill is specified to be the “shape://times” symbol, which is going to be tiled
creating a cross-hatch effect.

The details of the hatch are specified at line 5*, where the pseudo-selector ”:nth-fill(1)” is used to match the
contents of the first fill, and specify that we want a symbol large 16 pixels (the larger the symbol, the coarser
the cross hatch will be), and painted with a 1 pixel wide purple stroke.

Polygon with default label

This example shows a text label on the polygon. In the absence of any other customization, this is how a
label will be displayed.

Figure 20.36: Polygon with default label

Code
1 * {
2 fill: #40FF40;
3 stroke: white;
4 stroke-width: 2;
5 label: [name];

720 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

6 font-fill: black;
7 }

Details The single rule in the CSS applies to all feature: first it fills all polygons a light green with white
outline, and thn applies the “name” attribute as the label, using the default font (Times), with black color
and default font size (10 px).

Label halo

This example alters the look of the Polygon with default label by adding a white halo to the label.

Figure 20.37: Label halo

Code
1 * {
2 fill: #40FF40;
3 stroke: white;
4 stroke-width: 2;
5 label: [name];
6 font-fill: black;
7 halo-color: white;
8 halo-radius: 3;
9 }

Details This example builds on Polygon with default label, with the addition of a halo around the labels on
lines 7-8. A halo creates a color buffer around the label to improve label legibility. Line 9 sets the radius
of the halo, extending the halo 3 pixels around the edge of the label, and line 8 sets the color of the halo to
white. Since halos are most useful when set to a sharp contrast relative to the text color, this example uses
a white halo around black text to ensure optimum readability.

20.2. CSS Styling 721

GeoServer User Manual, Release 2.5.x

Polygon with styled label

This example improves the label style from the Polygon with default label example by centering the label on
the polygon, specifying a different font name and size, and setting additional label placement optimiza-
tions.

Figure 20.38: Polygon with styled label

Code
1 * {
2 fill: #40FF40;
3 stroke: white;
4 stroke-width: 2;
5 label: [name];
6 font-family: Arial;
7 font-size: 11px;
8 font-style: normal;
9 font-weight: bold;

10 font-fill: black;
11 label-anchor: 0.5 0.5;
12 -gt-label-auto-wrap: 60;
13 -gt-label-max-displacement: 150;
14 }

Details This example is similar to the Polygon with default label example, with additional styling options
for the labels.

The font is setup to be Arial, 11 pixels, “normal” (as opposed to “italic”) and bold.

The “label-anchor” affects where the label is placed relative to the centroid of the polygon, centering the
label by positioning it 50% (or 0.5) of the way horizontally along the centroid of the polygon, as well as
vertically in exactly the same way.

722 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Finally, there are two added touches for label placement optimization: The “gt-label-auto-wrap” attribute
ensures that long labels are split across multiple lines by setting line wrapping on the labels to 60 pixels,
whilst the “-gt-label-max-displacement” allows the label to be displaced by up to 150 pixels. This ensures
that labels are compacted and less likely to spill over polygon boundaries. Notice little Massive County in
the corner, whose label is now displayed.

Attribute-based polygon

This example styles the polygons differently based on the “pop” (Population) attribute.

Figure 20.39: Attribute-based polygon

Code
1 [parseLong(pop) < 200000] {
2 fill: #66FF66;
3 }
4

5 [parseLong(pop) >= 200000] [parseLong(pop) < 500000] {
6 fill: #33CC33;
7 }
8

9 [parseLong(pop) >= 500000] {
10 fill: #009900;
11 }

Details
Note: Refer to the Example polygons layer to see the attributes for the layer. This example has eschewed
labels in order to simplify the style, but you can refer to the example Polygon with styled label to see which
attributes correspond to which polygons.

Each polygon in our fictional country has a population that is represented by the population (“pop”) at-
tribute. This style contains three rules that alter the fill based on the value of “pop” attribute, with smaller

20.2. CSS Styling 723

GeoServer User Manual, Release 2.5.x

values yielding a lighter color and larger values yielding a darker color.

The three rules are designed as follows:

Rule order Rule name Population (“pop”) Color
1 SmallPop Less than 200,000 #66FF66
2 MediumPop 200,000 to 500,000 #33CC33
3 LargePop Greater than 500,000 #009900

The order of the rules does not matter in this case, since each shape is only rendered by a single rule.

The first rule fills light green all polygons whose “pop” attribute is below 200,000, the second paints
medium green all poygons whose “pop” attribute is between 200,000 and 500,000, while the third rule
paints dark green the remaining polygons.

What’s interesting in the filters is the use of the “parseLong” filter function: this function is necessary
because the “pop” attribute is a string, leaving it as is we would have a string comparison, whilst the
function turns it into a number, ensuring proper numeric comparisons instead.

Zoom-based polygon

This example alters the style of the polygon at different zoom levels.

Figure 20.40: Zoom-based polygon: Zoomed in

Code
1 * {
2 fill: #0000CC;
3 stroke: black;
4 }
5

6 [@scale < 100000000] {
7 stroke-width: 7;
8 label: [name];

724 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.41: Zoom-based polygon: Partially zoomed

Figure 20.42: Zoom-based polygon: Zoomed out

20.2. CSS Styling 725

GeoServer User Manual, Release 2.5.x

9 label-anchor: 0.5 0.5;
10 font-fill: white;
11 font-family: Arial;
12 font-size: 14;
13 font-weight: bold;
14 }
15

16 [@scale > 100000000] [@scale < 200000000] {
17 stroke-width: 4;
18 }
19

20 [@scale > 200000000] {
21 stroke-width: 1;
22 }

Details It is often desirable to make shapes larger at higher zoom levels when creating a natural-looking
map. This example varies the thickness of the lines according to the zoom level. Polygons already do this
by nature of being two dimensional, but another way to adjust styling of polygons based on zoom level is
to adjust the thickness of the stroke (to be larger as the map is zoomed in) or to limit labels to only certain
zoom levels. This is ensures that the size and quantity of strokes and labels remains legible and doesn’t
overshadow the polygons themselves.

Zoom levels (or more accurately, scale denominators) refer to the scale of the map. A scale denominator of
10,000 means the map has a scale of 1:10,000 in the units of the map projection.

Note: Determining the appropriate scale denominators (zoom levels) to use is beyond the scope of this
example.

This style contains three rules, defined as follows:

Rule order Rule name Scale denominator Stroke width Label display?
1 Large 1:100,000,000 or less 7 Yes
2 Medium 1:100,000,000 to 1:200,000,000 4 No
3 Small Greater than 1:200,000,000 2 No

The first rule (lines 1-4) defines the attributes that are not scale dependent: dark blue fill, black outline.

The second (lines 6-14) rule provides specific overrides for the higher zoom levels, asking for a large stroke
(7 pixels) and a label, which is only visible at this zoom level. The label is white, bold, Arial 14 pixels, its
contents are coming form the “name” attribute.

The third rule (lines 16-18) specifies a stroke width of 4 pixels for medium zoom levels, whilst for low zoom
levels the stroke width is set to 1 pixel by the last rule (lines 20-22).

The resulting style produces a polygon stroke that gets larger as one zooms in and labels that only display
when zoomed in to a sufficient level.

Rasters

Rasters are geographic data displayed in a grid. They are similar to image files such as PNG files, except
that instead of each point containing visual information, each point contains geographic information in
numerical form. Rasters can be thought of as a georeferenced table of numerical values.

One example of a raster is a Digital Elevation Model (DEM) layer, which has elevation data encoded nu-
merically at each georeferenced data point.

726 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Example raster

The raster layer that is used in the examples below contains elevation data for a fictional world. The
data is stored in EPSG:4326 (longitude/latitude) and has a data range from 70 to 256. If rendered in
grayscale, where minimum values are colored black and maximum values are colored white, the raster
would look like this:

Figure 20.43: Raster file as rendered in grayscale

Download the raster file

Two-color gradient

This example shows a two-color style with green at lower elevations and brown at higher elevations.

Figure 20.44: Two-color gradient

Code
1 * {
2 raster-channels: auto;
3 raster-color-map:
4 color-map-entry(#008000, 70)
5 color-map-entry(#663333, 256);
6 }

Details There is a single rule which applies a color map to the raster data.

20.2. CSS Styling 727

GeoServer User Manual, Release 2.5.x

The “raster-channels” attribute activates raster symbolization, the “auto” value is indicates that we are
going to use the default choice of bands to symbolize the output (either gray or RBG/RGBA depending on
the input data). There is also the possibility of providing a band name or a list of band names in case we
want to choose specific bands out of a multiband input, e.g., “1” or “1 3 7”.

The “raster-color-map” attribute builds a smooth gradient between two colors corresponding to two eleva-
tion values. Each “color-map-entry” represents one entry or anchor in the gradient:

• The first argument is the color

• The second argument is the value at which we anchor the color

• An optional third argument could specify the opacity of the pixels, as a value between 0 (fully trans-
parent) and 1 (fully opaque). The default, when not specified, is 1, fully opaque.

Line 4 sets the lower value of 70, which is styled a opaque dark green (#008000), and line 5 sets the
upper value of 256, which is styled a opaque dark brown (#663333). All data values in between these two
quantities will be linearly interpolated: a value of 163 (the midpoint between 70 and 256) will be colored as
the midpoint between the two colors (in this case approximately #335717, a muddy green).

Transparent gradient

This example creates the same two-color gradient as in the Two-color gradient as in the example above but
makes the entire layer mostly transparent by setting a 30% opacity.

Figure 20.45: Transparent gradient

Code
1 * {
2 raster-channels: auto;
3 raster-opacity: 0.3;
4 raster-color-map: color-map-entry(#008000, 70)
5 color-map-entry(#663333, 256);
6 }

Details This example is similar to the Two-color gradient example save for the addition of line 3, which sets
the opacity of the layer to 0.3 (or 30% opaque). An opacity value of 1 means that the shape is drawn 100%
opaque, while an opacity value of 0 means that the shape is rendered as completely transparent. The value
of 0.3 means that the the raster partially takes on the color and style of whatever is drawn beneath it. Since
the background is white in this example, the colors generated from the “raster-color-map” look lighter, but
were the raster imposed on a dark background the resulting colors would be darker.

728 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Brightness and contrast

This example normalizes the color output and then increases the brightness by a factor of 2.

Figure 20.46: Brightness and contrast

Code
1 * {
2 raster-channels: auto;
3 raster-contrast-enhancement: normalize;
4 raster-gamma: 0.5;
5 raster-color-map: color-map-entry(#008000, 70)
6 color-map-entry(#663333, 256);
7 }

Details This example is similar to the Two-color gradient, save for the addition of the contrast enhancement
and gamma attributes on lines 3-4. Line 3 normalizes the output by increasing the contrast to its maximum
extent. Line 4 then adjusts the brightness by a factor of 0.5. Since values less than 1 make the output
brighter, a value of 0.5 makes the output twice as bright.

Three-color gradient

This example creates a three-color gradient in primary colors. In addition, we want to avoid displaying
data outside of the chosen range, leading some data not to be rendered at all.

Figure 20.47: Three-color gradient

20.2. CSS Styling 729

GeoServer User Manual, Release 2.5.x

Code
1 * {
2 raster-channels: auto;
3 raster-color-map:
4 color-map-entry(black, 150, 0)
5 color-map-entry(blue, 150)
6 color-map-entry(yellow, 200)
7 color-map-entry(red, 250)
8 color-map-entry(black, 250, 0)
9 }

Details This example creates a three-color gradient, with two extra rules to make ranges of color disap-
pear. The color map behavior is such that any value below the lowest entry gets the same color as that
entry, and any value above the last entry gets the same color as the last entry, while everything in between
is linearly interpolated (all values must be provided from lower to higher). Line 4 associates value 150
and below with a transparent color (0 opacity, that is, fully transparent), and so does line 8, which makes
transparent every value above 250. The lines in the middle create a gradient going from blue, to yellow, to
red.

Alpha channel

This example creates an “alpha channel” effect such that higher values are increasingly transparent.

Figure 20.48: Alpha channel

Code
1 * {
2 raster-channels: auto;
3 raster-color-map: color-map-entry(#008000, 70)
4 color-map-entry(#663333, 256, 0);
5 }

Details An alpha channel is another way of referring to variable transparency. Much like how a gradient
maps values to colors, each entry in a “raster-color-map” can have a value for opacity (with the default
being 1.0 or completely opaque).

In this example, there is a “raster-color-map” with two entries: line 3 specifies the lower bound of 70 be
colored dark green (#008000), while line 4 specifies the upper bound of 256 also be colored dark green
but with an opacity value of 0. This means that values of 256 will be rendered at 0% opacity (entirely

730 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

transparent). Just like the gradient color, the opacity is also linearly interpolated such that a value of 163
(the midpoint between 70 and 256) is rendered at 50% opacity.

Discrete colors

This example shows a gradient that is not linearly interpolated but instead has values mapped precisely to
one of three specific colors.

Figure 20.49: Discrete colors

Code
1 * {
2 raster-channels: auto;
3 raster-color-map-type: intervals;
4 raster-color-map: color-map-entry(#008000, 150)
5 color-map-entry(#663333, 256);
6 }

Details Sometimes color bands in discrete steps are more appropriate than a color gradient. The “raster-
color-map-type: intervals” attribute sets the display to output discrete colors instead of a gradient. The
values in each entry correspond to the upper bound for the color band such that colors are mapped to
values less than the value of one entry but greater than or equal to the next lower entry. For example, line 4
colors all values less than 150 to dark green (#008000) and line 5 colors all values less than 256 but greater
than or equal to 150 to dark brown (#663333).

Many color gradient

This example shows a gradient interpolated across eight different colors.

Code
1 * {
2 raster-channels: auto;
3 raster-color-map:
4 color-map-entry(black, 95)
5 color-map-entry(blue, 110)
6 color-map-entry(green, 135)
7 color-map-entry(red, 160)
8 color-map-entry(purple, 185)

20.2. CSS Styling 731

GeoServer User Manual, Release 2.5.x

Figure 20.50: Many color gradient

9 color-map-entry(yellow, 210)
10 color-map-entry(cyan, 235)
11 color-map-entry(white, 256)
12 }

Details This example is similar to the previous ones, and creates a color gradient between 8 colors as
reported in the following table

Entry number Value Color
1 95 Black
2 110 Blue
3 135 Green
4 160 Red
5 185 Purple
6 210 Yellow
7 235 Cyan
8 256 White

20.2.10 CSS Styling Examples

The following pages contain CSS styling examples, groped by topics

Fills with randomized symbols

Starting with GeoServer 2.4.2 it is possible to generate fills by randomly repeating a symbol in the polygons
to be filled. Please refer to the equivalent SLD chapter for details on the meaning of the various options.

Simple random distribution

Here is an example distributing up to 50 small “slash” symbols in a 100x100 pixel tile (in case of conflicts the
symbol will be skipped), enabling random symbol rotation), and setting the seed to “5” to get a distribution
different than the default one:

* {
fill: symbol("shape://slash");
stroke: black;
-gt-fill-random: grid;

732 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

-gt-fill-random-seed: 5;
-gt-fill-random-rotation: free;
-gt-fill-random-symbol-count: 50;
-gt-fill-random-tile-size: 100;

}

:fill {
size: 8;
stroke: blue;
stroke-width: 4;
stroke-linecap: round;

}

Figure 20.51: Random distribution of a diagonal line

Thematic map using point density

Randomized distributions can also be used for thematic mapping, for example, here is the SLD for a version
of topp:states that displays the number of inhabitantìs varying the density of a random point distribution:

* {
fill: symbol("circle");
stroke: black;
-gt-fill-random: grid;
-gt-fill-random-tile-size: 100;

}

:fill {
size: 2;
fill: darkgray;

}

[PERSONS < 2000000] {
-gt-fill-random-symbol-count: 50;

}

[PERSONS >= 2000000] [PERSONS < 4000000] {
-gt-fill-random-symbol-count: 150;

}

20.2. CSS Styling 733

GeoServer User Manual, Release 2.5.x

[PERSONS >= 4000000] {
-gt-fill-random-symbol-count: 500;

}

Figure 20.52: Thematic map via point density approach

Detecting switch from raster to vector representation in KML

GeoServer 2.4 added a new icon server that KML output uses to make sure the point symbolisers look the
same as in a normal WMS call no matter what scale they are looked at.

This may pose some issue when working in the default KML generation mode, where the map is a ground
overlay up to a certain scale, and switches to a vector, clickable representation once the number of features
in the visualization fall below a certain scale (as controlled by the KMSCORE parameter): the end user is not
informed “visually” that the switch happened.

There is however a custom enviroment variable, set by the KML generator, that styles can leverage to know
whether the KML generation is happening in ground overlay or vector mode.

The following example leverages this function to show a larger point symbol when points become clickable:

* {
mark: symbol("circle");

}

:mark [env(’kmlOutputMode’) = ’vector’] {
size: 8;

}

:mark {
size: 4;
fill: yellow;
stroke: black;

}

This will result in the following output:

One important bit about the above CSS is that the order of the rules is important. The CSS to SLD translator
uses specificity to decide which rule overrides which other one, and the specificity is driven, at the time
of writing, only by scale rules and access to attributes. The filter using the kmlOutputMode filter is not
actually using any feature attribute, so it has the same specificity as the catch all :mark rule. Putting it first
ensures that it overrides the catch all rule anyways, while putting it second would result in the output size
being always 4.

734 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.53: Raster output, points are not yet clickable

Figure 20.54: Vector output, points are clickable and painted as larger icons

20.2. CSS Styling 735

GeoServer User Manual, Release 2.5.x

Assorted Short Examples

Markers Sized by an Attribute Value

The following produces square markers at each point, but these are sized such that the area of each marker
is proprtional to the REPORTS attribute. When zoomed in (when there are less points in view) the size of
the markers is doubled to make the smaller points more noticable.

* {
mark: symbol(square);

}

[@scale > 1000000] :mark {
size: [sqrt(REPORTS)];

}

/* So that single-report points can be more easily seen */
[@scale < 1000000] :mark {

size: [sqrt(REPORTS)*2];
}

This example uses the sqrt function. There are many functions available for use in CSS and SLD. For more
details read - Filter Function Reference

Specifying a Geometry Attribute

In some cases, typically when using a database table with multiple geometry columns, it’s necessary to
specify which geometry to use. For example, let’s suppose you have a table containing routes start and
end both containing point geometries. The following CSS will style the start with a triangle mark, and the
end with a square.

* {
geometry: [start], [end];
mark: symbol(triangle), symbol(square);

}

Generating a Geometry (Geometry Transformations)

Taking the previous example a bit further, we can also perform computations on-the-fly to generate the
geometries that will be drawn. Any operation that is available for GeoServer Geometry transformations in
SLD is also available in CSS styles. To use them, we simply provide a more complex expression in the
geometry property. For example, we could mark the start and end points of all the paths in a line layer (you
can test this example out with any line layer, such as the sf:streams layer that is included in GeoServer’s
default data directory.)

* {
geometry: [startPoint(the_geom)], [endPoint(the_geom)];
mark: symbol(triangle), symbol(square);

}

736 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Rendering Different Geometry Types (lines/points) with a Single Style

As one more riff on the geometry examples, we’ll show how to render both the original line and the
start/endpoints in a single style. This is accomplished by using stroke-geometry and mark-geometry
to specify that different geometry expressions should be used for symbols compared with strokes.

* {
stroke-geometry: [the_geom];
stroke: blue;
mark-geometry: [startPoint(the_geom)], [endPoint(the_geom)];
mark: symbol(triangle), symbol(square);

}

20.3 Excel WFS Output Format

The GeoServer Excel plugin adds the ability to output WFS responses in either Excel 97-2003 (.xls) or
Excel 2007 (.xlsx) formats.

20.3.1 Installation

1. Download the Excel plugin for your version of GeoServer from the download page.

2. Unzip the archive into the WEB-INF/lib directory of the GeoServer installation.

3. Restart GeoServer.

20.3.2 Usage

When making a WFS request, set the outputFormat to excel (for Excel 97-2003) or excel2007 (for Excel
2007).

20.3.3 Examples

Excel 97-2003 GET: http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=topp:states&outputFormat=excel

Excel 2007 GET: http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=topp:states&outputFormat=excel2007

Excel 97-2003 POST:

<wfs:GetFeature service="WFS" version="1.1.0"
outputFormat="excel"
xmlns:topp="http://www.openplans.org/topp"
xmlns:wfs="http://www.opengis.net/wfs"
xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/wfs

http://schemas.opengis.net/wfs/1.1.0/wfs.xsd">
<wfs:Query typeName="topp:states" />

</wfs:GetFeature>

20.3. Excel WFS Output Format 737

http://geoserver.org/display/GEOS/Download
http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=topp:states&outputFormat=excel
http://localhost:8080/geoserver/wfs?request=GetFeature&version=1.1.0&typeName=topp:states&outputFormat=excel2007

GeoServer User Manual, Release 2.5.x

20.3.4 Limitations

Excel 97-2003 files are stored in a binary format and are thus space-efficient, but have inherent size limita-
tions (65,526 rows per sheet; 256 columns per sheet).

Excel 2007 files are XML-based, and have much higher limits (1,048,576 rows per sheet; 16,384 columns per
sheet). However, because they are text files Excel 2007 files are usually larger than Excel 97-2003 files.

If the number of rows in a sheet or characters in a cell exceeds the limits of the chosen Excel file format,
warning text is inserted to indicate the truncation.

20.4 GeoSearch

20.4.1 GeoSearch Indexing Module

The GeoSearch indexing module adds support to GeoServer for exposing your data to Google’s GeoSearch.
This makes it so more people can find your data, by searching directly on Google Maps or Google Earth.
The format exposed is KML, so other search engines will also be able to crawl it when they are ready -
Google is just the first to support it for sure. By default no data is published, but we highly encourage you
to if your data can be publicly available, to help grow the wider geospatial web. Publishing is easy, as it is
a part of the administration interface. For more information about geosearch see this blog.

20.4.2 How It Works

The GeoSearch module adds a sitemap.xml endpoint in the GeoServer REST API; that is,
http://localhost:8080/geoserver/rest/sitemap.xml is your sitemap. By submitting the sitemap
through Google’s webmaster tools, you can get your map layers to show up in searches on
http://maps.google.com/.

20.4.3 Step By Step

A more explicit guide to using the GeoSearch module follows.

1. Load your data as normal.

2. Go to the Layer configuration page in GeoServer’s admin console for each layer you would like to
expose, and check the ‘enable searching’ checkbox on the Publishing tab.

3. Submit your sitemap.xml using Google’s webmaster tools. From your dashboard, pick the do-
main on which your server lives. In the menu on the left, click on “Sitemaps” and then
“Add Sitemap”. You are adding a “General Web Sitemap”, and provide the URL equivalent
http://localhost:8080/geoserver/rest/sitemap.xml .

The reason we are using “General Web Sitemap”, as opposed to a “Geo Sitemap”, is that sitemap.xml is
really a sitemap index that links to a geo sitemap for each layer.

20.4.4 Behind the Scenes

GeoServer already has support for breaking up a dataset into regionated tiles. The information about what
features belong in each tile is stored in an H2 database in $GEOSERVER_DATA_DIR/geosearch . We use
this information when creating the sitemaps for Google. However, since the hierarchy may not be fully
explored by the time a sitemap is submitted, the sitemaps also contain links to tiles deeper in the hierarchy,
thereby expanding it. Some of these tiles may be empty, in which case Googlebot will receive a 204 response.

738 Chapter 20. Extensions

http://googlemapsapi.blogspot.com/2008/05/geo-search-20-data-in-data-out.html
http://localhost:8080/geoserver/rest/sitemap.xml
http://maps.google.com/
http://localhost:8080/geoserver/rest/sitemap.xml

GeoServer User Manual, Release 2.5.x

20.4.5 Big datasets

If you are making big datasets available, more than 50 000 individual features, up to 2,000,000, you should
consider doing the following. The main burden is to sort the features according to an attribute, so that they
are output in order of importance and included in exactly one tile.

1. Use a backend that supports queries, such as Postgis. You can use shp2psql to convert from a Shapefile
to a SQL format supported by Postgis. Be sure to specify that you want a GIST (geospatial index) to
be created, and provide the SRS. (-I and -s)

2. Make sure your database has a primary index (an auto-incrementing integer is fine) and a spatial
index on the geometry column

3. Put an index on the column that you are going to sort the feature by. If you are using the size of
the geometry, consider making an auxilliary column that contains the precalculated value and put
an index on that. Note that GeoServer always sorts in descending order, so features you consider
important should have a high value.

4. In GeoServer’s feature type configuration, be sure to use “native-sorting” for the regionating strategy,
and your chosen column as the regionating attribute.

5. KML Feature Limit should generally be set to 50. It’s a balancing act between too much information
per tile (Googlebot prefers document that are less than 1 megabyte) and a big hierarchy that takes
long to build.

20.5 Imagemap

HTML ImageMaps have been used for a long time to create interactive images in a light way. Without using
Flash, SVG or VML you can simply associate different links or tooltips to different regions of an image. Why
can’t we use this technique to achieve the same result on a GeoServer map? The idea is to combine a raster
map (png, gif, jpeg, ...) with an HTML ImageMap overlay to add links, tooltips, or mouse events behavior
to the map.

An example of an ImageMap adding tooltips to a map:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" title="This is a tooltip"/>
<area shape="poly" coords="518,113 517,114 516,115 515,114" title="Another tooltip"/>

</map>

An example of an ImageMap adding links to a map:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" href="http://www.mylink.com"/>
<area shape="poly" coords="518,113 517,114 516,115 515,114" href="http://www.mylink2.com"/>

</map>

A more complex example adding interactive behaviour on mouse events:

<map name="mymap">

<area shape="poly" coords="536,100 535,100 534,101 533,101 532,102" onmouseover="onOver(’<featureid>’)" onmouseout="onOut(’<featureid>’)"/>
<area shape="poly" coords="518,113 517,114 516,115 515,114" onmouseover="onOver(’<featureid>’)" onmouseout="onOut(’<featureid>’)"/>

</map>

20.5. Imagemap 739

GeoServer User Manual, Release 2.5.x

To realize this in GeoServer some great community contributors developed an HTMLImageMap GetMap-
Producer for GeoServer, able to render an HTMLImageMap in response to a WMS GetMap request.

The GetMapProducer is associated to the text/html mime type. It produces, for each requested layer, a
<map>...</map> section containing the geometries of the layer as distinct <area> tags. Due to the limita-
tions in the shape types supported by the <area> tag, a single geometry can be split into multiple ones. This
way almost any complex geometry can be rendered transforming it into simpler ones.

To add interactive attributes we use styling. In particular, an SLD Rule containing a TextSymbolizer with a
Label definition can be used to define dynamic values for the <area> tags attributes. The Rule name will be
used as the attribute name.

As an example, to define a title attribute (associating a tooltip to the geometries of the layer) you can use a
rule like the following one:

<Rule>
<Name>title</Name>
<TextSymbolizer>

<Label><PropertyName>MYPROPERTY</PropertyName></Label>
</TextSymbolizer>

</Rule>

To render multiple attributes, just define multiple rules, with different names (href, onmouseover, etc.)

Styling support is not limited to TextSymbolizers, you can currently use other symbolizers to detail <area>
rendering. For example you can:

• use a PointSymbolizer with a Size property to define point sizes.

• use LineSymbolizer with a stroke-width CssParameter to create thick lines.

20.6 INSPIRE

The INSPIRE extension allows GeoServer to be compliant with the View Service specification put forth by
the Infrastructure for Spatial Information in the European Community (INSPIRE) directive.

In a practical sense, the INSPIRE plugin extends the WMS capabilities document to include the follow-
ing extra information: Metadata URL, or the link to the metadata associated with the WMS layers; and
SupportedLanguages, for detailing the default language.

Note: The current INSPIRE extension fulfills “Scenario 1” of the View Service extended metadata require-
ments. “Scenario 2” is not currently supported in GeoServer, but is certainly possible to implement. If you
are interested in implementing or funding this, please raise the issue on the GeoServer mailing list.

For more information on the INSPIRE directive, please see the European Commission’s INSPIRE website.

20.6.1 Installing the INSPIRE extension

The INSPIRE extension is a official extension available at GeoServer download pages (starting with
GeoServer 2.3.2).

1. Download the inspire zip release file from the download page of your version of GeoServer

2. Extract the archive and copy the contents into the <GEOSERVER_ROOT>/WEB-INF/lib directory.

3. Restart GeoServer.

740 Chapter 20. Extensions

http://inspire.jrc.ec.europa.eu/
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

To verify that the extension was installed successfully, please see the next section on Using the INSPIRE
extension.

20.6.2 Using the INSPIRE extension

When the INSPIRE extension has been properly installed, there will be two changes to GeoServer.

1. The GeoServer WMS 1.3.0 capabilities document, as well as the WFS 1.1 and 2.0 will contain extra
content relevant to INSPIRE.

2. The WMS and WFS sections of the Web Administration Interface will show extra configuration options.

Extended WMS Capabilities

Note: The INSPIRE directive is relevant to WMS 1.3.0 only, so please make sure that you are viewing the
correct capabilities document.

The WMS 1.3.0 capabilities document will be extended once the INSPIRE extension is installed. Those
changes are:

1. Two additional entries in the xsi:schemaLocation of the root <WMS_Capabilities> tag:

• http://inspire.ec.europa.eu/schemas/inspire_vs/1.0

• http://<GEOSERVER_ROOT>/www/inspire/inspire_vs.xsd

2. An additional ExtendedCapabilities block. This tag block shows up in between the tags for
<Exception> and <Layer>. It contains the following information:

• Metadata URL and MIME type

• Default Language

• Supported Language(s)

• Response Language(s)

By default, this block will contain the following content:

<inspire_vs:ExtendedCapabilities>
<inspire_common:MetadataUrl xsi:type="inspire_common:resourceLocatorType">

<inspire_common:URL/>
<inspire_common:MediaType>application/vnd.iso.19139+xml</inspire_common:MediaType>

</inspire_common:MetadataUrl>
<inspire_common:SupportedLanguages xsi:type="inspire_common:supportedLanguagesType">

<inspire_common:DefaultLanguage>
<inspire_common:Language>eng</inspire_common:Language>

</inspire_common:DefaultLanguage>
<inspire_common:SupportedLanguage>

<inspire_common:Language>eng</inspire_common:Language>
</inspire_common:SupportedLanguage>

</inspire_common:SupportedLanguages>
<inspire_common:ResponseLanguage>

<inspire_common:Language>eng</inspire_common:Language>
</inspire_common:ResponseLanguage>

</inspire_vs:ExtendedCapabilities>

This information can be changed via the WMS section of the Web Administration Interface.

20.6. INSPIRE 741

GeoServer User Manual, Release 2.5.x

Note: If you do not see this content in the WMS 1.3.0 capabilities document, the INSPIRE extension may
not be installed properly. Reread the section on Installing the INSPIRE extension and verify that the correct
file was saved to the correct directory.

Extended WMS configuration

As with the WMS 1.3.0 capabilities document, the WMS configuration in the Web Administration Interface
is also extended to allow for changing the above published information. INSPIRE-specific configuration
is accessed on the main WMS page in the Web Administration Interface. This is accessed by clicking on the
WMS link on the sidebar.

Note: You must be logged in as an administrator to edit WMS configuration.

Once on the WMS configuration page, there will be a block titled INSPIRE. This section will have three
settings:

• Language combo box, for setting the Supported, Default, and Response languages

• ISO 19139 Service Metadata URL field, a URL containing the location of the metadata associated with
the WMS

• Service Metadata Type combo box, for detailing whether the metadata came from a CSW (Catalog Ser-
vice) or a standalone metadata file

Figure 20.55: INSPIRE-related options

Note: If you do not see this content in the WMS configuration page, the INSPIRE extension may not be
installed properly. Reread the section on Installing the INSPIRE extension and verify that the correct file was
saved to the correct directory.

After clicking Submit on this page, any changes will be immediately reflected in the WMS 1.3.0 capabilities
document.

Note: Currently GeoServer does not offer the ability to configure alternate languages, as there is no way for
an administrator to configure multiple responses. There is an open issue on the GeoServer issue tracker that
we are hoping to secure funding for. If you are interested in implementing or funding this improvement,
please raise the issue on the GeoServer mailing list.

Extended WFS Capabilities

Note: The INSPIRE directive is relevant to WFS 1.1 and 2.0 only, so please make sure that you are viewing
the correct capabilities document.

742 Chapter 20. Extensions

http://jira.codehaus.org/browse/GEOS-4502

GeoServer User Manual, Release 2.5.x

The WFS 1.1.0 capabilities document will be extended once the INSPIRE extension is installed. Those
changes are:

1. Two additional entries in the xsi:schemaLocation of the root element tag:

http://inspire.ec.europa.eu/schemas/common/1.0/common.xsd
http://inspire.ec.europa.eu/schemas/inspire_dls/1.0/inspire_dls.xsd

2. An additional ExtendedCapabilities block with the following information:

• Metadata URL and MIME type

• Default Language

• Supported Language(s)

• Response Language(s)

• Spatial data identifiers

By default, this block will contain the following content:

<inspire_vs:ExtendedCapabilities>
<inspire_common:MetadataUrl xsi:type="inspire_common:resourceLocatorType">

<inspire_common:URL/>
<inspire_common:MediaType>application/vnd.iso.19139+xml</inspire_common:MediaType>

</inspire_common:MetadataUrl>
<inspire_common:SupportedLanguages xsi:type="inspire_common:supportedLanguagesType">

<inspire_common:DefaultLanguage>
<inspire_common:Language>eng</inspire_common:Language>

</inspire_common:DefaultLanguage>
<inspire_common:SupportedLanguage>

<inspire_common:Language>eng</inspire_common:Language>
</inspire_common:SupportedLanguage>

</inspire_common:SupportedLanguages>
<inspire_common:ResponseLanguage>

<inspire_common:Language>eng</inspire_common:Language>
</inspire_common:ResponseLanguage>

</inspire_vs:ExtendedCapabilities>

The spatial data identifiers section is mandatory, but cannot be filled by default, it is your duty to pro-
vide at least one spatial dataset identifier (see the INSPIRE download service technical guidelines for more
information).

This information can be changed via the WFS section of the Web Administration Interface.

Note: If you do not see this content in the WFS 1.1/2.0 capabilities document, the INSPIRE extension may
not be installed properly. Reread the section on Installing the INSPIRE extension and verify that the correct
file was saved to the correct directory.

Extended WFS configuration

As with the WFS capabilities document, the WFS configuration in the Web Administration Interface is also ex-
tended to allow for changing the above published information. INSPIRE-specific configuration is accessed
on the main WFS page in the Web Administration Interface. This is accessed by clicking on the WFS link on
the sidebar.

Note: You must be logged in as an administrator to edit WFS configuration.

20.6. INSPIRE 743

GeoServer User Manual, Release 2.5.x

Once on the WFS configuration page, there will be a block titled INSPIRE. This section will have three
settings:

• Language combo box, for setting the Supported, Default, and Response languages

• ISO 19139 Service Metadata URL field, a URL containing the location of the metadata associated with
the WFS

• Service Metadata Type combo box, for detailing whether the metadata came from a CSW (Catalog Ser-
vice) or a standalone metadata file

• Spatial dataset identifers table, where you can specify a code (mandatory) and a namespace (optional)
for each spatial data set the WFS server is offering

Figure 20.56: INSPIRE-related options

Note: If you do not see this content in the WFS configuration page, the INSPIRE extension may not be
installed properly. Reread the section on Installing the INSPIRE extension and verify that the correct file was
saved to the correct directory.

After clicking Submit on this page, any changes will be immediately reflected in the WFS 1.1 and WFS 2.0
capabilities documents.

Note: Currently GeoServer does not offer the ability to configure alternate languages, as there is no way for
an administrator to configure multiple responses. There is an open issue on the GeoServer issue tracker that
we are hoping to secure funding for. If you are interested in implementing or funding this improvement,
please raise the issue on the GeoServer mailing list.

More information

A tutorial on setting up GeoServer with the INSPIRE extension is available at:
http://location.defra.gov.uk/2011/07/data-publisher-how-to-guides/. See the section on Setting up
GeoServer on a Windows Machine.

20.7 Monitoring

The monitor extension tracks requests made against a GeoServer instance. With the extension request data
can be persisted to a database, used to generate simple reports , and routed to a customized request audit

744 Chapter 20. Extensions

http://jira.codehaus.org/browse/GEOS-4502
http://location.defra.gov.uk/2011/07/data-publisher-how-to-guides/

GeoServer User Manual, Release 2.5.x

log.

To get the extension proceed to Installing the Monitor Extension. To learn more about how it works jump to
the Monitoring Overview section.

20.7.1 Installing the Monitor Extension

Note: If performing an upgrade of the monitor extension please see Upgrading.

The monitor extension is not part of the GeoServer core and must be installed as a plug-in. To install:

1. Navigate to the GeoServer download page.

2. Find the page that matches the version of the running GeoServer.

3. Download the monitor extension. The download link will be in the Extensions section under Other.

Note: The Database Persistence function is packaged as a separate extension. If you plan to use it both
the core “monitor” and “monitor-hibernate” extensions must be installed.

4. Extract the files in this archive to the WEB-INF/lib directory of your GeoServer installation.

5. Restart GeoServer

Verifying the Installation

There are two ways to verify that the monitoring extension has been properly installed.

1. Start GeoServer and open the Web Administration Interface. Log in using the administration account.
If successfully installed, there will be a Monitor section on the left column of the home page.

Figure 20.57: Monitoring section in the web admin interface

1. Start GeoServer and navigate to the current GeoServer Data Directory. If successfully installed, a new
directory named monitoring will be created in the data directory.

20.7.2 Upgrading

The monitoring extension uses Hibernate to persist request data. Changes to the extension over time affect
the structure of the underlying database, which should be taken into consideration before performing an
upgrade. Depending on the nature of changes in an upgrade, it may involve manually making changes to
the underlying database before deploying a new version of the extension.

The sections below provides a history of such changes, and recommended actions that should be taken as
part of the upgrade. Upgrades are grouped into two categories:

• minor upgrades that occur during a minor GeoServer version change, for example going from 2.1.2 to
2.1.3. These changes are backward compatible in that no action is specifically required but potentially

20.7. Monitoring 745

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

recommended. In these cases performing an upgrade without any action still result in the monitoring
extension continuing to function.

• major upgrades that occur during a major GeoServer version change, for example going from 2.1.2 to
2.2.0. These changes may be backward compatible, but not necessarily. In these cases performing an
upgrade without any action could potentially result in the monitoring extension ceasing to function,
and may result in significant changes to the underlying database.

For each change the following information is maintained:

• The released version containing the change

• The date of the change

• The subversion revision of the change

• The jira issue referring to the change

The date and subversion revision are especially useful if a nightly build of the extension is being used.

Minor upgrades

Column resource renamed to name in request_resources table

• Version: n/a, extension still community status

• Date: Dec 09, 2011

• Subversion revision: 16632

• Reference: GEOS-4871

Upgrading without performing any action will result in the name column being added to the
request_resources table, leaving the resource column in tact. From that point forward the resource
column will essentially be ignored. However no data from the resource column will be migrated, which
will throw off reports, resource access statistics, etc... If you wish to migrate the data perform one of the
following actions two actions.

The first is a pre upgrade action that involves simply renaming the column before deploying the new mon-
itoring extension:

ALTER TABLE request_resources RENAME COLUMN resource to name;

Alternatively the migration may occur post upgrade:

UPDATE TABLE request_resources SET name = resource where name is NULL;
ALTER TABLE request_resources DROP COLUMN resource;

Column remote_user_agent added to request table

• Version: n/a, extension still community status

• Date: Dec 09, 2011

• Subversion revision: 16634

• Reference: GEOS-4872

No action should be required here as Hibernate will simply append the new column to the table. If for
some reason this does not happen the column can be added manually:

746 Chapter 20. Extensions

https://jira.codehaus.org/browse/GEOS-4871
https://jira.codehaus.org/browse/GEOS-4871

GeoServer User Manual, Release 2.5.x

ALTER TABLE request ADD COLUMN remote_user_agent VARCHAR(1024);

Major upgrades

20.7.3 Monitoring Overview

The following diagram outlines the architecture of the monitor extension:

Figure 20.58: Monitor extension architecture

As a request is processed the monitor inserts itself at particular points in the request life cycle to capture
various information about the request. Such information includes:

• Timestamp of the origin of the request

• Total ime it took for the request to complete

• Origin of the request

• HTTP information such as the body content type, header information, etc...

And more. See the Data Reference section for a complete list.

In addition to capturing request data the monitor extension is also capable of persisting it. Two options are
provided out of the box:

• Persisting to a relational database, see Database Persistence for more details

• Piping to a log file, see Audit Logging for more details

By default the extension will do neither and simply maintain data for only the most recent requests. The
data is stored in memory meaning that if the server is restarted or shutdown this information is lost.The
Monitor Configuration section provides a comprehensive guide to configuring the monitor extension.

20.7. Monitoring 747

GeoServer User Manual, Release 2.5.x

Stored request information is made available through a simple query api that allows clients to access request
data through a HTTP interface.

20.7.4 Data Reference

The following is a list of all the attributes of a request that are captured by the monitor extension.

General

Attribute Description Type
ID Numeric identifier of the request. Every request is assigned an identifier upon

its creation.
Nu-
meric

Status Status of the request. See notes below. String
Category The type of request being made, for example an OGC service request, a REST

call, etc... See notes below.
String

Start time The time of the start of the request. Times-
tamp

End time The time of the completion of the request. Times-
tamp

Total time The total time spent handling the request, measured in milliseconds, equal to
the end time - start time.

Nu-
meric

Error
message

The exception message if the request failed or resulted in an error. String

Error The raw exception if the message failed or resulted in an error. Text
blob

Status

The status of a request changes over it’s life cycle and may have one of the following values:

• WAITING - The request has been received by the server, but is queued and not yet being actively
handled.

• RUNNING - The request is in the process of being handled by the server.

• FINISHED - The request has been completed and finished normally.

• FAILED - The request has been completed but resulted in an error.

• CANCELLED - The request was cancelled before it could complete.

• INTERRUPTED - The request was interrupted before it could complete.

Category

Requests are grouped into categories that describe the nature or type of the request. The following are the
list of all categories:

• OWS - The request is an OGC service request.

• REST - The request is a REST service request.

• OTHER - All other requests.

748 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

HTTP

The following attributes are all HTTP related.

Attribute Description Type
HTTP
method

The HTTP method, one of GET, POST, PUT, or DELETE String

Remote
address

The IP address of the client from which the request originated. String

Remote
host

The hostname corresponding to the remote address, obtained via reverse DNS
lookup.

String

Host The hostname of the server handling the request, from the point of view of the
client.

String

Internal
host

The hostname of the server handling request, from the point of view of the local
network. Availability depends on host and network configuration.

String

Path The path component of the request URL, for example: “/wms”,
“/rest/workspaces.xml”, etc...

String

Query
string

The query string component of the request URL. Typically only present when
the HTTP method is GET.

String

Body The body content of the request. Typically only present when the HTTP method
is PUT or POST.

Bi-
nary
blob

Body
content
length

The total number of bytes comprising the body of the request. Typically only
present when the HTTP method is PUT or POST.

Nu-
meric

Body
content
type

The mime type of the body content of the request, for example:
“application/json”, “text/xml; subtype=gml/3.2”, etc... Typically only present
when the HTTP method is PUT or POST.

String

Response
status

The HTTP response code, for example: 200, 401, etc... Nu-
meric

Response
length

The total number of bytes comprising the response to the request. Nu-
meric

Response
content
type

The mime type of the response to the request. String

Remote
user

The username specified parsed of the request. Only available when request
included credentials for authentication.

String

Remote
user agent

The value of the User-Agent HTTP header. String

Http
referrer

The value of the Referer HTTP header. String

OWS/OGC

The following attributes are OGC service specific.

20.7. Monitoring 749

GeoServer User Manual, Release 2.5.x

Attribute Description Type
Service The OGC service identifier, for example: “WMS”, “WFS”, etc... String
Operation The OGC operation name, for example: “GetMap”, “GetFeature”, etc... String
Sub
operation

The ogc sub operation (if it applies). For instance when the operation is a WFS
Transaction the sub operation may be one of “Insert”, “Update”, etc...

String

OWS/OGC
Version

The OGC service version, for example with WFS the version may be “1.0.0”,
“1.1.0”, etc...

String

Resources Names of resources (layers, processes, etc...) specified as part of the request. List of
String

Bounding
box

The bounding box specified as part of the request. In some cases this is not
possible to obtain this reliable, an example being a complex WFS query with a
nested “BBOX” filter.

List of
Nu-
meric

GeoIP

The following attributes are specific to GeoIP look ups and are not captured out of the box. See GeoIP for
more details.

Attribute Description Type
Remote country Name of the country of the client from which the request originated. String
Remote city Name of the city from which the request originated. String
Remote lat The latitude from which the request originated. Numeric
Remote lon The longitude from which the request originated. Numeric

20.7.5 Monitor Configuration

Many aspects of the monitor extension are configurable. All configuration files are stored in the data direc-
tory under the monitoring directory:

<data_directory>
monitoring/

db.properties
filter.properties
hibernate.properties
monitor.properties

The monitor.properties file is the main configuration file whose contents are described in the following
sections. Other configuration files include:

• filter.properties - Allows for filtering out those requests from being monitored.

• db.properties - Database configuration when using database persistence.

• hibernate.properties - Hibernate configuration when using database persistence.

Database persistence with hibernate is described in more detail in the Database Persistence section.

Monitor Storage

How request data is persisted is configurable via the storage property defined in the
monitor.properties file. The following values are supported for the storage property:

• memory - Request data is to be persisted in memory alone.

• hibernate - Request data is to be persisted in a relational database via Hibernate.

The default value is memory.

750 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Memory Storage

With memory storage only the most recent 100 requests are stored. And by definition this storage is volatile
in that if the GeoServer instance is restarted, shutdown, or crashes this data is lost.

Hibernate Storage

Hibernate storage is described in detail in the Database Persistence section.

Monitor Mode

The monitor extension supports different “monitoring modes” that control how request data is captured.
Currently two modes are supported:

• history (Default) - Request information updated post request only. No live information made avail-
able.

• live - Information about a request is captured and updated in real time.

The monitor mode is set with the mode property in the monitor.properties file. The default value is
history.

History Mode

History mode persists information (sending it to storage) about a request after a request has completed.
This mode is appropriate in cases where a user is most interested in analyzing request data after the fact
and doesn’t require real time updates.

Live Mode

Live mode updates request data (sending it to storage) in real time as it changes. This mode is suitable for
users who care about what a service is doing now.

Bounding Box

When applicable one of the attributes the monitor extension can capture is the request bounding box. In
some cases, such as WMS and WCS requests, capturing the bounding box is easy. However in other cases
such as WFS it is not always possible to 100% reliably capture the bounding box. An example being a WFS
request with a complex filter element.

How the bounding box is captured is controlled by the bboxMode property in the monitor.properties
file. It can have one of the following values.

• none - No bounding box information is captured.

• full - Bounding box information is captured and heuristics are applied for WFS requests.

• no_wfs - Bounding box information is captured except for WFS requests.

Part of a bounding box is a coordinate reference system (crs).Similar to the WFS case it is not always straight
forward to determine what the crs is. For this reason the bboxCrs property is used to configure a default
crs to be used. The default value for the property is “EPSG:4326” and will be used in cases where all lookup
heuristics fail to determine a crs for the bounding box.

20.7. Monitoring 751

GeoServer User Manual, Release 2.5.x

Request Body Size

The monitor extension will capture the contents of the request body when a body is specified as is common
with a PUT or POST request. However since a request body can be large the extension limits the amount
captured to the first 1024 bytes by default.

A value of 0 indicates that no data from the request body should be captured. A value of -1 indicates that
no limit should be placed on the capture and the entire body content should be stored.

This limit is configurable with the maxBodySize property of the monitor.properties file.

Note: When using database persistence it is important to ensure that the size of the body field in the
database can accommodate the maxBodySize property.

Request Filters

By default not all requests are monitored. Those requests excluded include any web admin requests or any
Monitor Query API requests. These exclusions are configured in the filter.properties file:

/rest/monitor/**
/web/**

These default filters can be changed or extended to filter more types of requests. For example to filter out
all WFS requests the following entry is added:

/wfs

How to determine the filter path

The contents of filter.properties are a series of ant-style patterns that are applied to the path of the
request. Consider the following request:

http://localhost:8080/geoserver/wms?request=getcapabilities

The path of the above request is /wms. In the following request:

http://localhost:8080/geoserver/rest/workspaces/topp/datastores.xml

The path is /rest/workspaces/topp/datastores.xml.

In general, the path used in filters is comprised of the portion of the URL after /geoserver (including the
preceding /) and before the query string ?:

http://<host>:<port>/geoserver/<path>?<queryString>

Note: For more information about ant-style pattern matching, see the Apache Ant manual.

Samples

monitor.properties

752 Chapter 20. Extensions

http://ant.apache.org/manual/dirtasks.html

GeoServer User Manual, Release 2.5.x

storage and mode
storage=memory
mode=history

request body capture
maxBodySize=1024

bounding box capture
bboxMode=no_wfs
bboxCrs=EPSG:4326

filter.properties

filter out monitor query api requests
/rest/monitor/**

filter out all web requests
/web
/web/**

filter out requests for WCS service
/wcs

20.7.6 Database Persistence

The monitor extension is capable of persisting request data to a database via the Hibernate library.

Note: In order to utilize hibernate persistence the hibernate extension must be installed on top of the core
monitoring extension. See the Installing the Monitor Extension for details.

Configuration

General

In order to activate hibernate persistence the storage parameter must be set to the value “hibernate”:

storage=hibernate

The hibernate storage backend supports both the history and live modes however care should be taken
when enabling the live mode as it results in many transactions with the database over the life of a request.
Unless updating the database in real time is required the history mode is recommended.

Database

The file db.properties in the <GEOSERVER_DATA_DIR>/monitoring directory specifies the Hiber-
nate database. By default an embedded H2 database located in the monitoring directory is used. This
can be changed by editing the db.properties file:

default configuration is for h2
driver=org.h2.Driver
url=jdbc:h2:file:${GEOSERVER_DATA_DIR}/monitoring/monitoring

20.7. Monitoring 753

http://www.hibernate.org/

GeoServer User Manual, Release 2.5.x

For example to store request data in an external PostgreSQL database, set db.properties to:

driver=org.postgresql.Driver
url=jdbc:postgresql://192.168.1.124:5432/monitoring
username=bob
password=foobar
defaultAutoCommit=false

In addition to db.properties file is the hibernate.properties file that contains configuration for
Hibernate itself. An important parameter of this file is the hibernate dialect that informs hibernate of the
type of database it is talking to.

When changing the type of database both the databasePlatform and database parameters must be
updated. For example to switch to PostgreSQL:

hibernate dialect
databasePlatform=org.hibernate.dialect.PostgreSQLDialect
database=POSTGRESQL

other hibernate configuration
hibernate.use_sql_comments=true
generateDdl=true
hibernate.format_sql=true
showSql=false
hibernate.generate_statistics=true
hibernate.session_factory_name=SessionFactory
hibernate.hbm2ddl.auto=update
hibernate.bytecode.use_reflection_optimizer=true
hibernate.show_sql=false

Hibernate

As mentioned in the previous section the hibernate.properties file contains the configuration for
Hibernate itself. Aside from the database dialect parameters it is not recommended that you change this
file unless you are an experienced Hibernate user.

20.7.7 Audit Logging

The history mode logs all requests into a database. This can put a very significant strain on the database
and can lead to insertion issues as the request table begins to host millions of records.

As an alternative to the history mode it’s possible to enable the auditing logger, which will log the details
of each request in a file, which is periodically rolled. Secondary applications can then process these log files
and built ad-hoc summaries off line.

Configuration

The monitor.properties file can contain the following items to enable and configure file auditing:

audit.enabled=true
audit.path=/path/to/the/logs/directory
audit.roll_limit=20

The audit.enable is used to turn on the logger (it is off by default). The audit.path is the directory
where the log files will be created. The audit.roll_limit is the number of requests logged into a file
before rolling happens. The files are also automatically rolled at the beginning of each day.

754 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

In clustered installations with a shared data directory the audit path will need to be different for each node.
In this case it’s possible to specify the audit path by using a JVM system variable, add the following to the
JVM startup options and it will override whatever is specified in monitor.properties:

-DGEOSERVER_AUDIT_PATH=/path/to/the/logs/directory

Log Files

The log directory will contain a number of log files following the geoserver_audit_yyyymmdd_nn.log
pattern. The nn is increased at each roll of the file. The contents of the log directory will look like:

geoserver_audit_20110811_2.log
geoserver_audit_20110811_3.log
geoserver_audit_20110811_4.log
geoserver_audit_20110811_5.log
geoserver_audit_20110811_6.log
geoserver_audit_20110811_7.log
geoserver_audit_20110811_8.log

By default each log file contents will be a xml document looking like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<Requests>

<Request id="168">
<Service>WMS</Service>
<Version>1.1.1</Version>
<Operation>GetMap</Operation>
<SubOperation></SubOperation>
<Resources>GeoSolutions:elba-deparea</Resources>
<Path>/GeoSolutions/wms</Path>
<QueryString>LAYERS=GeoSolutions:elba-deparea&STYLES=&FORMAT=image/png&TILED=true&TILESORIGIN=9.916,42.312&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application/vnd.ogc.se_inimage&SRS=EPSG:4326&BBOX=9.58375,42.64425,9.916,42.9765&WIDTH=256&HEIGHT=256</QueryString>
<HttpMethod>GET</HttpMethod>
<StartTime>2011-08-11T20:19:28.277Z</StartTime>
<EndTime>2011-08-11T20:19:28.29Z</EndTime>
<TotalTime>13</TotalTime>
<RemoteAddr>192.168.1.5</RemoteAddr>
<RemoteHost>192.168.1.5</RemoteHost>
<Host>demo1.geo-solutions.it</Host>
<RemoteUser>admin</RemoteUser>
<ResponseStatus>200</ResponseStatus>
<ResponseLength>1670</ResponseLength>
<ResponseContentType>image/png</ResponseContentType>
<Failed>false</Failed>

</Request>
...

</Requests>

Customizing Log Contents

The log contents are driven by three FreeMarker templates.

header.ftl is used once when a new log file is created to form the first few lines of the file. The default
header template is:

<?xml version="1.0" encoding="UTF-8" ?>
<Requests>

20.7. Monitoring 755

GeoServer User Manual, Release 2.5.x

content.ftl is used to write out the request details. The default template dumps all the known fields
about the request:

<#escape x as x?xml>
<Request id="${id!""}">

<Service>${service!""}</Service>
<Version>${owsVersion!""}</Version>
<Operation>${operation!""}</Operation>
<SubOperation>${subOperation!""}</SubOperation>
<Resources>${resourcesList!""}</Resources>
<Path>${path!""}</Path>
<QueryString>${queryString!""}</QueryString>
<#if bodyAsString??>
<Body>
${bodyAsString}
</Body>
</#if>
<HttpMethod>${httpMethod!""}</HttpMethod>
<StartTime>${startTime?datetime?iso_utc_ms}</StartTime>
<EndTime>${endTime?datetime?iso_utc_ms}</EndTime>
<TotalTime>${totalTime}</TotalTime>
<RemoteAddr>${remoteAddr!""}</RemoteAddr>
<RemoteHost>${remoteHost!""}</RemoteHost>
<Host>${host}</Host>
<RemoteUser>${remoteUser!""}</RemoteUser>
<ResponseStatus>${responseStatus!""}</ResponseStatus>
<ResponseLength>${responseLength?c}</ResponseLength>
<ResponseContentType>${responseContentType!""}</ResponseContentType>
<#if error??>
<Failed>true</Failed>
<ErrorMessage>${errorMessage!""}</ErrorMessage>
<#else>
<Failed>false</Failed>
</#if>

</Request>
</#escape>

footer.ftl is executed just once when the log file is closed to build the last few lines of the file. The
default footer template is:

</Requests>

The administrator is free to provide alternate templates, they can be placed in the same directory as
monitor.properties, with the same names as above. GeoServer will pick them up automatically.

20.7.8 Monitor Query API

The monitor extension provides a simple HTTP-based API for querying request information. It allows
retrieving individual request records or sets of request records, in either HTML or CSV format. Records can
be filtered by time range and the result set sorted by any field. Large result sets can be paged over multiple
queries.

Examples

The following examples show the syntax for common Monitoring queries.

756 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

All requests as HTML

The simplest query is to retrieve an HTML document containing information about all requests:

GET http://localhost:8080/geoserver/rest/monitor/requests.html

All requests as CSV

Request information can be returned in CSV format, for easier post-processing:

GET http://localhost:8080/geoserver/rest/monitor/requests.csv

Request bodies containing newlines are handled with quoted text. If your CSV reader doesn’t handle
quoted newlines, it will not work correctly.

All requests as PKZip

A PKZip archive containing the CSV file above, with all the request bodies and errors as separate files:

GET http://localhost:8080/geoserver/rest/monitor/requests.zip

All requests as MS Excel

A Microsoft Excel spreadsheet containing the same information as the CSV file:

GET http://localhost:8080/geoserver/rest/monitor/requests.xls

Requests during a time period

Requests can be filtered by date and time range:

GET http://localhost:8080/geoserver/rest/monitor/requests.html?from=2010-06-20&to=2010-07-20
GET http://localhost:8080/geoserver/rest/monitor/requests.html?from=2010-06-20T2:00:00&to=2010-06-20T16:00:00

Request set paging

Large result sets can be paged over multiple queries:

GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=100
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=200
GET http://localhost:8080/geoserver/rest/monitor/requests.html?count=100&offset=300

Single request

An individual request can be retrieved by specifying its ID:

GET http://localhost:8080/geoserver/rest/monitor/requests/12345.html

20.7. Monitoring 757

GeoServer User Manual, Release 2.5.x

API Reference

There are two kinds of query: one for single requests, and one for sets of requests.

Single Request Query

A query for a single request record has the structure:

GET http://<host>:<port>/geoserver/rest/monitor/requests/<id>.<format>

where id is the numeric identifier of a single request, and format specifies the representation of the re-
turned result as one of:

• html - an HTML table.

• csv - a Comma Separated Values table.

• zip - PKZip archive containing CSV as above, plus plain text of errors and request body.

• xls - Microsoft Excel spreadsheet.

Note: An alternative to specifying the returned representation with the format extension is to use the
http Accept header and specify the MIME type as one of:

• text/html

• application/csv

• application/zip

• application/vnd.ms-excel

See the HTTP specification for more information about the Accept header.

Request Set Query

The structure of a query for a set of requests is:

GET http://<host>:<port>/geoserver/rest/monitor/requests.<format>[?parameter{¶meter}]

where format is as described above, and parameter is one or more of the parameters listed below.

The request set query accepts various parameters that control what requests are returned and how they are
sorted. The available parameters are:

count Parameter

Specifies how many records should be returned.

Syntax Example
count=<integer> requests.html?count=100

758 Chapter 20. Extensions

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

GeoServer User Manual, Release 2.5.x

offset Parameter

Specifies where in the result set records should be returned from.

Syntax Example
offset=<integer> requests.html?count=100&offset=500

live Parameter

Specifies that only live (currently executing) requests be returned.

Syntax Example
live=<yes|no|true|false> requests.html?live=yes

This parameter relies on a Monitor Mode being used that maintains real time request information (either live
or mixed).

from Parameter

Specifies an inclusive lower bound on the timestamp for the start of a request. The timestamp can be
specified to any desired precision.

Syntax Example
from=<timestamp> requests.html?from=2010-07-23T16:16:44

requests.html?from=2010-07-23

to Parameter

Specifies an inclusive upper bound on the timestamp for the start of a request. The timestamp can be
specified to any desired precision.

Syntax Example
to=<timestamp> requests.html?to=2010-07-24T00:00:00

requests.html?to=2010-07-24

order Parameter

Specifies which request attribute to sort by, and optionally specifies the sort direction.

Syntax Example
order=<attribute>[;<ASC|DESC>] requests.html?order=path

requests.html?order=startTime;DESC
requests.html?order=totalTime;ASC

20.7.9 GeoIP

The monitor extension has the capability to integrate with the MaxMind GeoIP database in order to provide
geolocation information about the origin of a request. This functionality is not enabled by default.

Note: At this time only the freely available GeoLite City database is supported.

20.7. Monitoring 759

http://www.maxmind.com/en/geolocation_landing

GeoServer User Manual, Release 2.5.x

Enabling GeoIP Lookup

In order to enable the GeoIP lookup capabilities

1. Download the GeoLite City database.

2. Uncompress the file and copy GeoLiteCity.dat to the monitoring directory.

3. Restart GeoServer.

20.8 OGR based WFS Output Format

The ogr2ogr based output format leverages the availability of the ogr2ogr command to allow the generation
of more output formats than GeoServer can natively produce. The basics idea is to dump to the file system
a file that ogr2ogr can translate, invoke it, zip and return the output of the translation.

20.8.1 Out of the box behaviour

Out of the box the plugin assumes the following:

• ogr2ogr is available in the path

• the GDAL_DATA variable is pointing to the GDAL data directory (which stores the spatial reference
information for GDAL)

In the default configuration the following formats are supported:

• MapInfo in TAB format

• MapInfo in MIF format

• Un-styled KML

• CSV (without geometry data dumps)

The list might be shorter if ogr2ogr has not been built with support for the above formats.

Once installed in GeoServer four new GetFeature output formats will be available, in particular, OGR-TAB,
OGR-MIF, OGR-KML, OGR-CSV.

20.8.2 ogr2ogr conversion abilities

The ogr2ogr utility is usually able to convert more formats than the default setup of this output format
allows for, but the exact list depends on how the utility was built from sources. To get a full list of the
formats available by your ogr2ogr build just run:

ogr2ogr --help

and you’ll get the full set of options usable by the program, along with the supported formats. For example,
the above produces the following output using the FWTools 2.2.8 distribution (which includes ogr2ogr
among other useful information and conversion tools):

Usage: ogr2ogr [--help-general] [-skipfailures] [-append] [-update] [-gt n]
[-select field_list] [-where restricted_where]
[-sql <sql statement>]
[-spat xmin ymin xmax ymax] [-preserve_fid] [-fid FID]
[-a_srs srs_def] [-t_srs srs_def] [-s_srs srs_def]
[-f format_name] [-overwrite] [[-dsco NAME=VALUE] ...]

760 Chapter 20. Extensions

http://dev.maxmind.com/geoip/geolite

GeoServer User Manual, Release 2.5.x

[-segmentize max_dist]
dst_datasource_name src_datasource_name
[-lco NAME=VALUE] [-nln name] [-nlt type] [layer [layer ...]]

-f format_name: output file format name, possible values are:
-f "ESRI Shapefile"
-f "MapInfo File"
-f "TIGER"
-f "S57"
-f "DGN"
-f "Memory"
-f "BNA"
-f "CSV"
-f "GML"
-f "GPX"
-f "KML"
-f "GeoJSON"
-f "Interlis 1"
-f "Interlis 2"
-f "GMT"
-f "SQLite"
-f "ODBC"
-f "PostgreSQL"
-f "MySQL"
-f "Geoconcept"

-append: Append to existing layer instead of creating new if it exists
-overwrite: delete the output layer and recreate it empty
-update: Open existing output datasource in update mode
-select field_list: Comma-delimited list of fields from input layer to

copy to the new layer (defaults to all)
-where restricted_where: Attribute query (like SQL WHERE)
-sql statement: Execute given SQL statement and save result.
-skipfailures: skip features or layers that fail to convert
-gt n: group n features per transaction (default 200)
-spat xmin ymin xmax ymax: spatial query extents
-segmentize max_dist: maximum distance between 2 nodes.

Used to create intermediate points
-dsco NAME=VALUE: Dataset creation option (format specific)
-lco NAME=VALUE: Layer creation option (format specific)
-nln name: Assign an alternate name to the new layer
-nlt type: Force a geometry type for new layer. One of NONE, GEOMETRY,

POINT, LINESTRING, POLYGON, GEOMETRYCOLLECTION, MULTIPOINT,
MULTIPOLYGON, or MULTILINESTRING. Add "25D" for 3D layers.
Default is type of source layer.

-a_srs srs_def: Assign an output SRS
-t_srs srs_def: Reproject/transform to this SRS on output
-s_srs srs_def: Override source SRS

Srs_def can be a full WKT definition (hard to escape properly),
or a well known definition (ie. EPSG:4326) or a file with a WKT
definition.

The full list of formats that ogr2ogr is able to support is available on the OGR site. Mind that this output
format can handle only outputs that are file based and that do support creation. So, for example, you won’t
be able to use the Postgres output (since it’s database based) or the ArcInfo binary coverage (creation not
supported).

20.8. OGR based WFS Output Format 761

http://www.gdal.org/ogr2ogr.html

GeoServer User Manual, Release 2.5.x

20.8.3 Customisation

If ogr2ogr is not available in the default path, the GDAL_DATA is not set, or if the output formats needs
tweaking, a ogr2ogr.xml file can be put in the root of the GeoServer data directory to customize the
output format.

The default GeoServer configuration is equivalent to the following xml file:

<OgrConfiguration>
<ogr2ogrLocation>ogr2ogr</ogr2ogrLocation>
<!-- <gdalData>...</gdalData> -->
<formats>
<Format>

<ogrFormat>MapInfo File</ogrFormat>
<formatName>OGR-TAB</formatName>
<fileExtension>.tab</fileExtension>

</Format>
<Format>

<ogrFormat>MapInfo File</ogrFormat>
<formatName>OGR-MIF</formatName>
<fileExtension>.mif</fileExtension>
<option>-dsco</option>
<option>FORMAT=MIF</option>

</Format>
<Format>

<ogrFormat>CSV</ogrFormat>
<formatName>OGR-CSV</formatName>
<fileExtension>.csv</fileExtension>
<singleFile>true</singleFile>
<mimeType>text/csv</mimeType>

</Format>
<Format>

<ogrFormat>KML</ogrFormat>
<formatName>OGR-KML</formatName>
<fileExtension>.kml</fileExtension>
<singleFile>true</singleFile>
<mimeType>application/vnd.google-earth.kml</mimeType>

</Format>
</formats>

</OgrConfiguration>

The file showcases all possible usage of the configuration elements:

• ogr2ogrLocation can be just ogr2ogr if the command is in the path, otherwise it should be the full
path to the executable. For example, on a Windows box with FWTools installed it might be:

<ogr2ogrLocation>c:\Programmi\FWTools2.2.8\bin\ogr2ogr.exe</ogr2ogrLocation>

• gdalData must point to the GDAL data directory. For example, on a Windows box with FWTools
installed it might be:

<gdalData>c:\Programmi\FWTools2.2.8\data</gdalData>

• Format defines a single format, which is defined by the following tags:

– ogrFormat: the name of the format to be passed to ogr2ogr with the -f option (it’s case sensi-
tive).

– formatName: is the name of the output format as advertised by GeoServer

762 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

– fileExtension: is the extension of the file generated after the translation, if any (can be omit-
ted)

– option: can be used to add one or more options to the ogr2ogr command line. As you can see
by the MIF example, each item must be contained in its own tag. You can get a full list of options
by running ogr2ogr –help or by visiting the ogr2ogr web page. Also consider that each format
supports specific creation options, listed in the description page for each format (for example,
here is the MapInfo one).

– singleFile (since 2.0.3): if true the output of the conversion is supposed to be a single file that
can be streamed directly back without the need to wrap it into a zip file

– mimeType (since 2.0.3): the mime type of the file returned when using singleFile. If not
specified application/octet-stream will be used as a default.

20.9 Cross-layer filtering

Cross-layer filtering provides the ability to find features from layer A that have a certain relationship to
features in layer B. This can be used, for example, to find all bus stops within a given distance from a
specified shop, or to find all coffee shops contained in a specified city district.

The querylayer module adds filter functions that implement cross-layer filtering. The functions work by
querying a secondary layer within a filter being applied to a primary layer. The name of the secondary
layer and an attribute to extract from it are provided as arguments, along with an ECQL filter expression to
determine which features are of interest. A common use case is to extract a geometry-valued attribute, and
then use the value(s) in a spatial predicate against a geometry attribute in the primary layer.

Filter functions are widely supported in GeoServer, so cross-layer filtering can be used in SLD rules and
WMS and WFS requests, in either XML or CQL filters.

20.9.1 Installing the querylayer module

1. Download the querylayer extension corresponding to your version of GeoServer.

Warning: The version of the extension must match the version of the GeoServer instance

2. Extract the contents of the extension archive into the WEB-INF/lib directory of the GeoServer instal-
lation.

3. To check the module is properly installed request the WFS 1.1 capabilities from the GeoServer
home page. The Filter_Capabilities section should contain a reference to a function named
queryCollection.

1 ...
2 <ogc:Filter_Capabilities>
3 ...
4 <ogc:ArithmeticOperators>
5 ...
6 <ogc:Functions>
7 <ogc:FunctionNames>
8 ...
9 <ogc:FunctionName nArgs="-1">queryCollection</ogc:FunctionName>

10 <ogc:FunctionName nArgs="-1">querySingle</ogc:FunctionName>
11 ...
12 </ogc:FunctionNames>

20.9. Cross-layer filtering 763

GeoServer User Manual, Release 2.5.x

13 </ogc:Functions>
14 </ogc:ArithmeticOperators>
15 </ogc:Scalar_Capabilities>
16 ...
17 </ogc:Filter_Capabilities>
18 ...

20.9.2 Function reference

The extension provides the following filter functions to support cross-layer filtering.

Name Arguments Description
queryS-
ingle

layer : String,
attribute : String,
filter : String

Queries the specified layer applying the specified ECQL filter
and returns the value of attribute from the first feature in the
result set. The layer name must be qualified (e.g. topp:states).
If no filtering is desired use the filter INCLUDE.

queryCol-
lection

layer : String,
attribute : String,
filter : String

Queries the specified layer applying the specified ECQL filter
and returns a list containing the value of attribute for every
feature in the result set. The layer name must be qualified (e.g.
topp:states). If no filtering is desired use the filter INCLUDE.
An exception is thrown if too many results are collected (see
Memory Limits).

collect-
Ge-
ome-
tries

geometries: a list of
Geometry objects

Converts a list of geometries into a single Geometry object. The
output of queryCollection must be converted by this function
in order to use it in spatial filter expressions (since geometry lists
cannot be used directly). An exception is thrown if too many
coordinates are collected (see Memory Limits).

20.9.3 Optimizing performance

In the GeoServer 2.1.x series, in order to have cross-layer filters execute with optimal performance it is
necessary to specify the following system variable when starting the JVM:

-Dorg.geotools.filter.function.simplify=true

This ensures the functions are evaluated once per query, instead of once per result feature. This flag is not
necessary for the GeoServer 2.2.x series. (Hopefully this behavior will become the default in 2.1.x as well.)

20.9.4 Memory limits

The queryCollection and collectGeometries functions do not perform a true database-style join.
Instead they execute a query against the secondary layer every time they are executed, and load the entire
result into memory. The functions thus risk using excessive server memory if the query result set is very
large, or if the collected geometries are very large. To prevent impacting server stability there are built-in
limits to how much data can be processed:

• at most 1000 features are collected by queryCollection

• at most 37000 coordinates (1MB worth of Coordinate objects) are collected by collectGeometries

These limits can be overridden by setting alternate values for the following parameters (this can be done
using JVM system variables, servlet context variables, or enviroment variables):

764 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

• QUERY_LAYER_MAX_FEATURES controls the maximum number of features collected by
queryCollection

• GEOMETRY_COLLECT_MAX_COORDINATES controls the maximum number of coordinates collected
by collectGeometries

20.9.5 WMS Examples

The following examples use the sf:bugsites, sf:roads and sf:restricted demo layers available in
the standard GeoServer download.

• Display only the bug sites overlapping the restricted area whose category is 3:

The CQL cross-layer filter on the bugsites layer is

INTERSECTS(the_geom, querySingle(’restricted’, ’the_geom’,’cat = 3’)).

The WMS request is:

http://localhost:8080/geoserver/wms?LAYERS=sf%3Aroads%2Csf%3Arestricted%2Csf%3Abugsites&STYLES=&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A26713&CQL_FILTER=INCLUDE%3BINCLUDE%3BINTERSECTS(the_geom%2C%20querySingle(%27restricted%27%2C%20%27the_geom%27%2C%27cat%20%3D%203%27))&BBOX=589081.6705629,4914128.1213261,609174.02430924,4928177.0717971&WIDTH=512&HEIGHT=358

The result is:

• Display all bug sites within 200 meters of any road:

The CQL cross-layer filter on the bugsites layer is

DWITHIN(the_geom, collectGeometries(queryCollection(’sf:roads’,’the_geom’,’INCLUDE’)),
200, meters).

The WMS request is:

http://localhost:8080/geoserver/wms?LAYERS=sf%3Aroads%2Csf%3Arestricted%2Csf%3Abugsites&STYLES=&FORMAT=image%2Fpng&SERVICE=WMS&VERSION=1.1.1&REQUEST=GetMap&EXCEPTIONS=application%2Fvnd.ogc.se_inimage&SRS=EPSG%3A26713&CQL_FILTER=INCLUDE%3BINCLUDE%3BDWITHIN(the_geom%2C%20collectGeometries(queryCollection(%27sf%3Aroads%27%2C%27the_geom%27%2C%27INCLUDE%27))%2C%20200%2C%20meters)&BBOX=589042.42768447,4914010.3926913,609134.78143081,4928059.3431623&WIDTH=512&HEIGHT=358

The result is:

20.9.6 WFS Examples

The following examples use the sf:bugsites, sf:roads and sf:restricted demo layers available in
the standard GeoServer download.

• Retrieve only the bug sites overlapping the restricted area whose category is 3:

20.9. Cross-layer filtering 765

GeoServer User Manual, Release 2.5.x

1 <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"
2 xmlns:sf="http://www.openplans.org/spearfish"
3 xmlns:ogc="http://www.opengis.net/ogc"
4 service="WFS" version="1.0.0">
5 <wfs:Query typeName="sf:bugsites">
6 <ogc:Filter>
7 <ogc:Intersects>
8 <ogc:PropertyName>the_geom</ogc:PropertyName>
9 <ogc:Function name="querySingle">

10 <ogc:Literal>sf:restricted</ogc:Literal>
11 <ogc:Literal>the_geom</ogc:Literal>
12 <ogc:Literal>cat = 3</ogc:Literal>
13 </ogc:Function>
14 </ogc:Intersects>
15 </ogc:Filter>
16 </wfs:Query>
17 </wfs:GetFeature>

• Retrieve all bugsites within 200 meters of any road:

1 <wfs:GetFeature xmlns:wfs="http://www.opengis.net/wfs"
2 xmlns:sf="http://www.openplans.org/spearfish"
3 xmlns:ogc="http://www.opengis.net/ogc"
4 service="WFS" version="1.0.0">
5 <wfs:Query typeName="sf:bugsites">
6 <ogc:Filter>
7 <ogc:DWithin>
8 <ogc:PropertyName>the_geom</ogc:PropertyName>
9 <ogc:Function name="collectGeometries">

10 <ogc:Function name="queryCollection">
11 <ogc:Literal>sf:roads</ogc:Literal>
12 <ogc:Literal>the_geom</ogc:Literal>
13 <ogc:Literal>INCLUDE</ogc:Literal>
14 </ogc:Function>
15 </ogc:Function>
16 <ogc:Distance units="meter">100</ogc:Distance>
17 </ogc:DWithin>
18 </ogc:Filter>
19 </wfs:Query>
20 </wfs:GetFeature>

766 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

20.10 GeoExt Styler

20.10.1 Installation

1. Download the REST plugin for your version of GeoServer from the download page .

2. Unzip the archive into the WEB-INF/lib directory of the GeoServer installation.

3. Restart GeoServer

4. Download the GeoExt Styler extension from here (it says 1.7.3 but the version number doesn’t matter.
Soon there will be an updated release)

5. Unzip the archive into the www/ directory of the GeoServer data directory.

20.10.2 Usage

1. Visit http://localhost:8080/geoserver/www/styler/index.html 2. Use the “Layers” panel to
select a layer to style.

3. In the “Legend” panel select a rule by clicking on it.

4. Change the color by clicking in the color box.

5. Click on a feature to view information about its attributes and which rules applied to it.

20.11 Web Processing Service

Web Processing Service (WPS) is an OGC service for the publishing of geospatial processes, algorithms, and
calculations. WPS extends the web mapping server to provide geospatial analysis.

20.10. GeoExt Styler 767

http://geoserver.org/display/GEOS/Download
http://downloads.sourceforge.net/geoserver/styler-1.7.3.zip
http://localhost:8080/geoserver/www/styler/index.html

GeoServer User Manual, Release 2.5.x

768 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

WPS is not a part of GeoServer by default, but is available as an extension.

The main advantage of GeoServer WPS over a standalone WPS is direct integration with other GeoServer
services and the data catalog. This means that it is possible to create processes based on data served in
GeoServer, as opposed to sending the entire data source in the request. It is also possible for the results
of a process to be stored as a new layer in the GeoServer catalog. In this way, WPS acts as a full remote
geospatial analysis tool, capable of reading and writing data from and to GeoServer.

For the official WPS specification, see http://www.opengeospatial.org/standards/wps.

20.11.1 Installing the WPS extension

The WPS module is not a part of GeoServer core, but instead must be installed as an extension. To install
WPS:

1. Navigate to the GeoServer download page

2. Find the page that matches the version of the running GeoServer.

Warning: Be sure to match the version of the extension with that of GeoServer, otherwise errors
will occur.

3. Download the WPS extension. The download link for WPS will be in the Extensions section under
Other.

4. Extract the files in this archive to the WEB-INF/lib directory of your GeoServer installation.

5. Restart GeoServer.

After restarting, load the Web Administration Interface. If the extension loaded properly, you should see an
extra entry for WPS in the Service Capabilities column. If you don’t see this entry, check the logs for errors.

Figure 20.59: A link for the WPS capabilities document will display if installed properly

Configuring WPS

WPS processes are subject to the same feature limit as the WFS service. The limit applies to process input,
so even processes which summarize data and return few results will be affected if applied to very large
datasets. The limit is set on the WFS Admin page.

Warning: If the limit is encountered during process execution, no error is given. Any results computed
by the process may be incomplete

20.11. Web Processing Service 769

http://www.opengeospatial.org/standards/wps
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

20.11.2 WPS Operations

WPS defines three operations for the discovery and execution of geospatial processes. The operations are:

• GetCapabilities

• DescribeProcess

• Execute

GetCapabilities

The GetCapabilities operation requests details of the service offering, including service metadata and
metadata describing the available processes. The response is an XML document called the capabilities
document.

The required parameters, as in all OGC GetCapabilities requests, are service=WPS, version=1.0.0 and
request=GetCapabilities.

An example of a GetCapabilities request is:

http://localhost:8080/geoserver/ows?
service=WPS&
version=1.0.0&
request=GetCapabilities

DescribeProcess

The DescribeProcess operation requests a description of a WPS process available through the service.

The parameter identifier specifies the process to describe. Multiple processes can be requested, sep-
arated by commas (for example, identifier=JTS:buffer,gs:Clip). At least one process must be
specified.

Note: As with all OGC parameters, the keys (request, version, etc) are case-insensitive, and the values
(GetCapabilities, JTS:buffer, etc.) are case-sensitive. GeoServer is generally more relaxed about
case, but it is best to follow the specification.

The response is an XML document containing metadata about each requested process, including the fol-
lowing:

• Process name, title and abstract

• For each input and output parameter: identifier, title, abstract, multiplicity, and supported datatype
and format

An example request for the process JTS:buffer is:

http://localhost:8080/geoserver/ows?
service=WPS&
version=1.0.0&
request=DescribeProcess&
identifier=JTS:buffer

The response XML document contains the following information:

770 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Title “Buffers a geometry using a certain distance”
Inputs geom: “The geometry to be buffered” (geometry, mandatory)

distance: “The distance (same unit of measure as the geometry)” (double, mandatory)
quadrant segments: “Number of quadrant segments. Use > 0 for round joins, 0 for flat
joins, < 0 for mitred joins” (integer, optional)
capstyle: “The buffer cap style, round, flat, square” (literal value, optional)

Output
formats

One of GML 3.1.1, GML 2.1.2, or WKT

Execute

The Execute operation is a request to perform the process with specified input values and required output
data items. The request may be made as either a GET URL, or a POST with an XML request document.
Because the request has a complex structure, the POST form is more typically used.

The inputs and outputs required for the request depend on the process being executed. GeoServer provides
a wide variety of processes to process geometry, features, and coverage data. For more information see the
section WPS Processes.

Below is an example of a Execute POST request. The example process (JTS:buffer) takes as input
a geometry geom (in this case the point POINT(0 0)), a distance (with the value 10), a quantization
factor quadrantSegments (here set to be 1), and a capStyle (specified as flat). The <ResponseForm>
element specifies the format for the single output result to be GML 3.1.1.

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs="http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">

<ows:Identifier>JTS:buffer</ows:Identifier>
<wps:DataInputs>
<wps:Input>

<ows:Identifier>geom</ows:Identifier>
<wps:Data>

<wps:ComplexData mimeType="application/wkt"><![CDATA[POINT(0 0)]]></wps:ComplexData>
</wps:Data>

</wps:Input>
<wps:Input>

<ows:Identifier>distance</ows:Identifier>
<wps:Data>

<wps:LiteralData>10</wps:LiteralData>
</wps:Data>

</wps:Input>
<wps:Input>

<ows:Identifier>quadrantSegments</ows:Identifier>
<wps:Data>

<wps:LiteralData>1</wps:LiteralData>
</wps:Data>

</wps:Input>
<wps:Input>

<ows:Identifier>capStyle</ows:Identifier>
<wps:Data>

<wps:LiteralData>flat</wps:LiteralData>
</wps:Data>

</wps:Input>
</wps:DataInputs>
<wps:ResponseForm>
<wps:RawDataOutput mimeType="application/gml-3.1.1">

<ows:Identifier>result</ows:Identifier>
</wps:RawDataOutput>

20.11. Web Processing Service 771

GeoServer User Manual, Release 2.5.x

</wps:ResponseForm>
</wps:Execute>

The process performs a buffer operation using the supplied inputs, and returns the outputs as specified.
The response from the request is (with numbers rounded for clarity):

<?xml version="1.0" encoding="utf-8"?>
<gml:Polygon xmlns:sch="http://www.ascc.net/xml/schematron"
xmlns:gml="http://www.opengis.net/gml"
xmlns:xlink="http://www.w3.org/1999/xlink">
<gml:exterior>
<gml:LinearRing>

<gml:posList>
10.0 0.0
0.0 -10.0
-10.0 0.0
0.0 10.0
10.0 0.0

</gml:posList>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

For help in generating WPS requests you can use the built-in interactive WPS Request Builder.

20.11.3 WPS Processes

The Web Processing Service describes a method for publishing geospatial processes, but does not specify
what those processes should be. Servers that implement WPS therefore have complete leeway in what types
of processes to implement, as well as how those processes are implemented. This means that a process
request designed for one type of WPS is not expected to work on a different type of WPS.

GeoServer implements processes from two different categories:

• JTS Topology Suite processes

• GeoServer-specific processes

JTS Topology Suite processes

JTS Topology Suite is a Java library of functions for processing geometries in two dimensions. JTS conforms
to the Simple Features Specification for SQL published by the Open Geospatial Consortium (OGC), similar
to PostGIS. JTS includes common spatial functions such as area, buffer, intersection, and simplify.

GeoServer WPS implements some of these functions as processes. The names and definitions of these
processes are subject to change, so they have not been included here. For a full list of JTS processes, please
see the GeoServer WPS capabilities document.

GeoServer processes

GeoServer WPS includes a few processes created especially for use with GeoServer. These are usually
GeoServer-specific functions, such as bounds and reprojection. They use an internal connection to the
GeoServer WFS/WCS, not part of the WPS specification, for reading and writing data.

772 Chapter 20. Extensions

http://tsusiatsoftware.net/jts/main.html

GeoServer User Manual, Release 2.5.x

As with JTS, the names and definitions of these processes are subject to change, so they have not been
included here. For a full list of GeoServer-specific processes, please see the GeoServer WPS capabilities
document.

Process chaining

One of the benefits of WPS is its native ability to chain processes. Much like how functions can call other
functions, a WPS process can use as its input the output of another process. Many complex functions can
thus be combined in to a single powerful request.

For example, let’s take some of the sample data that is shipped with GeoServer and use the WPS engine to
chain a few of the built in processes, which will allow users to perform geospatial analysis on the fly.

The question we want to answer in this example is the following: How many miles of roads are crossing a
protected area?

The data that will be used for this example is included with a standard installation of GeoServer:

• sf:roads: the layer that contains road information

• sf:restricted: the layer representing restricted areas

The restricted areas partially overlap the roads. We would like to know the total length of roads inside
the restricted areas, as shown in the next screenshot. The road network is represented in white against a
false color DEM (Digital Elevation Model). The restricted areas are represented with a dashed line in dark
brown. The portion of the road network that is inside the restricted areas is drawn in red.

In order to calculate the total length, we will need the following built in WPS processes:

• gs:IntersectionFeatureCollection: returns the intersection between two feature collections
adding the attributes from both of them

• gs:CollectGeometries: collects all the default geometries in a feature collection and returns them
as a single geometry collection

• JTS:length: calculates the length of a geometry in the same unit of measure as the geometry

The sequence in which these processes are executed is important. The first thing we want to do is interesect
the road network with the restricted areas. This gives us the feature collection with all the roads that we are
interested in. Then we collect those geometries into a single GeometryCollection so that the length can be
calculated with the built in JTS algorithm.

gs:IntersectionFeatureCollection –> gs:CollectGeometries –> JTS:length

The sequence of processes determines how the WPS request is built, by embedding the first process into
the second, the second into the third, etc. A process produces some output which will become the input
of the next process, resulting in a processing pipeline that can solve complex spatial analysis with a single
HTTP request. The advantage of using GeoServer’s layers is that data is not being shipped back and forth
between processes, resulting in very good performance.

Here is the complete WPS request in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<wps:Execute version="1.0.0" service="WPS" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.opengis.net/wps/1.0.0" xmlns:wfs="http://www.opengis.net/wfs" xmlns:wps="http://www.opengis.net/wps/1.0.0" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml" xmlns:ogc="http://www.opengis.net/ogc" xmlns:wcs="http://www.opengis.net/wcs/1.1.1" xmlns:xlink="http://www.w3.org/1999/xlink" xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wpsAll.xsd">

<ows:Identifier>JTS:length</ows:Identifier>
<wps:DataInputs>
<wps:Input>

<ows:Identifier>geom</ows:Identifier>
<wps:Reference mimeType="text/xml; subtype=gml/3.1.1"

xlink:href="http://geoserver/wps" method="POST">

20.11. Web Processing Service 773

GeoServer User Manual, Release 2.5.x

774 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

<wps:Body>
<wps:Execute version="1.0.0" service="WPS">
<ows:Identifier>gs:CollectGeometries</ows:Identifier>
<wps:DataInputs>
<wps:Input>
<ows:Identifier>features</ows:Identifier>
<wps:Reference mimeType="text/xml; subtype=wfs-collection/1.0" xlink:href="http://geoserver/wps" method="POST">

<wps:Body>
<wps:Execute version="1.0.0" service="WPS">
<ows:Identifier>gs:IntersectionFeatureCollection</ows:Identifier>
<wps:DataInputs>
<wps:Input>
<ows:Identifier>first feature collection</ows:Identifier>
<wps:Reference mimeType="text/xml; subtype=wfs-collection/1.0" xlink:href="http://geoserver/wfs" method="POST">
<wps:Body>
<wfs:GetFeature service="WFS" version="1.0.0" outputFormat="GML2">
<wfs:Query typeName="sf:roads"/>

</wfs:GetFeature>
</wps:Body>

</wps:Reference>
</wps:Input>
<wps:Input>
<ows:Identifier>second feature collection</ows:Identifier>
<wps:Reference mimeType="text/xml; subtype=wfs-collection/1.0" xlink:href="http://geoserver/wfs" method="POST">
<wps:Body>
<wfs:GetFeature service="WFS" version="1.0.0" outputFormat="GML2">
<wfs:Query typeName="sf:restricted"/>

</wfs:GetFeature>
</wps:Body>

</wps:Reference>
</wps:Input>
<wps:Input>
<ows:Identifier>first attributes to retain</ows:Identifier>
<wps:Data>
<wps:LiteralData>the_geom cat</wps:LiteralData>

</wps:Data>
</wps:Input>
<wps:Input>
<ows:Identifier>second attributes to retain</ows:Identifier>
<wps:Data>
<wps:LiteralData>cat</wps:LiteralData>

</wps:Data>
</wps:Input>

</wps:DataInputs>
<wps:ResponseForm>
<wps:RawDataOutput mimeType="text/xml;

subtype=wfs-collection/1.0">
<ows:Identifier>result</ows:Identifier>

</wps:RawDataOutput>
</wps:ResponseForm>

</wps:Execute>
</wps:Body>

</wps:Reference>
</wps:Input>

</wps:DataInputs>
<wps:ResponseForm>

<wps:RawDataOutput mimeType="text/xml; subtype=gml/3.1.1">
<ows:Identifier>result</ows:Identifier>

20.11. Web Processing Service 775

GeoServer User Manual, Release 2.5.x

</wps:RawDataOutput>
</wps:ResponseForm>

</wps:Execute>
</wps:Body>

</wps:Reference>
</wps:Input>

</wps:DataInputs>
<wps:ResponseForm>
<wps:RawDataOutput>

<ows:Identifier>result</ows:Identifier>
</wps:RawDataOutput>

</wps:ResponseForm>
</wps:Execute>

You can save this XML request in a file called wps-chaining.xml and execute the request using cURL like
this:

curl -u admin:geoserver -H ‘Content-type: xml’ -XPOST -d@’wps-chaining.xml’
http://localhost:8080/geoserver/wps

The response is just a number, the total length of the roads that intersect the restricted areas, and should be
around 25076.285 meters (the length process returns map units)

To see WPS requests in action, you can use the built-in WPS Request Builder.

20.11.4 WPS Request Builder

The GeoServer WPS extension includes a request builder for testing out various WPS processes through the
Web Administration Interface.

Accessing the request builder

To access the WPS Request Builder:

1. Navigate to the main Web Administration Interface.

2. Click on the Demos link on the left side.

3. Select WPS Request Builder from the list of demos.

Figure 20.60: WPS request builder in the list of demos

Using the request builder

The WPS Request Builder primarily consists of a selection box listing all of the available processes, and two
buttons, one to submit the WPS request, and another to display what the POST request looks like.

776 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

Figure 20.61: Blank WPS request builder form

The display changes depending on the process and input selected. JTS processes have available as inputs
any of a GML/WKT-based feature collection, URL reference, or subprocess. GeoServer-specific processes
have all these as options and also includes the ability to choose a GeoServer layer as input.

For each process, a form will display based on the required and optional parameters associated with that
process, if any.

Figure 20.62: WPS request builder form to determine the bounds of topp:states

To see the process as a POST request, click the Generate XML from process inputs/outputs button.

To execute the process, click the Execute Process button. The response will be displayed in a window or

20.12 XSLT WFS output format module

The xslt module for GeoServer is a WFS output format generator which brings togheter a base output,
such as GML, and a XSLT 1.0 style sheet to generate a new textual output format of user choosing.

The configuration for this output format can be either performed directly on disk, or via a REST API.

20.12. XSLT WFS output format module 777

GeoServer User Manual, Release 2.5.x

Figure 20.63: Raw WPS POST request for the above process

Figure 20.64: WPS server response

778 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

20.12.1 Manual configuration

All the configuration for the output resides in the $GEOSERVER_DATA_DIR/wfs/transform folder,
which is going to be created on startup when missing if the XSLT output format has been installed in
GeoServer.

Each XSLT transformation must be configured with its own xml file in the
$GEOSERVER_DATA_DIR/wfs/transform folder, which in turn points to a xslt file for the trans-
formation. While the names can be freeform, it is suggested to follow a simple naming convention:

• <mytransformation>.xml for the xml config file

• <mytransformation>.xslt for the xslt tile

Transformations can be either global, and thus applicable to any feature type, or type specific, in which case
the transformation knows about the specific attributes of the transformed feature type.

20.12.2 Global transformation example

Here is an example of a global transformation setup. The $GEOSERVER_DATA_DIR/wfs/transform/global.xml
file will look like:

<transform>
<sourceFormat>text/xml; subtype=gml/2.1.2</sourceFormat>
<outputFormat>HTML</outputFormat>
<outputMimeType>text/html</outputMimeType>
<fileExtension>html</fileExtension>
<xslt>global.xslt</xslt>

</transform>

Here is an explanation of each element:

• sourceFormat (mandatory): the output format used as the source of the XSLT transformation

• outputFormat (mandatory): the output format generated by the transformation

• outputMimeType (optional): the mime type for the generated output. In case it’s missing, the
outputFormat is assumed to be a mime type and used for the purpose.

• fileExtension (optional): the file extension for the generated output. In case it’s missing txt will
be used.

• xslt (mandatory): the name of XSLT 1.0 style sheet used for the transformation

The associated XSLT file will be $GEOSERVER_DATA_DIR/wfs/transform/global.xslt folder, and it
will be able to transform any GML2 input into a corresponding HTML file. Here is an example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:wfs="http://www.opengis.net/wfs"
xmlns:tiger="http://www.census.gov" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>

<body>
<xsl:for-each select="wfs:FeatureCollection/gml:featureMember/*">
<h2><xsl:value-of select="@fid"/></h2>
<table border="1">
<tr>
<th>Attribute</th>
<th>Value</th>

20.12. XSLT WFS output format module 779

GeoServer User Manual, Release 2.5.x

</tr>
<!-- [not(*)] strips away all nodes having

children, in particular, geometries -->
<xsl:for-each select="./*[not(*)]">
<tr>
<td>
<xsl:value-of select="name()" />

</td>
<td>
<xsl:value-of select="." />

</td>
</tr>
</xsl:for-each>

</table>
</xsl:for-each>
</body>

</html>
</xsl:template>

</xsl:stylesheet>

20.12.3 Type specific transformations

Type specific transformations can refer to a specific type and leverage its attributes directly. While not
required, it is good practice to setup a global transformation that can handle any feature type (since the
output format is declared in the capabilities document as being general, not type specific) and then override
it for specific feature types in order to create special transformations for them.

Here is an example of a transformation declaration that is type specific, that will be located at
$GEOSERVER_DATA_DIR/wfs/transform/html_bridges.xml

<transform>
<sourceFormat>text/xml; subtype=gml/2.1.2</sourceFormat>
<outputFormat>HTML</outputFormat>
<outputMimeType>text/html</outputMimeType>
<fileExtension>html</fileExtension>
<xslt>html_bridges.xslt</xslt>
<featureType>
<id>cite:Bridges</id>

</featureType>
</transform>

The extra featureType element associates the transformation to the specific feature type

The associated xslt file will be located at $GEOSERVER_DATA_DIR/wfs/transform/html_bridges.xslt
and will leveraging knowlegde about the input attributes:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:wfs="http://www.opengis.net/wfs"
xmlns:cite="http://www.opengis.net/cite" xmlns:gml="http://www.opengis.net/gml"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
<html>

<body>
<h2>Bridges</h2>
<xsl:for-each

select="wfs:FeatureCollection/gml:featureMember/cite:Bridges">

780 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

ID: <xsl:value-of select="@fid" />
FID: <xsl:value-of select="cite:FID" />
Name: <xsl:value-of select="cite:NAME" />

<p/>
</xsl:for-each>

</body>
</html>

</xsl:template>
</xsl:stylesheet>

Note: While writing the XSLT always remember to declare all prefixes used in the sheet in the stylesheet
element, otherwise you might encounter hard to understand error messages

A specific feature type can be associated to multiple output formats. While uncommon, the same xslt file
can also be associated to multiple feature types by creating multiple xml configuration files, and associating
a different feature type in each.

20.12.4 Rest configuration

Transformations can be created, updated and deleted via the REST api (normally, this requires administra-
tor privileges). Each transformation is represented with the same XML format used on disk, but with two
variants:

• a new name attribute appears, which matches the XML file name

• the featureType element contains also a link to the resource representing the feature type in the
REST config tree

For example:

<transform>
<name>test</name>
<sourceFormat>text/xml; subtype=gml/2.1.2</sourceFormat>
<outputFormat>text/html</outputFormat>
<fileExtension>html</fileExtension>
<xslt>test-tx.xslt</xslt>
<featureType>
<name>tiger:poi</name>
<atom:link xmlns:atom="http://www.w3.org/2005/Atom" rel="alternate" href="http://localhost:8080/geoserver/rest/workspaces/cite/datastores/cite/featuretypes/bridges.xml" type="application/xml"/>

</featureType>
</transform>

Here is a list of resources and the HTTP methods that can be used on them.

/rest/services/wfs/transforms[.<format>]

20.12. XSLT WFS output format module 781

GeoServer User Manual, Release 2.5.x

Method Action Return Code Formats Default
Format

Parameters

GET List all
available
transforms

200 HTML,
XML,
JSON

HTML

POST Add a new
transformation

201, with
Location
header

XML,
JSON

name, sourceFormat,
outputFormat,
outputMimeType

PUT Update global
settings

200 XML,
JSON

DELETE 405

The POST method can be used to create a transformation in two ways:

• if the content type used is application/xml the server will assume a <transform> definition is
being posted, and the XSLT will have to be uploaded separately using a PUT request with content
type application/xslt+xml against the transformation resource

• if the content type used is application/xslt+xml the server will assume the XSLT itself is being
posted, and the name, sourceFormat, outputFormat, outputMimeType query parameters will
be used to fill in the transform configuration instead

/rest/services/wfs/transforms/<transform>[.<format>]

Method Action Return
Code

Formats Default
Format

GET Returns the transformation 200 HTML,
XML, XSLT

HTML

POST 405
PUT Updates either the transformation configuration, or its

XSLT, depending on the mime type used
200 XML, XSLT

DELETEDeletes the transformation 200

The PUT operation behaves differently depending on the content type used in the request:

• if the content type used is application/xml the server will assume a <transform> definition is
being sent and will update it

• if the content type used is application/xslt+xml the server will assume the XSLT itself is being
posted, as such the configuration won’t be modified, but the XSLT associated to it will be overwritten
instead

20.13 Catalog Services for the Web (CSW)

This section discusses the Catalog Services for Web (CSW) community module for GeoServer. With this
module, GeoServer supports retrieving and displaying items from the GeoServer catalog using the CSW
service.

For more information on CSW, please refer to OGC OpenGIS Implementation Specification 07-006r1 and
the OGC tutorial on CSW.

20.13.1 Installing Catalog Services for Web (CSW)

To install the CSW module:

782 Chapter 20. Extensions

http://www.opengeospatial.org/standards/specifications/catalog
http://www.ogcnetwork.net/node/630

GeoServer User Manual, Release 2.5.x

1. Download the module. The file name is called geoserver-*-csw-plugin.zip, where * is the
version/snapshot name.

2. Extract this file and place the JARs in WEB-INF/lib.

3. Perform any configuration required by your servlet container, and then restart.

4. Verify that the module was installed correctly by going to the Welcome page of the Web Administration
Interface and seeing that CSW is listed in the Service Capabilities list.

20.13.2 Catalog Services for the Web (CSW) features

Supported operations

The following standard CSW operations are currently supported:

• GetCapabilities

• GetRecords

• GetRecordById

• GetDomain

• DescribeRecord

The Internal Catalog Store supports filtering on both full x-paths as well as the “Queryables” specified in
GetCapabilities.

Catalog stores

The default catalog store is the Internal Catalog Store, which retrieves information from the GeoServer’s
internal catalog. The Simple Catalog Store (simple-storemodule) adds an alternative simple store which
reads the catalog data directly from files (mainly used for testing).

If there are multiple catalog stores present (for example, when the Simple Catalog Store module is loaded),
set the Java system property DefaultCatalogStore to make sure that the correct catalog store will be
used. To use the Internal Catalog Store, this property must be set to:

DefaultCatalogStore=org.geoserver.csw.store.internal.GeoServerInternalCatalogStore

To use the Simple Catalog Store:

DefaultCatalogStore=org.geoserver.csw.store.simple.GeoServerSimpleCatalogStore

Supported schemes

The Internal Catalog Store supports two metadata schemes:

• Dublin Core

• ISO Metadata Profile

20.13. Catalog Services for the Web (CSW) 783

http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Mapping Files

Mapping files are located in the csw directory inside the GeoServer Data Directory. Each mapping file must
have the exact name of the record type name combined with the .properties extension. For example:

• Dublin Core mapping can be found in the file csw/Record.properties inside the data directory.

• ISO Metadata mapping can be found in the file csw/MD_Metadata.properties inside the data
directory.

The mapping files take the syntax from Java properties files. The left side of the equals sign specifies the
target field name or path in the metadata record, paths being separated with dots. The right side of the
equals sign specifies any CQL expression that denotes the value of the target property. The CQL expression
is applied to each ResourceInfo object in the catalog and can retrieve all properties from this object. These
expressions can make use of literals, properties present in the ResourceInfo object, and all normal CQL
operators and functions. There is also support for complex datastructures such as Maps using the dot
notation and Lists using the bracket notation (Example mapping files are given below).

The properties in the ResourceInfo object that can be used are:

name
qualifiedName
nativeName
qualifiedNativeName
alias
title
abstract
description
metadata.?
namespace
namespace.prefix
namespace.name
namespace.uri
namespace.metadata.?
keywords
keywords[?]
keywords[?].value
keywords[?].language
keywords[?].vocabulary
keywordValues
keywordValues[?]
metadataLinks
metadataLinks[?]
metadataLinks[?].id
metadataLinks[?].about
metadataLinks[?].metadataType
metadataLinks[?].type
metadataLinks[?].content
latLonBoundingBox
latLonBoundingBox.dimension
latLonBoundingBox.lowerCorner
latLonBoundingBox.upperCorner
nativeBoundingBox
nativeBoundingBox.dimension
nativeBoundingBox.lowerCorner
nativeBoundingBox.upperCorner
srs
nativeCrs
projectionPolicy

784 Chapter 20. Extensions

http://geoserver.org/display/GEOS/Catalog+Design#CatalogDesign-resources
http://geoserver.org/display/GEOS/Catalog+Design#CatalogDesign-resources
http://geoserver.org/display/GEOS/Catalog+Design#CatalogDesign-resources

GeoServer User Manual, Release 2.5.x

enabled
advertised
catalog.defaultNamespace
catalog.defaultWorkspace
store.name
store.description
store.type
store.metadata.?
store.enabled
store.workspace
store.workspace.name
store.metadata.?
store.connectionParameters.?
store.error

Depending on whether the resource is a FeatureTypeInfo or a CoverageInfo, additional properties may
be taken from their respective object structure. You may use REST configuration to view an xml model of
feature types and datastores in which the xml tags represent the available properties in the objects.

Some fields in the metadata schemes can have multiple occurences. They may be mapped to properties
in the Catalog model that are also multi-valued, such as for example keywords. It is also possible
to use a filter function called list to map multiple single-valued or multi-valued catalog proper-
ties to a MetaData field with multiple occurences (see in ISO MetaData Profile example, mapping for the
identificationInfo.AbstractMD_Identification.citation.CI_Citation.alternateTitle
field).

Placing the @ symbol in front of the field will set that to use as identifier for each metadata record. This may
be useful for ID filters. Use a $ sign in front of fields that are required to make sure the mapping is aware
of the requirement (specifically for the purpose of property selection).

Dublin Core

Below is an example of a Dublin Core mapping file:

@identifier.value=id
title.value=title
creator.value=’GeoServer Catalog’
subject.value=keywords
subject.scheme=’http://www.digest.org/2.1’
abstract.value=abstract
description.value=strConcat(’description about ’ , title)
date.value="metadata.date"
type.value=’http://purl.org/dc/dcmitype/Dataset’
publisher.value=’Niels Charlier’
#format.value=
#language.value=
#coverage.value=
#source.value=
#relation.value=
#rights.value=
#contributor.value=

All fields have the form of <fieldname>.value for the actual value in the field. Additionally
<fieldname>.scheme can be specified for the @scheme attribute of this field.

Examples of attributes extracted from the ResourceInfo are id, title, and keywords, etc. The attribute
metadata.date uses the metadata (java.util.)Map from the Resource object. In this map, it searches
for the keyword “date”.

20.13. Catalog Services for the Web (CSW) 785

GeoServer User Manual, Release 2.5.x

Note that double quotes are necessary in order to preserve this meaning of the dots.

ISO Metadata Profile

Below is an example of an ISO Metadata Profile Mapping File:

@fileIdentifier.CharacterString=id
identificationInfo.AbstractMD_Identification.citation.CI_Citation.title.CharacterString=title
identificationInfo.AbstractMD_Identification.citation.CI_Citation.alternateTitle.CharacterString=list(description,alias,strConcat(’##’,title))
identificationInfo.AbstractMD_Identification.descriptiveKeywords.MD_Keywords.keyword.CharacterString=keywords
identificationInfo.AbstractMD_Identification.abstract.CharacterString=abstract
$dateStamp.Date= if_then_else (isNull("metadata.date") , ’Unknown’, "metadata.date")
hierarchyLevel.MD_ScopeCode.@codeListValue=’http://purl.org/dc/dcmitype/Dataset’
$contact.CI_ResponsibleParty.individualName.CharacterString=

The full path of each field must be specified (separated with dots). XML attributes are specified with the @
symbol, similar to the usual XML X-path notation.

To keep the result XSD compliant, the parameters dateStamp.Date and
contact.CI_ResponsibleParty.individualName.CharacterString must be preceded by a
$ sign to make sure that they are always included even when using property selection.

For more information on the ISO Metadata standard, please see the OGC Implementation Specification
07-045.

20.13.3 Catalog Services for the Web (CSW) tutorial

This tutorial will show how to use the CSW module. It assumes a fresh installation of GeoServer with the
CSW module installed.

Configuration

In the <data_dir>/csw directory, create a new file named MD_Metadata (ISO Metadata Profile mapping
file) with the following contents:

@fileIdentifier.CharacterString=prefixedName
identificationInfo.AbstractMD_Identification.citation.CI_Citation.title.CharacterString=title
identificationInfo.AbstractMD_Identification.descriptiveKeywords.MD_Keywords.keyword.CharacterString=keywords
identificationInfo.AbstractMD_Identification.abstract.CharacterString=abstract
$dateStamp.Date= if_then_else (isNull("metadata.date") , ’Unknown’, "metadata.date")
hierarchyLevel.MD_ScopeCode.@codeListValue=’http://purl.org/dc/dcmitype/Dataset’
$contact.CI_ResponsibleParty.individualName.CharacterString=’John Smith’

Services

With GeoServer running (and responding on http://localhost:8080), test GeoServer CSW in a web
browser by querying the CSW capabilities as follows:

http://localhost:8080/geoserver/csw?service=csw&version=2.0.2&request=GetCapabilities

We can request a description of our Metadata record:

http://localhost:8080/geoserver/csw?service=CSW&version=2.0.2&request=DescribeRecord&typeName=gmd:MD_Metadata

786 Chapter 20. Extensions

http://www.opengeospatial.org/standards/specifications/catalog
http://www.opengeospatial.org/standards/specifications/catalog

GeoServer User Manual, Release 2.5.x

This yields the following result:

<?xml version="1.0" encoding="UTF-8"?>
<csw:DescribeRecordResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2 http://localhost:8080/geoserver/schemas/csw/2.0.2CSW-discovery.xsd">
<csw:SchemaComponent targetNamespace="http://www.opengis.net/cat/csw/2.0.2" schemaLanguage="http://www.w3.org/XML/Schema">
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gmd="http://www.isotc211.org/2005/gmd" targetNamespace="http://www.isotc211.org/2005/gmd" elementFormDefault="qualified" version="2012-07-13">

<!-- ================================= Annotation ================================ -->
<xs:annotation>

<xs:documentation>Geographic MetaData (GMD) extensible markup language is a component of the XML Schema Implementation of Geographic Information Metadata documented in ISO/TS 19139:2007. GMD includes all the definitions of http://www.isotc211.org/2005/gmd namespace. The root document of this namespace is the file gmd.xsd. This identification.xsd schema implements the UML conceptual schema defined in A.2.2 of ISO 19115:2003. It contains the implementation of the following classes: MD_Identification, MD_BrowseGraphic, MD_DataIdentification, MD_ServiceIdentification, MD_RepresentativeFraction, MD_Usage, MD_Keywords, DS_Association, MD_AggregateInformation, MD_CharacterSetCode, MD_SpatialRepresentationTypeCode, MD_TopicCategoryCode, MD_ProgressCode, MD_KeywordTypeCode, DS_AssociationTypeCode, DS_InitiativeTypeCode, MD_ResolutionType.</xs:documentation>
</xs:annotation>
...

Query all layers as follows:

http://localhost:8080/geoserver/csw?service=CSW&version=2.0.2&request=GetRecords&typeNames=gmd:MD_Metadata&resultType=results&elementSetName=full&outputSchema=http://www.isotc211.org/2005/gmd

Request a particular layer by ID...:

http://localhost:8080/geoserver/csw?service=CSW&version=2.0.2&request=GetRecordById&elementsetname=summary&id=CoverageInfoImpl--4a9eec43:132d48aac79:-8000&typeNames=gmd:MD_Metadata&resultType=results&elementSetName=full&outputSchema=http://www.isotc211.org/2005/gmd

...or use a filter to retrieve it by Title:

http://localhost:8080/geoserver/csw?service=CSW&version=2.0.2&request=GetRecords&typeNames=gmd:MD_Metadata&resultType=results&elementSetName=full&outputSchema=http://www.isotc211.org/2005/gmd&constraint=Title=%27mosaic%27

Either case should return:

<?xml version="1.0" encoding="UTF-8"?>
<csw:GetRecordsResponse xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns="http://www.opengis.net/cat/csw/apiso/1.0" xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:gco="http://www.isotc211.org/2005/gco" xmlns:gmd="http://www.isotc211.org/2005/gmd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0.2" xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2 http://localhost:8080/geoserver/schemas/csw/2.0.2/record.xsd">

<csw:SearchStatus timestamp="2013-06-28T13:41:43.090Z"/>
<csw:SearchResults numberOfRecordsMatched="1" numberOfRecordsReturned="1" nextRecord="0" recordSchema="http://www.isotc211.org/2005/gmd" elementSet="full">
<gmd:MD_Metadata>

<gmd:fileIdentifier>
<gco:CharacterString>CoverageInfoImpl--4a9eec43:132d48aac79:-8000</gco:CharacterString>

</gmd:fileIdentifier>
<gmd:dateStamp>

<gco:Date>Unknown</gco:Date>
</gmd:dateStamp>
<gmd:identificationInfo>

<gmd:MD_DataIdentification>
<gmd:extent>

<gmd:EX_Extent>
<gmd:geographicElement>
<gmd:EX_GeographicBoundingBox crs="urn:x-ogc:def:crs:EPSG:6.11:4326">
<gmd:westBoundLongitude>36.492</gmd:westBoundLongitude>
<gmd:southBoundLatitude>6.346</gmd:southBoundLatitude>
<gmd:eastBoundLongitude>46.591</gmd:eastBoundLongitude>
<gmd:northBoundLatitude>20.83</gmd:northBoundLatitude>

</gmd:EX_GeographicBoundingBox>
</gmd:geographicElement>

</gmd:EX_Extent>
</gmd:extent>

</gmd:MD_DataIdentification>
<gmd:AbstractMD_Identification>
<gmd:citation>

<gmd:CI_Citation>
<gmd:title>
<gco:CharacterString>mosaic</gco:CharacterString>

</gmd:title>
</gmd:CI_Citation>

</gmd:citation>

20.13. Catalog Services for the Web (CSW) 787

GeoServer User Manual, Release 2.5.x

<gmd:descriptiveKeywords>
<gmd:MD_Keywords>
<gmd:keyword>
<gco:CharacterString>WCS</gco:CharacterString>

</gmd:keyword>
<gmd:keyword>
<gco:CharacterString>ImageMosaic</gco:CharacterString>

</gmd:keyword>
<gmd:keyword>
<gco:CharacterString>mosaic</gco:CharacterString>

</gmd:keyword>
</gmd:MD_Keywords>

</gmd:descriptiveKeywords>
</gmd:AbstractMD_Identification>

</gmd:identificationInfo>
<gmd:contact>
<gmd:CI_ResponsibleParty>

<gmd:individualName>
<gco:CharacterString>John Smith</gco:CharacterString>

</gmd:individualName>
</gmd:CI_ResponsibleParty>

</gmd:contact>
<gmd:hierarchyLevel>
<gmd:MD_ScopeCode codeListValue="http://purl.org/dc/dcmitype/Dataset"/>

</gmd:hierarchyLevel>
</gmd:MD_Metadata>

</csw:SearchResults>
</csw:GetRecordsResponse>

We can request the domain of a property. For example, all values of “Title”:

http://localhost:8080/geoserver/csw?service=csw&version=2.0.2&request=GetDomain&propertyName=Title

This should yield the following result:

<?xml version="1.0" encoding="UTF-8"?>
<csw:GetDomainResponse xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/cat/csw/2.0.2 http://localhost:8080/geoserver/schemas/csw/2.0.2/CSW-discovery.xsd">

<csw:DomainValues type="csw:Record">
<csw:PropertyName>Title</csw:PropertyName>
<csw:ListOfValues>

<csw:Value>A sample ArcGrid file</csw:Value>
<csw:Value>Manhattan (NY) landmarks</csw:Value>
<csw:Value>Manhattan (NY) points of interest</csw:Value>
<csw:Value>Manhattan (NY) roads</csw:Value>
<csw:Value>North America sample imagery</csw:Value>
<csw:Value>Pk50095 is a A raster file accompanied by a spatial data file</csw:Value>
<csw:Value>Spearfish archeological sites</csw:Value>
<csw:Value>Spearfish bug locations</csw:Value>
<csw:Value>Spearfish restricted areas</csw:Value>
<csw:Value>Spearfish roads</csw:Value>
<csw:Value>Spearfish streams</csw:Value>
<csw:Value>Tasmania cities</csw:Value>
<csw:Value>Tasmania roads</csw:Value>
<csw:Value>Tasmania state boundaries</csw:Value>
<csw:Value>Tasmania water bodies</csw:Value>
<csw:Value>USA Population</csw:Value>
<csw:Value>World rectangle</csw:Value>
<csw:Value>mosaic</csw:Value>
<csw:Value>sfdem is a Tagged Image File Format with Geographic information</csw:Value>

788 Chapter 20. Extensions

GeoServer User Manual, Release 2.5.x

</csw:ListOfValues>
</csw:DomainValues>

</csw:GetDomainResponse>

20.13. Catalog Services for the Web (CSW) 789

GeoServer User Manual, Release 2.5.x

790 Chapter 20. Extensions

CHAPTER 21

Tutorials

21.1 Freemarker Templates

21.1.1 Introduction

This tutorial will introduce you to a more in depth view of what FreeMarker templates are and how you
can use the data provided to templates by GeoServer.

Freemarker is a simple yet powerful template engine that GeoServer uses whenever developer allowed
user customization of outputs. In particular, at the time of writing it’s used to allow customization of
GetFeatureInfo, GeoRSS and KML outputs.

Freemarker allows for simple variable expansions, as in ${myVarName}, expansion of nested properties,
such as in ${feature.myAtt.value}, up to little programs using loops, ifs and variables. Most of the
relevant information about how to approach template writing is included in the Freemarker’s Designer
guide and won’t be repeated here: the guide, along with the KML Placemark Templates and GetFeatureInfo
Templates tutorials should be good enough to give you a good grip on how a template is built.

Template Lookup

Geoserver looks up templates in three different places, allowing for various level of customization. For
example given the content.ftl template used to generate WMS GetFeatureInfo content:

• Look into GEOSERVER_DATA_DIR/workspaces/<workspace>/<datastore>/<featuretype>/content.ftl
to see if there is a feature type specific template

• Look into GEOSERVER_DATA_DIR/workspaces/<workspace>/<datastore>/content.ftl to
see if there is a store specific template

• Look into GEOSERVER_DATA_DIR/workspaces/<workspace>/content.ftl to see if there is a
workspace specific template

• Look into GEOSERVER_DATA_DIR/workspaces/content.ftl looking for a global override

• Look into GEOSERVER_DATA_DIR/templates/content.ftl looking for a global override

• Look into the GeoServer classpath and load the default template

Each templated output format tutorial should provide you with the template names, and state whether the
templates can be type specific, or not. Missing the source for the default template, look up for the service jar
in the geoserver distribution (for example, wms-x.y.z.jar), unpack it, and you’ll find the actual xxx.ftl files
GeoServer is using as the default templates.

791

http://www.freemarker.org/
http://www.freemarker.org/docs/dgui.html
http://www.freemarker.org/docs/dgui.html

GeoServer User Manual, Release 2.5.x

Common Data Models

Freemarker calls “data model” the set of data provided to the template. Each output format used by
Geoserver will inject a different data model according to the informations it’s managing, yet there are three
very common elements that appear in almost each template, Feature, FeatureType and FeatureCollection.
Here we provide a data model of each.

The data model is a sort of a tree, where each element has a name and a type. Besides basic types, we’ll use:

• list: a flat list of items that you can scan thru using the FreeMarker <#list> directive;

• map: a key/value map, that you usually access using the dot notation, as in ${myMap.myKey}, and
can be nested;

• listMap: a special construct that is, at the same time, a Map, and a list of the values.

Here are the three data models (as you can see there are redundancies, in particular in attributes, we chose
this approach to make template building easier):

FeatureType (map)

• name (string): the type name

• attributes (listMap): the type attributes

– name (string): attribute name

– namespace (string): attribute namespace URI

– prefix (string): attribute namespace prefix

– type (string): attribute type, the fully qualified Java class name

– isGeometry (boolean): true if the attribute is geometric, false otherwise

Feature (map)

• fid (string): the feature ID (WFS feature id)

• typeName (string): the type name

• attributes (listMap): the list of attributes (both data and metadata)

– name (string): attribute name

– namespace (string): attribute namespace URI

– prefix (string): attribute namespace prefix

– isGeometry (boolean): true if the attribute is geometric, false otherwise

– value: a string representation of the the attribute value

– isComplex (boolean): true if the attribute is a feature (see Complex Features), false otherwise

– type (string or FeatureType): attribute type: if isComplex is false, the fully qualified Java class
name; if isComplex is true, a FeatureType

– rawValue: the actual attribute value (is isComplex is true rawValue is a Feature)

• type (map)

– name (string): the type name (same as typeName)

– namespace (string): attribute namespace URI

– prefix (string): attribute namespace prefix

– title (string): The title configured in the admin console

792 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

– abstract (string): The abstract for the type

– description (string): The description for the type

– keywords (list): The keywords for the type

– metadataLinks (list): The metadata URLs for the type

– SRS (string): The layer’s SRS

– nativeCRS (string): The layer’s coordinate reference system as WKT

FeatureCollection (map)

• features (list of Feature, see above)

• type (FeatureType, see above)

21.2 GeoRSS

GeoServer supports GeoRSS as an output format allowing you to serve features as an RSS feed.

21.2.1 Quick Start

If you are using a web browser which can render rss feeds simply visit the url
http://localhost:8080/geoserver/wms/reflect?layers=states&format=rss in your browser. This is as-
suming a local GeoServer instance is running with an out of the box configuration. You should see a result
that looks more or less like this:

Figure 21.1: topp:states rss feed

21.2.2 Ajax Map Mashups

Note: For Ajax map mashups to work, the GeoServer instance must be visible to the Internet (i.e. using
the address localhost will not work).

21.2. GeoRSS 793

http://georss.org/
http://localhost:8080/geoserver/wms/reflect?layers=states&format=rss

GeoServer User Manual, Release 2.5.x

21.2.3 Google Maps

How to create a Google Maps mashup with a GeoRSS overlay produced by GeoServer.

1. Obtain a Google Maps API Key from Google.

2. Create an html file called gmaps.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org R/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8"/>
<title>Google Maps JavaScript API Example< itle>
<script src="http://maps.google.com/maps?file=api&v=2.x&key=<INSERT MAPS API KEY HERE>" type="text/javascript"></script>

<script type="text/javascript">
//<![CDATA[

function load() {
if (GBrowserIsCompatible()) {

var map = new GMap2(document.getElementById("map"));
map.addControl(new GLargeMapControl());
map.setCenter(new GLatLng(40,-98), 4);
var geoXml = new GGeoXml("<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss");
map.addOverlay(geoXml);

}
}

//]]>
</script>

</head>
<body onload="load()" onunload="GUnload()">

<div id="map" style="width: 800px; height: 600px"></div>
</body>

</html>

3. Visit gmaps.html in your web browser.

Note: The version of the google maps api must be 2.x, and not just 2 You must insert your specific maps
api key, and geoserver base url

21.2.4 Yahoo Maps

How to create a Yahoo! Maps mashup with a GeoRSS overlay produced by GeoServer.

1. Obtain a <Yahoo Maps Application ID <http://search.yahooapis.com/webservices/register_application>‘_
from Yahoo.

2. Create an html file called ymaps.html:

<html>
<head>
<title>Yahoo! Maps GeoRSS Overlay Example< itle>
<script src="http://api.maps.yahoo.com/ajaxymap?v=3.0&appid=<INSERT APPLICATION ID HERE>" type="text/javascript"></script>
<script type="text/javascript" language="JavaScript">

794 Chapter 21. Tutorials

http://www.google.com/apis/maps/signup.html
http://search.yahooapis.com/webservices/register_application

GeoServer User Manual, Release 2.5.x

function StartYMap() {
var map = new YMap(document.getElementById(’ymap’));
map.addPanControl();
map.addZoomShort();

function doStart(eventObj) {
var defaultEventObject = eventObj;
//eventObj.ThisMap [map object]
//eventObj.URL [argument]
//eventObj.Data [processed input]

}

function doEnd(eventObj) {
var defaultEventObject = eventObj;
//eventObj.ThisMap [map object]
//eventObj.URL [argument]
//eventObj.Data [processed input]
map.smoothMoveByXY(new YCoordPoint(10,50));

}

YEvent.Capture(map,EventsList.onStartGeoRSS, function(eventObj) { doStart(eventObj); });
YEvent.Capture(map,EventsList.onEndGeoRSS, function(eventObj) { doEnd(eventObj); });

map.addOverlay(new YGeoRSS(’http://<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss’));
}

window.onload = StartYMap;
</script>
</head>
<body>

<div id="ymap" style="width: 800px; height: 600px; left:2px; top:2px"></div>
</body>

</html>

3. Visit ymaps.html in your web browser.

Note: The version of the yahoo maps api must be 3.0 You must insert your specific application id, and
geoserver base url

21.2.5 Microsoft Virtual Earth

Note: Non Internet Explorer Users*: GeoRSS overlays are only supported in Internet Explorer, versions
greater then 5.5.

How to create a Microsoft Virtual Earth mashup with a GeoRSS overlay produced by GeoServer.

Note: To access a GeoRSS feed from Microsoft Virtual Earth the file (ve.html) must be accessed from a Web
Server, IE. It will not work if run from local disk.

1. Create an html file called ve.html. Note: You must insert your specific maps api key, and geoserver
base url:

<html>
<head>

<script src="http://dev.virtualearth.net/mapcontrol/v4/mapcontrol.js"></script>

21.2. GeoRSS 795

GeoServer User Manual, Release 2.5.x

<script>
var map;

function OnPageLoad()
{

map = new VEMap(’map’);
map.LoadMap();

var veLayerSpec = new VELayerSpecification();
veLayerSpec.Type = VELayerType.GeoRSS;
veLayerSpec.ID = ’Hazards’;

veLayerSpec.LayerSource = ’http://<INSERT GEOSERVER URL HERE>/geoserver/wms/reflect?layers=states&format=rss’;
veLayerSpec.Method = ’get’;
map.AddLayer(veLayerSpec);
}

</script>
</head>
<body onload="OnPageLoad();">

<div id="map" style="position:relative;width:800px;height:600px;"></div>
</body>

</html>

2. Visit ve.html in your web browser. You should see the following:

21.3 GetFeatureInfo Templates

This tutorial describes how to use the GeoServer template system to create custom HTML GetFeatureInfo
responses.

21.3.1 Introduction

GetFeatureInfo is a WMS standard call that allows one to retrieve information about features and coverages
displayed in a map. The map can be composed of various layers, and GetFeatureInfo can be instructed to
return multiple feature descriptions, which may be of different types. GetFeatureInfo can generate output
in various formats: GML2, plain text and HTML. Templating is concerned with the HTML one.

The default HTML output is a sequence of titled tables, each one for a different layer. The following example
shows the default output for the tiger-ny basemap (included in the above cited releases, and onwards).

21.3.2 Standard Templates

The following assumes you’re already up to speed with Freemarker templates. If you’re not, read the
Freemarker Templates tutorial, and the KML Placemark Templates page, which has simple examples.

The default output is generated by the standard templates, which are three:

• header.ftl

• content.ftl

• footer.ftl

796 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.2: Virtual Earth

21.3. GetFeatureInfo Templates 797

GeoServer User Manual, Release 2.5.x

Figure 21.3: Default Output

The header template is invoked just once, and usually contains the start of the HTML page, along with some
CSS. The default header template looks like this (as you can see, it’s completely static, and it’s in fact not
provided with any variable you could expand):

<#--
Header section of the GetFeatureInfo HTML output. Should have the <head> section, and
a starter of the <body>. It is advised that eventual css uses a special class for featureInfo,
since the generated HTML may blend with another page changing its aspect when usign generic classes
like td, tr, and so on.
-->
<html>

<head>
<title>Geoserver GetFeatureInfo output</title>

</head>
<style type="text/css">

table.featureInfo, table.featureInfo td, table.featureInfo th {
border:1px solid #ddd;
border-collapse:collapse;
margin:0;
padding:0;
font-size: 90%;
padding:.2em .1em;

}
table.featureInfo th{

padding:.2em .2em;
text-transform:uppercase;
font-weight:bold;
background:#eee;

}
table.featureInfo td{

background:#fff;

798 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

}
table.featureInfo tr.odd td{

background:#eee;
}
table.featureInfo caption{

text-align:left;
font-size:100%;
font-weight:bold;
text-transform:uppercase;
padding:.2em .2em;

}
</style>
<body>

The footer template is similar, a static template used to close the HTML document properly:

<#--
Footer section of the GetFeatureInfo HTML output. Should close the body and the html tag.
-->

</body>
</html>

The content template is the one that turns feature objects into actual HTML tables. The template is called
multiple times: each time it’s fed with a different feature collection, whose features all have the same type.
In the above example, the template has been called once for the roads, and once for the points of interest
(POI). Here is the template source:

<#--
Body section of the GetFeatureInfo template, it’s provided with one feature collection, and
will be called multiple times if there are various feature collections
-->
<table class="featureInfo">

<caption class="featureInfo">${type.name}</caption>
<tr>

<#list type.attributes as attribute>
<#if !attribute.isGeometry>
<th >${attribute.name}</th>

</#if>
</#list>

</tr>

<#assign odd = false>
<#list features as feature>

<#if odd>
<tr class="odd">

<#else>
<tr>

</#if>
<#assign odd = !odd>

<#list feature.attributes as attribute>
<#if !attribute.isGeometry>

<td>${attribute.value}</td>
</#if>

</#list>
</tr>

</#list>
</table>

21.3. GetFeatureInfo Templates 799

GeoServer User Manual, Release 2.5.x

As you can see there is a first loop scanning type and outputting its attributes into the table header, then a
second loop going over each feature in the collection (features). From each feature, the attribute collections
are accessed to dump the attribute value. In both cases, geometries are skipped, since there is not much
point in including them in the tabular report. In the table building code you can also see how odd rows are
given the “odd” class, so that their background colors improve readability.

21.3.3 Custom Templates

So, what do you have to do if you want to override the custom templates? Well, it depends on which
template you want to override.

header.ftl and footer.ftl are type independent, so if you want to override them you have to place a
file named header.ftl or footer.ftl in the templates directory, located in your GeoServer GeoServer
Data Directory. On the contrary, content.ftl may be generic, or specific to a feature type.

For example, let’s say you would prefer a bulleted list appearance for your feature info output, and you
want this to be applied to all GetFeatureInfo HTML output. In that case you would drop the following
content.ftl in the templates directory:

<#list features as feature>

Type: ${type.name} (id: ${feature.fid}):

<#list feature.attributes as attribute>
<#if !attribute.isGeometry>

${attribute.name}: ${attribute.value}
</#if>

</#list>

</#list>

With this template in place, the output would be:

Looking at the output we notice that point of interest features refer to image files, which we know are stored
inside the default GeoServer distribution in the demo_app/pics path. So, we could provide a POI specific
override that actually loads the images.

This is easy: just put the following template in the feature type folder, which in this case is
workspaces/topp/DS_poi/poi (you should refer to your Internet visible server address instead of lo-
calhost, or its IP if you have fixed IPs):

<#list features as feature>

Point of interest, "${feature.NAME.value}":

</#list>

With this additional template, the output is:

As you can see, roads are still using the generic template, whilst POI is using its own custom template.

800 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.4: Bulleted List Output

Figure 21.5: Output with Thumbnail Image

21.3. GetFeatureInfo Templates 801

GeoServer User Manual, Release 2.5.x

21.3.4 Advanced Formating

The value property of Feature attribute values are given by geoserver in String form, using a sensi-
ble default depending on the actual type of the attribute value. If you need to access the raw attribute
value in order to apply a custom format (for example, to output "Enabled" or "Disabled" for a given
boolean property, instead of the default true/false, you can just use the rawValue property instead of
value. For example: ${attribute.rawValue?string("Enabled", "Disabled")} instead of just
${attribute.value}.

21.4 Paletted Images

Geoserver has the ability to output high quality 256 color images. This tutorial introduces you to the palette
concepts, the various image generation options, and offers a quality/resource comparison of them in dif-
ferent situations.

21.4.1 What are Paletted Images?

Some image formats, such as GIF or PNG, can use a palette, which is a table of (usually) 256 colors to allow
for better compression. Basically, instead of representing each pixel with its full color triplet, which takes
24bits (plus eventual 8 more for transparency), they use a 8 bit index that represent the position inside the
palette, and thus the color.

This allows for images that are 3-4 times smaller than the standard images, with the limitation that only 256
different colors can appear on the image itself. Depending of the actual map, this may be a very stringent
limitation, visibly degrading the image quality, or it may be that the output cannot be told from a full color
image. But for many maps one can easily find 256 representative colors.

In the latter case, the smaller footprint of paletted images is usually a big gain in both performance and
costs, because more data can be served with the same internet connection, and the clients will obtain re-
sponses faster.

21.4.2 Formats and Antialiasing

Internet standards offer a variety of image formats, all having different strong and weak points. The three
most common formats are:

• JPEG: a lossy format with tunable compression. JPEG is best suited for imagery layers, where the
pixel color varies continuously from one pixel to the next one, and allows for the best compressed
outputs. On the contrary, it’s not suited to most vector layers, because even slight compression gen-
erates visible artifacts on uniform color areas.

• PNG: a non lossy format allowing for both full color and paletted. In full color images each pixel is
encoded as a 24bits integer with full transparency information (so PNG images can be translucent),
in paletted mode each pixel is an 8 bit index into a 256 color table (the palette). This format is best
suited to vector layers, especially in the paletted version. The full color version is sometimes referred
as PNG24, the paletted version as PNG8.

• GIF: a non lossy format with a 256 color palette, best suited for vector layers. Does not support
translucency, but allows for fully transparent pixels.

So, as it turns out, paletted images can be used with profit on vector data sets, either using the PNG8 or GIF
formats.

802 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Antialiasing plays a role too. Let’s take a road layer, where each road is depicted by a solid gray line, 2
pixels thick. One may think this layer needs only 2 colors: the background one (eventually transparent)
and gray. In fact, this is true only if no antialiasing is enabled. Antialiasing will smooth the borders of the
line giving a softer, better looking shape, and it will do so by adding pixels with an intermediate color, thus
increasing the number of colors that are needed to fully display the image.

The following zoom of an image shows antialiasing in action:

Figure 21.6: Antialiasing

These output formats, if no other parameters are provided, do compute the optimal palette on the fly. As
you’ll see, this is an expensive process (CPU bound), but as you’ll see, depending on the speed of the
network connecting the server and the client, the extra cost can be ignored (especially if the bottleneck can
be found in the network instead of the server CPU).

Optimal palette computation is anyways a repetitive work that can be done up front: a user can compute
the optimal palette once, and tell GeoServer to use it. There are three ways to do so:

1. Use the internet safe palette, a standard palette built in into GeoServer, by appending palette=safe
to the GetMap request.

2. Provide a palette by example. In this case, the user will generate an 256 color images using an external
program (such as Photoshop), and then will save it into the $GEOSERVER_DATA_DIR/palettes
directory. The sample file can be either in GIF or PNG format. If the file is named mypalette.gif
or mypalette.png, the user will be able to refer it appending palette=mypalette to the GetMap
request. GeoServer will load the palette from the file and use it.

3. Provide a palette file. The palette file must be in JASC-PAL format, and have a .pal extension. This
file type can be generated by applications such as Paint Shop Pro and IrfanView, but also can be
generated manually in a text editor. The process is just as before, but this time only the palette file
will be stored into $GEOSERVER_DATA_DIR/palettes.

Note: GeoServer does not support palette files in Microsoft Palette format, despite having the same
.pal file extension.

21.4.3 An Example with Vector Data

Enough theory, let’s have a look at how to deal with paletted images in practice. We’ll use the tiger-ny
basemap to gather some numbers, and in particular the following map request:

And we’ll change various parameters in order to play with formats and palettes. Here goes the sampler:

Parameters:FORMAT=image/png | Size: 257 KB | Map generation time: 0.3s

Parameters:FORMAT=image/png8 | Size: 60 KB | Map generation time: 0.6s

Parameters:FORMAT=image/png | Size: 257 KB | Map generation time: 0.3s

Parameters:FORMAT=image/png & palette=nyp | Size: 56KB | Map generation time: 0.3s

21.4. Paletted Images 803

http://www.intuitive.com/coolweb/colors.html

GeoServer User Manual, Release 2.5.x

Figure 21.7: The standard PNG full color output

Figure 21.8: The PNG8 output

804 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.9: PNG + internet safe palette

Figure 21.10: PNG + ‘custom palette <http://geoserver.org/download/attachments/1278244/nyp.pal?version=1>‘_

21.4. Paletted Images 805

GeoServer User Manual, Release 2.5.x

The attachments include also the GIF outputs, whose size, appearance and generation time does not differ
significantly from the PNG outputs.

As we can see, depending on the choice we have a variation on the image quality, size and generation time
(which has been recorded using the FasterFox Firefox extension timer, with the browser sitting on the same
box as the server). Using palette=xxx provides the best match in speed and size, thought using the built
in internet safe palette altered the colors. Then again, the real gain can be seen only by assuming a certain
connection speed between the server and the client, and adding the time required to move the image to the
client. The following table provides some results:

Configuration GT(s) File size (kb) TT 256kbit/s TT 1MBit/s TT 4MBit/s TT 20MBit/s
tiger-ny-png 0,36 257 8,39 2,42 0,87 0,46
tyger-ny-png8 0,6 60 2,48 1,08 0,72 0,62
tiger-ny-png + safe palette 0,3 56 22,05 0,75 0,41 0,32
tiger-ny-png + custom palette 0,3 59 2,14 0,77 0,42 0,32

Legend:

• GT: map generation time on the same box

• TT <speed>: total time needed for a client to show the image, assuming an internet connection of
the given speed. This time is a sum of of the image generation time and the transfer time, that is, GT
+ sizeInKbytes * 8/ speedInKbits.

As the table shows, the full color PNG image takes usually a lot more time than other formats, unless it’s
being served over a fast network (and even in this case, one should consider network congestion as well).
The png8 output format proves to be a good choice if the connection is slow, whilst the extra work done in
looking up an optimal palette always pays back in faster map delivery.

21.4.4 Generating the custom palette

The nyp.pal file has been generated using IrfanView, on Windows. The steps are simple:

• open the png 24 bit version of the image

• use Image/Decrease Color Depth and set 256 colors

• use Image/Palette/Export to save the palette

21.4.5 An example with raster data

To give you an example when paletted images may not fit the bill, let’s consider the sf:dem coverage from
the sample data, and repeat the same operation as before.

Parameters:FORMAT=image/png Size: 117 KB | Map generation time: 0.2s

Parameters:FORMAT=image/jpeg Size: 23KB | Map generation time: 0.12s

Parameters:FORMAT=image/png8 Size: 60 KB | Map generation time: 0.5s

Parameters:FORMAT=image/png & palette=dem-png8 Size: 48KB | Map generation time: 0.15s

Parameters:FORMAT=image/png‘‘& ‘‘palette=safe Size: 17KB | Map generation time: 0.15s

As the sample shows, the JPEG output has the same quality as the full color image, is generated faster and
uses only 1/5 of its size. On the other hand, the version using the internet safe palette is fast and small, but
the output is totally ruined. Everything considered, JPEG is the clear winner, sporting good quality, fast
image generation and a size that’s half of the best png output we can get.

806 Chapter 21. Tutorials

http://geoserver.org/download/attachments/1278244/nyp.pal?version=1

GeoServer User Manual, Release 2.5.x

Figure 21.11: The standard PNG full color output.

Figure 21.12: JPEG output

21.4. Paletted Images 807

GeoServer User Manual, Release 2.5.x

Figure 21.13: The PNG8 output.

Figure 21.14: PNG + custom palette (using the png8 output as the palette).

808 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.15: PNG + internet safe palette.

21.5 Serving Static Files

You can place static files in the www subdirectory of the GeoServer data directory, and they will be served at
http:/myhost:8080/geoserver/www. This means you can deploy HTML, images, or JavaScript, and
have GeoServer serve them directly on the web.

This approach has some limitations:

• GeoServer can only serve files whose MIME type is recognized. If you get an HTTP 415 error, this is
because GeoServer cannot determine a file’s MIME type.

• This approach does not make use of accelerators such as the Tomcat APR library. If you have many
static files to be served at high speed, you may wish to create your own web app to be deployed along
with GeoServer or use a separate web server to serve the content.

21.6 WMS Reflector

21.6.1 Overview

Standard WMS requests can be quite long and verbose. For instance the following, which returns an Open-
Layers application with an 800x600 image set to display the feature topp:states, with bounds set to the
northwestern hemisphere by providing the appropriate bounding box.

http://localhost:8080/geoserver/wms?service=WMS&request=GetMap&version=1.1.1&format=application/openlayers&width=800&height=600&srs=EPSG:4326&layers=topp:states&styles=population&bbox=-180,0,0,90

Typing into a browser, or HTML editor, can be quite cumbersome and error prone. The WMS Reflector
solves this problem nicely by using good default values for the options that you do not specify. Using the
reflector one can shorten the above request to:

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states&width=800

This request only specifies that you want the reflector (wms/reflect) to return an OpenLayers application
(format=application/openlayers), that you want it to display the feature “topp:states” (layers=topp:states)
and that the width should be 800 pixels (width=800). However, this will not return the exact same value

21.5. Serving Static Files 809

http://tomcat.apache.org/tomcat-7.0-doc/apr.html

GeoServer User Manual, Release 2.5.x

as above. Instead, the reflector will zoom to the bounds of the feature and return a map that is 800 pixels
wide, but with the height adjusted to the aspect ratio of the feature.

21.6.2 Using the WMS Reflector

To use the WMS reflector all one must do is specify wms/reflect? as opposed to wms? in a request. The
only mandatory parameter to a WMS reflector call is the layers parameter. As stated above the reflector fills
in sensible defaults for the rest of the parameters. The following table lists all the defaults used:

request getmap
service wms
version 1.1.1
format image/png
width 512
height 512 if width is not specified
srs EPSG:4326
bbox bounds of layer(s)

Any of these defaults can be overridden when specifying the request. The styles parameter is derived by
using the default style as configured by GeoServer for each layer specified in the layers parameter.

Any parameter you send with a WMS request is also legitimate when requesting data from the reflector. Its
strength is what it does with the parameters you do not specify, which is explored in the next section.

layers: This is the only mandatory parameter. It is a comma separated list of the layers you wish to include
in your image or OpenLayers application.

format: The default output format is image/png. Alternatives include image/jpeg (good for raster back-
grounds), image/png8 (8 bit colors, smaller files) and image/gif

width: Describes the width of the image, alternatively the size of the map in an OpenLayers. It defaults to
512 pixels and can be calculated based on the height and the aspect ratio of the bounding box.

height: Describes the height of the image, alternatively the map in an OpenLayers. It can be calculated
based on the width and the aspect ratio of the bounding box.

bbox: The bounding box is automatically determined by taking the union of the bounds of the specified
layers. In essence, it determines the extent of the map. By default, if you do not specify bbox, it will show
you everything. If you have one layer of Los Angeles, and another of New York, it show you most of the
United States. The bounding box, automatically set or specified, also determines the aspect ratio of the
map. If you only specify one of width or height, the other will be determined based on the aspect ratio of
the bounding box.

Warning: If you specify height, width and bounding box there are zero degrees of freedom, and if the
aspect ratios do not match your image will be warped.

styles: You can override the default styles by providing a comma separated list with the names of styles
which must be known by the server.

srs: The spatial reference system (SRS) parameter is somewhat difficult. If not specified the WMS Reflector
will use EPSG:4326 / WGS84. It will support the native SRS of the layers as well, provided all layers share
the same one.

810 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Example 1

Request the layer topp:states , it will come back with the default style (demographic), width (512 pixels)
and height (adjusted to aspect ratio).

http://localhost:8080/geoserver/wms/reflect?layers=topp:states

Example 2

Request the layers topp:states and sf:restricted, it will come back with the default styles, and the specified
width (640 pixels) and the height automatically adjusted to the aspect ratio.

http://localhost:8080/geoserver/wms/reflect?layers=topp:states,sf:restricted&width=640

Example 3

In the example above the sf:restricted layer is very difficult to see, because it is so small compared to the
United States. To give the user a chance to get a better view, if they choose, we can return an OpenLayers
application instead. Zoom in on South Dakota (SD) to see the restricted areas.

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states,sf:restricted&width=640

Example 4

Now, if you mainly want to show the restricted layer, but also provide the context, you can set the bounding
box for the the request. The easiest way to obtain the coordinates is to use the application in example three
and the coordinates at the bottom right of the map. The coordinates displayed in OpenLayers are x , y , the
reflector service expects to be given bbox=minx,miny,maxx,maxy . Make sure it contains no whitespaces
and users a period (”.”) as the decimal separator. In our case, it will be bbox=-103.929,44.375,-103.633,44.500

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states,sf:restricted&width=640&bbox=-103.929,44.375,-103.633,44.500

21.6.3 Outputting to a Webpage

Say you have a webpage and you wish to include a picture that is 400 pixels wide and that shows the layer
topp:states, on this page.

If you want the page to render in the browser before Geoserver is done, you should specify the height and
width of the picture. You could just pick any approximate value, but it may be a good idea to look at the
generated image first and then use those values. In the case of the layer above, the height becomes 169
pixels, so we can specify that as an attribute in the tag:

If you are worried that the bounds of the layer may change, so that the height changes relative to the width,
you may also want to specify the height in the URL to the reflector. This ensures the layer will always be
centered and fit on the 400x169 canvas.

The reflector can also create a simple instance of OpenLayers that shows the layers you specify in your
request. One possible application is to turn the image above into a link that refers to the OpenLayers
instance for the same feature, which is especially handy if you think a minority of your users will want to

21.6. WMS Reflector 811

http://www.openlayers.org/

GeoServer User Manual, Release 2.5.x

take closer look. To link to this JavaScript application, you need to specify the output format of the reflector:
format=application/OpenLayers

http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&width=400

The image above then becomes

(The a-tags are on separate lines for clarity, they will in fact result in a space in front and after the image).

21.6.4 OpenLayers in an iframe

Many people do not like iframes, and for good reasons, but they may be appropriate in this case. The
following example will run OpenLayers in an iframe.

<iframe src ="http://localhost:8080/geoserver/wms/reflect?format=application/openlayers&layers=topp:states" width="100%">
</iframe>

Alternatively, you can open OpenLayers in a separate webpage and choose “View Source code” in your
browser. By copying the HTML you can insert the OpenLayers client in your own page without using an
iframe.

21.7 WMS Animator

21.7.1 Overview

Standard WMS can generate static maps only. There is a number of use cases in which generating an
animation is of interest. An obvious case is time-based animation. Other uses include elevation-based
animation, varying the values of SQL View or SLD substitution parameters, or the changing the extent of
the generated map to produce the appearance of a moving viewport.

This capability is provided by the WMS Animator. The WMS Animator works in a similar way to the
WMS Reflector. It uses a provided partial WMS request as a template, and the animator parameters are
used to generate and execute a sequence of complete requests. The rendered map images are combined
into a single output image (in a format that supports multi-frame images).

The Animator is invoked by using the wms/animate request path. Any WMS paramaters can be ani-
mated, including nested ones such as SLD environment variables. To define the appearance of the animation
additional parameters are provided:

• aparam specifies the name of the parameter that will be changed in the request for each frame. This
can be any WMS parameter such as layers, cql_filter, bbox, style and so on. Nested parame-
ters (such as required by the format_options, env and view_params parameters), are supported
using the syntax of param:name (for example, view_params:year).

• avalues is a comma-separated list of the values the animation parameter has for each frame. If a value
contain commas these must be escaped using a backslash. (For instance, this occurs when providing
BBOX values.)

The Animator parses the input values and uses string replacement to generate the sequence of WMS re-
quests to be executed. Each generated request is executed to produce one frame. It is up to the caller to
ensure the provided animation parameters result in valid WMS requests.

812 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

For example, to generate an animation of a layer with the viewport scrolling towards the east, the WMS
BBOX parameter is given the series of values -90,40,-60,70, -80,40,-60,70 and -70,40,-50,70
(note the escaping of the commas in the BBOX values):

http://localhost:8080/geoserver/wms/animate
?layers=topp:states
&aparam=bbox
&avalues=-90\,40\,-60\,70,-80\,40\,-60\,70,-70\,40\,-50\,70

For an example of nested parameters, assume the existence of a style named selection using an SLD
variable color. The following request creates an animated map where the selection color changes between
red, green and blue

http://localhost:8080/geoserver/wms/animate
?layers=topp:states,topp:states
&styles=polygon,selection
&aparam=env:color
&avalues=FF0000,00FF00,0000FF

21.7.2 Using the WMS Animator

To invoke the WMS Animator specify the path wms/animate instead of wms in a GetMap request.

Every Animator request must specify the layers, aparam and avalues parameters. Any other valid
WMS parameters may be used in the request as well. If any necessary parameters are omitted, the Animator
provides sensible default values for them. The following defaults are used:

Parameter Default Value
request getmap
service wms
version 1.1.1
format image/png
width 512
height 512 if width is not specified
srs EPSG:4326, or SRS common to all layers
bbox bounds of specified layer(s)
styles default styles configured for specified layer(s)

Further details of these parameters are:

layers: This is the only mandatory standard parameter. It is a comma-separated list of the layers to be
included in the output map.

format: The default output format is image/png. Supported values are image/jpeg (suitable for raster
backgrounds), image/png8 (8-bit colors, smaller files) and image/gif

Warning: In order to produce an actual animated image the format must support animation. At this
time the only one provide in GeoServer is image/gif;subtype=animated

width: Describes the width of the image. It defaults to 512 pixels, and can be calculated based on the
specified height and the aspect ratio of the bounding box.

height: Describes the height of the image. It can be calculated based on the specified width and the aspect
ratio of the bounding box.

bbox: Specifies the extent of the map frame. The default bounding box is determined by taking the union
of the bounds of the specified layers. (For example, if one layer shows Los Angeles and another shows New

21.7. WMS Animator 813

GeoServer User Manual, Release 2.5.x

York, the default map shows most of the United States. The bounding box also determines the aspect ratio
of the map. If only one of width or height is specified, the other is determined based on the aspect ratio
of the bounding box.

styles: The default value is the default styles configured in GeoServer for the layers specified in the layers
parameter. This can be overridden by providing a comma-separated list of style names (which must be
known to the server).

srs: If all layers share the same SRS, this is used as the default value. Otherwise, the default value is
EPSG:4326 (WGS84).

Animation Options

The Animator provides options to control looping and frame speed. These are specified using the
format_options WMS parameter. The available options are:

Option Description
gif_loop_continuosly If true the animation will loop continuously. The default is false.
gif_frames_delay Specifies the frame delay in milliseconds. The default is 1000 ms.

Example 1

Requests the layer topp:states, using the default style (demographic), width (512 pixels) and height
(adjusted to aspect ratio). The aparam=bbox parameter specifies that the output animation has two frames,
one using a whole-world extent and the other with the extent of the USA. This gives the effect of zooming
in.

http://localhost:8080/geoserver/wms/animate
?layers=topp:states
&format=image/gif;subtype=animated
&aparam=bbox
&avalues=-180\,-90\,180\,90,-125\,25\,-67\,50

Example 2

Requests the layers topp:states and sf:restricted, using format_options=gif_loop_continuosly:true
to request an infinite loop animation. The output map uses the default styles, the specified width (640
pixels), and the height automatically adjusted to the aspect ratio.

http://localhost:8080/geoserver/wms/animate
?layers=topp:states,sf:restricted
&format=image/gif;subtype=animated
&aparam=bbox
&avalues=-180\,-90\,180\,90,-125\,25\,-67\,50
&format_options=gif_loop_continuosly:true
&width=640

Example 3

The following request uses the format_options of gif_loop_continuosly:true and
gif_frames_delay:10 to rotate the map image fast and continously.

814 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

http://localhost:8080/geoserver/wms/animate
?layers=topp:states,sf:restricted
&format=image/gif;subtype=animated
&aparam=angle
&avalues=0,45,90,135,180,225,270,365
&format_options=gif_loop_continuosly:true;gif_frames_delay:10
&width=640

21.7.3 Displaying frame parameters as decorations

It is possible to decorate each frame image with the avalue parameter value that generated it using the
WMS Decorations text decoration. The current animation parameter value can be accessed via the avalue
environment variable. (This environment variable can also be used in Variable substitution in SLD.)

Here is an example that uses a decoration showing the frame parameter value:

http://localhost:8080/geoserver/wms/animate
?layers=topp%3Aworld
&aparam=time
&avalues=2004-01-01T00:00:00.000Z,2004-02-01T00:00:00.000Z
&format=image/gif;subtype=animated
&format_options=layout:message

It uses the following decoration layout, located in layouts/message.xml:

<layout>
<decoration type="text" affinity="bottom,right" offset="6,6">
<option name="message" value="${avalue}"/>
<option name="font-size" value="12"/>
<option name="font-family" value="Arial"/>
<option name="halo-radius" value="2"/>

</decoration>
</layout>

21.7.4 Specifying WMS Animator default behaviour

The GeoServer Adinistrator GUI allows specifying some limits and default options for the WMS Animator.
The settings are made on the Services > WMS config screen as shown below:

The first three options set server limits on the animation output. It is possible to set the maximum num-
ber of frames an animation can contain, the maximum rendering time to produce an animation and the
maximum size of the whole animation.

The default animation frame delay (expressed in ms) and looping behaviour can be set as well. These
values can be overridden by using the format_options parameter as described above.

21.8 CQL and ECQL

CQL (Common Query Language) is a query language created by the OGC for the Catalogue Web Services
specification. Unlike the XML-based Filter Encoding language, CQL is written using a familiar text-based
syntax. It is thus more readable and better-suited for manual authoring.

However, CQL has some limitations. For example it cannot encode id filters, and it requires an attribute to
be on the left side of any comparison operator. For this reason, GeoServer provides an extended version of

21.8. CQL and ECQL 815

http://www.opengeospatial.org/standards/cat
http://www.opengeospatial.org/standards/cat

GeoServer User Manual, Release 2.5.x

Figure 21.16: WMS Animator default settings

CQL called ECQL. ECQL removes the limitations of CQL, providing a more flexible language with stronger
similarities with SQL.

GeoServer supports the use of both CQL and ECQL in WMS and WFS requests, as well as in GeoServer’s
SLD dynamic symbolizers. Whenever the documentation refers to CQL, ECQL syntax can be used as well
(and if not, please report that as a bug!).

This tutorial introduces the CQL/ECQL language by example. For a full reference, refer to the ECQL
Reference.

21.8.1 Getting started

The following examples use the topp:states sample layer shipped with GeoServer. They demonstrate
how CQL filters work by using the WMS CQL_FILTER vendor parameter to alter the data displayed by WMS
requests. The easiest way to follow the tutorial is to open the GeoServer Map Preview for the topp:states
layer. Click on the Options button at the top of the map preview to open the advanced options toolbar. The
example filters can be entered in the Filter: CQL box.

The attributes used in the filter examples are those included in the layer. For example, the following are the
attribute names and values for the Colorado feature:

816 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.17: topp:states preview with advanced toolbar open.

Attribute states.6
STATE_NAME Colorado
STATE_FIPS 08
SUB_REGION Mtn
STATE_ABBR CO
LAND_KM 268659.501
WATER_KM 960.364
PERSONS 3294394.0
FAMILIES 854214.0
HOUSHOLD 1282489.0
MALE 1631295.0
FEMALE 1663099.0
WORKERS 1233023.0
DRVALONE 1216639.0
CARPOOL 210274.0
PUBTRANS 46983.0
EMPLOYED 1633281.0
UNEMPLOY 99438.0
SERVICE 421079.0
MANUAL 181760.0
P_MALE 0.495
P_FEMALE 0.505
SAMP_POP 512677.0

21.8.2 Simple comparisons

Let’s get started with a simple example. In CQL arithmetic and comparisons are expressed using plain text.
The filter PERSONS > 15000000 will select states that have more than 15 million inhabitants:

The full list of comparison operators is: =, <>, >, >=, <, <=.

To select a range of values the BETWEEN operator can be used: PERSONS BETWEEN 1000000 AND

21.8. CQL and ECQL 817

GeoServer User Manual, Release 2.5.x

Figure 21.18: PERSONS > 15000000

3000000:

Figure 21.19: PERSONS BETWEEN 1000000 AND 3000000

Comparison operators also support text values. For instance, to select only the state of California, the filter
is STATE_NAME = ’California’. More general text comparisons can be made using the LIKE operator.
STATE_NAME LIKE ’N%’ will extract all states starting with an “N”:

Figure 21.20: STATE_NAME LIKE ‘N%’

It is also possible to compare two attributes with each other. MALE > FEMALE selects the states in which
the male population surpasses the female one (a rare occurrence):

Arithmetic expressions can be computed using the +, -, *, / operators. The filter UNEMPLOY /
(EMPLOYED + UNEMPLOY) > 0.07 selects all states whose unemployment ratio is above 7% (remem-
ber the sample data is very old, so don’t draw any conclusion from the results!)

818 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.21: MALE > FEMALE

Figure 21.22: UNEMPLOY / (EMPLOYED + UNEMPLOY) > 0.07

21.8.3 Id and list comparisons

If we want to extract only the states with specific feature ids we can use the IN operator without specifying
any attribute, as in IN (’states.1’, ’states.12’):

Figure 21.23: IN (‘states.1’, ‘states.12’)

If instead we want to extract the states whose name is in a given list we can use the IN operator specifying
an attribute name, as in STATE_NAME IN (’New York’, ’California’, ’Montana’, ’Texas’):

21.8.4 Filter functions

CQL/ECQL can use any of the filter functions available in GeoServer. This greatly increases the power of
CQL expressions.

For example, suppose we want to find all states whose name contains an “m”, regardless of letter case.
We can use the strToLowerCase to turn all the state names to lowercase and then use a like comparison:

21.8. CQL and ECQL 819

GeoServer User Manual, Release 2.5.x

Figure 21.24: STATE_NAME IN (‘New York’, ‘California’, ‘Montana’, ‘Texas’)

strToLowerCase(STATE_NAME) like ’%m%’:

Figure 21.25: strToLowerCase(STATE_NAME) like ‘%m%’

21.8.5 Geometric filters

CQL provides a full set of geometric filter capabilities. Say, for example, you want to display only the states
that intersect the (-90,40,-60,45) bounding box. The filter will be BBOX(the_geom, -90, 40, -60, 45)

Figure 21.26: BBOX(the_geom, -90, 40, -60, 45)

Conversely, you can select the states that do not intersect the bounding box with the filter:
DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40))):

The full list of geometric predicates is: EQUALS, DISJOINT, INTERSECTS, TOUCHES, CROSSES, WITHIN,
CONTAINS, OVERLAPS, RELATE, DWITHIN, BEYOND.

820 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.27: DISJOINT(the_geom, POLYGON((-90 40, -90 45, -60 45, -60 40, -90 40)))

21.9 Using the ImageMosaic plugin

21.9.1 Introduction

This tutorial describes the process of creating a new coverage using the new ImageMosaic plugin. The
ImageMosaic plugin is provided by GeoTools, and allows the creation of a mosaic from a number of georef-
erenced rasters. The plugin can be used with Geotiffs, as well as rasters accompanied by a world file (.pgw
for png files, .jgw for jpg files, etc.). In addition, if imageio-ext GDAL extensions are properly installed we
can also serve all the formats supported by it like MrSID, ECW, JPEG2000, etc... See GDAL Image Formats
for more information on how to install them.

The JAI documentation gives a good description about what a Mosaic does:

The “Mosaic” operation creates a mosaic of two or more source images. This operation could be used for example to
assemble a set of overlapping geospatially rectified images into a contiguous image. It could also be used to create a
montage of photographs such as a panorama.

Briefly the ImageMosaic plugin is responsible for composing together a set of similar raster data, which,
from now on I will call granules. The plugin has, of course, some limitations:

1. All the granules must share the same Coordinate Reference System, no reprojection is performed.
This will always be a constraint.

2. All the granules must share the same ColorModel and SampleModel. This is a limitation/assumption
of the underlying JAI Mosaic operator: it basically means that the granules must share the same pixel
layout and photometric interpretation. It would be quite difficult to overcome this limitation, but to
some extent it could be done. Notice that, in case of colormapped granules, if the various granules
share the same colormap the code will do its best to retain it and try not to expand them in memory.
This can also be controlled via a parameter in the configuration file (se next sections)

3. All the granules must share the same spatial resolution and set of overviews (if this is not true,
overviews will not be used).

21.9.2 Granule Index

In order to configure a new CoverageStore and a new Coverage with this plugin, an index file needs to be
generated first in order to associate each granule to its bounding box. Currently we support only a Shapefile
as a proper index, although it would be possible to extend this and use other means to persist the index.

More specifically, the following files make up the mosaic configuration:

1. A shapefile that contains enclosing polygons for each raster file. This shapefile needs to have a field
whose values are the paths for the mosaic granules. The path can be either relative to the shape-

21.9. Using the ImageMosaic plugin 821

http://geotools.org/

GeoServer User Manual, Release 2.5.x

file itself or absolute, moreover, while the default name for the shapefile attribute that contains the
granules’ paths is “location”, such a name can be configured to be different (we’ll describe this later
on).

2. A projection file (.prj) for the above-mentioned shapefile.

3. A configuration file (.properties). This file contains properties such as cell size in x and y direction,
the number of rasters for the ImageMosaic coverage, etc.. We will describe this file in the next section.

Normally GeoServer will create automatically those files when pointed a directory containing images, but
it’s importat to understand them anyways in order to get better control on how the mosaic works, and
troubleshoot eventual issues.

21.9.3 Configuration File

The mosaic configuration file is used to store some configuration parameters to control the ImageMosaic
plugin. It is created as part of the mosac creation and usually do not require manual editing. The table
below describes the various elements in this configuration file.

Parame-
ter

Manda-
tory

Description

Enve-
lope2D

Y Contains the envelope for this mosaic formatted as LLCx,LLXy URCx,URCy
(notice the space between the coordinates of the Lower Left Corner and the
coordinates of the Upper Right Corner). An example is
Envelope2D=432500.25,81999.75 439250.25,84999.75

Level-
sNum

Y Represents the number of reduced resolution layers that we currently have for the
granules of this mosaic.

Levels Y Represents the resolutions for the various levels of the granules of this mosaic.
Please remember that we are currently assuming that the number of levels and the
resolutions for such levels are the same across alll the granules.

Name Y Represents the name for this mosaic.
Expand-
ToRGB

N Applies to colormapped granules. Asks the internal mosaic engine to expand the
colormapped granules to RGB prior to mosaicing them. This is needed whenever
the the granulesdo not share the same color map hence a straight composition that
would retain such a color map cannot be performed.

Abso-
lutePath

Y It controls whether or not the path stored inside the “location” attribute represents
an absolute path or a path relative to the location of the shapefile index. Notice
that a relative index ensure much more portability of the mosaic itself. Default
value for this parameter is False, which means relative paths.

Location-
Attribute

N The name of the attribute path in the shapefile index. Default value is location.

21.9.4 Creating Granules Index and Configuration File

The refactored version of the ImageMosaic plugin can be used to create the shapefile index as well as the
mosaic configuration file on the fly without having to rely on gdal or some other similar utility.

If you have a tree of directories containing the granules you want to be able to serve as a mosaic (and
providing that you are respecting the conditions written above) all you need to do is to point the GeoServer
to such a directory and it will create the proper ancillary files by inspecting all the files present in the the
tree of directories starting from the provided input one.

822 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.9.5 Configuring a Coverage in Geoserver

This is a process very similar to creating a FeatureType. More specifically, one has to perform the steps
higlighted in the sections here below.

Create a new CoverageStore:

1. Go to “Data Panel | Stores” via the web interface and click ‘Add new Store’. Finally click “ImageMo-
saic - Image mosaicking plugin” from “Raster Data Source”:

Figure 21.28: ImageMosaic in the list of raster data stores

2. In order to create a new mosaic is necessary:

• To chose the Workspace in the ‘Basic Store Info’ section.

• To give a name in the ‘Basic Store Info’ section.

• To fill the field URL in the ‘Connection Parameters’ section. You have three alternatives:

– Inserting the absolute path of the shapefile.

– Inserting the absolute path of the directory in which the mosaic shapefile index resides, the
GeoServer will look for it and make use of it.

– Inserting the absolute path of a directory where the files you want to mosaic together reside. In
this case GeoServer automatically creates the needed mosaic files (.dbf, .prj, .properties, .shp and
.shx) by inspecting the data of present in the given directory (GeoServer will also find the data
in the subdirectories).

Finally click the “Save” button:

Create a new Coverage using the new ImageMosaic CoverageStore:

1. Go to “Data Panel | Layers” via the web interface and click ‘Add a new resource’. Finally choose the
name of the Store you just created:

Layer Chooser

2. Click on the layer you wish to configure and you will be presented with the Coverage Editor:

Coverage Editor

3. Make sure there is a value for “Native SRS”, then click the Submit button. If the “Native CRS” is
‘UNKNOWN’, you must to declare the SRS specifying him in the “Declared SRS” field. Hopefully
there are no errors.

4. Click on the Save button.

Once you complete the preceding operations it is possible to access the OpenLayers map preview of the
created mosaic.

21.9. Using the ImageMosaic plugin 823

GeoServer User Manual, Release 2.5.x

Figure 21.29: Configuring an ImageMosaic data store

824 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.9. Using the ImageMosaic plugin 825

GeoServer User Manual, Release 2.5.x

Warning: In case the created layer appears to be all black it might be that GeoServer has not found no
acceptable granules in the provided ImageMosaic index. It is possible that the shapefile index empty (not
granules where found in in the provided directory) or it might be that the granules’ paths in the shapefile
index are not correct as it might happen in case we have moved an existing index using absolute paths
to another place. If the shapefile index paths are not correct the dbf file can be opened and fixed with, as
an instance OpenOffice. As an alternative on could simple delete the index and let GeoServer recreate it
from the root directory.

Tweaking an ImageMosaic CoverageStore:

The Coverage Editor gives users the possibility to set a few control parameters to further tweak and/or
control the mosaic creation process. Such parameters are as follows:

Parame-
ter

Description

MaxAl-
lowedTiles

Set the maximum number of the tiles that can be load simulatenously for a request. In case
of a large mosaic this parameter should be opportunely set to not saturating the server
with too many granules loaded at the same time.

Back-
ground-
Values

Set the value of the mosaic background. Depending on the nature of the mosaic it is wise
to set a value for the ‘no data’ area (usually -9999). This value is repeated on all the mosaic
bands.

Filter Set the default mosaic filter. It should be a valid ECQL query which will be used as default
if no ‘cql_filter’ are specified (instead of Filter.INCLUDE). If the cql_filter is specified in the
request it will be overriden.

Note: Do not use this filter to change time or elevation dimensions defaults. It will be added as AND
condition with CURRENT for ‘time’ and LOWER for ‘elevation’.

• – OutputTransparentColor

– Set the transparent color for the created mosaic. See below for an example:

OutputTransparentColor parameter configured with ‘no color’

OutputTransparentColor parameter configured with ‘no data’ color

InputTrans-
parentColor

Set the transparent color for the granules prior to mosaicing them in order to control the
superimposition process between them. When GeoServer composes the granules to
satisfy the user request, some of them can overlap some others, therefore, setting this
parameter with the opportune color avoids the overlap of ‘no data’ areas between
granules. See below for an example:

InputTransparentColor parameter not configured

InputTransparentColor parameter configured

AllowMulti-
threading

If true enable tiles multithreading loading. This allows to perform parallelized
loading of the granules that compose the mosaic.

USE_JAI_IMAGEREADControls the low level mechanism to read the granules. If ‘true’ GeoServer will make
use of JAI ImageRead operation and its deferred loading mechanism, if ‘false’
GeoServer will perform direct ImageIO read calls which will result in immediate
loading.

SUG-
GESTED_TILE_SIZE:

Controls the tile size of the input granules as well as the tile size of the output mosaic.
It consists of two positive integersseparated by a comma,like 512,512.

Note: Deferred loading consumes less memory since it uses a streaming approach to load in memory only

826 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.9. Using the ImageMosaic plugin 827

GeoServer User Manual, Release 2.5.x

the data that is needed for the processing at each time, but, on the other side, may cause problems under
heavy load since it keeps granules’ files open for a long time to support deferred loading.

Note: Immediate loading consumes more memory since it loads in memory the whole requested mosaic
at once, but, on the other side, it usually performs faster and does not leave room for “too many files open”
error conditions as it happens for deferred loading.

21.9.6 Configuration examples

Now we are going to provide a few examples of mosaic configurations to demonstrate how we can make
use of the ImageMosaic parameters.

DEM/Bathymetric mosaic configuration (raw data)

Such a mosaic can be use to serve large amount of data which represents altitude or depth and therefore
does not specify colors directly while it reather needs an SLD to generate pictures. In our case we have a
DEM dataset which consists of a set of raw geotiff files.

The first operation is to create the CoverageStore following the three steps showed in ‘Create a new Cover-
ageStore’ specifying, for example, the path of the shapefile in the ‘URL’ field. Inside the Coverage Editor,
Publishing tab - Default Title section, you can specify the ‘dem’ default style (Default Style combo box) in
order to represent the visualization style of the mosaic. The following is an example style:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

828 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>gtopo</Name>
<UserStyle>

<Name>dem</Name>
<Title>Simple DEM style</Title>
<Abstract>Classic elevation color progression</Abstract>
<FeatureTypeStyle>

<Rule>
<RasterSymbolizer>

<Opacity>1.0</Opacity>
<ColorMap>
<ColorMapEntry color="#000000" quantity="-9999" label="nodata" opacity="1.0" />
<ColorMapEntry color="#AAFFAA" quantity="0" label="values" />
<ColorMapEntry color="#00FF00" quantity="1000" label="values" />
<ColorMapEntry color="#FFFF00" quantity="1200" label="values" />
<ColorMapEntry color="#FF7F00" quantity="1400" label="values" />
<ColorMapEntry color="#BF7F3F" quantity="1600" label="values" />
<ColorMapEntry color="#000000" quantity="2000" label="values" />

</ColorMap>
</RasterSymbolizer>

</Rule>
</FeatureTypeStyle>

</UserStyle>
</NamedLayer>

</StyledLayerDescriptor>

In this way you have a clear distinction between the different intervals of the dataset that compose the
mosaic, like the background and the ‘no data’ area.

Note: The ‘no data’ on the sample mosaic is -9999, on the other side the default background value is for
mosaics is ‘0.0’.

The result is the following.

By setting in opportune ways the other configuration parameters, it is possible to improve at the same time
both the appearance of the mosaic as well as the its performances. As an instance we could:

1. Make the ‘no data’ areas transparent and coherent with the real data. To achieve this we need to
change the opacity of the ‘no data’ ColorMapEntry in the ‘dem’ style to ‘0.0’ and set ‘BackgroundVal-
ues’ parameter at ‘-9999’ so that empty areas will be filled with this value. The result is as follows:

2. Allow multithreaded granules loading. By setting the ‘AllowMultiThreading’ parameter to tru
GeoServer will load the granules in parallell sing multiple threads with a consequent increase of
the performances on some architectures..

The configuration parameters are the followings:

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: -9999.

3. OutputTransparentColor: ‘no color’.

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: ‘no color’.

6. AllowMultiThreading: true.

7. USE_JAI_IMAGEREAD: true.

21.9. Using the ImageMosaic plugin 829

GeoServer User Manual, Release 2.5.x

Figure 21.30: Basic configuration

830 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.31: Advanced configuration

8. SUGGESTED_TILE_SIZE: 512,512.

Aerial Imagery mosaic configuration

In this example we are going to create a mosaic that will serve aerial imagery, RGB geotiffs in this case.
Noticed that since we are talking about visual data, in the Coverage Editor you can use the basic ‘raster’
style, as reported here below, which is just a stub SLD to instruct the GeoServer raster renderer to not do
anything particular in terms of color management:

<?xml version="1.0" encoding="ISO-8859-1"?>
<StyledLayerDescriptor version="1.0.0"
xmlns="http://www.opengis.net/sld" xmlns:ogc="http://www.opengis.net/ogc"
xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opengis.net/sld http://schemas.opengis.net/sld/1.0.0/StyledLayerDescriptor.xsd">
<NamedLayer>
<Name>raster</Name>
<UserStyle>

<Name>raster</Name>
<Title>Raster</Title>
<Abstract>A sample style for rasters, good for displaying imagery </Abstract>
<FeatureTypeStyle>

<FeatureTypeName>Feature</FeatureTypeName>
<Rule>
<RasterSymbolizer>
<Opacity>1.0</Opacity>

</RasterSymbolizer>
</Rule>

</FeatureTypeStyle>
</UserStyle>

</NamedLayer>
</StyledLayerDescriptor>

The result is the following.

Note: Those ugly black areas, are the resulting of applying the eafalt mosaic parameters to a mosaic that
does not entirey cover its bounding box. The areas within the BBOX that are not covered with data will de-

21.9. Using the ImageMosaic plugin 831

GeoServer User Manual, Release 2.5.x

Figure 21.32: Basic configuration

fault to a value of 0 on each band. Since this mosaic is RGB wecan simply set the OutputTransparentCOlor
to 0,0,0 in order to get back transparent fills for the BBOX.

The various parameters can be set as follows:

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: default value.

3. OutputTransparentColor: #000000 (to make transparent the background).

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: ‘no color’.

6. AllowMultiThreading: true (in this way GeoServer manages the loading of the tiles in parallel mode
with a consequent increase of the performances).

7. USE_JAI_IMAGEREAD: true.

8. SUGGESTED_TILE_SIZE: 512,512.

The results is the following:

Scanned Maps mosaic configuration

In this case we want to show how to serve scanned maps (mostly B&W images) via a GeoServer mosaic.

In the Coverage Editor you can use the basic ‘raster’ style as shown above since there is not need to use any
of the advanced RasterSymbolizer capabilities.

The result is the following.

This mosaic, formed by two single granules, shows a typical case where the ‘no data’ collar areas of the
granules overlap, as it is shown in the picture above. In this case we can use the ‘InputTrasparentColor’
parameter at to make the collar areas disappear during the superimposition process, as instance, in this
case, by using the ‘#FFFFFF’ ‘InputTrasparentColor’.

This is the result:

832 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.33: Advanced configuration

Figure 21.34: Basic configuration

Figure 21.35: Advanced configuration

21.9. Using the ImageMosaic plugin 833

GeoServer User Manual, Release 2.5.x

The final configuration parameters are the followings:

1. MaxAllowedTiles: 2147483647

2. BackgroundValues: default value.

3. OutputTransparentColor: ‘no color’.

4. InputImageThresholdValue: NaN.

5. InputTransparentColor: #FFFFFF.

6. AllowMultiThreading: true (in this way GeoServer manages the loading of the tiles in parallel mode
with a consequent increase of the performances).

7. USE_JAI_IMAGEREAD: true.

8. SUGGESTED_TILE_SIZE: 512,512.

21.10 Using the ImageMosaic plugin for raster time-series data

21.10.1 Introduction

This step-by-step tutorial describes all the steps for building a time-series coverage using the new Image-
Mosaic plugin. The ImageMosaic plugin allows the creation of a time-series layer of a raster dataset. The
single images are hold in a queryable structure in order to access to a specific dataset with a temporal filter.

The concepts explained in Using the ImageMosaic plugin are required in order to properly understand the
steps shown here.

This tutorial is organized in 4 chapter:

• The first chapter, Configuration, describes the environment configurations needed before load an
Imagemosaic store from geoserver

• The second chapter, Configuration examples, describes the details, providing examples, of the con-
figurations files needed.

• The last 2 chapters, Coverage based on filestore and Coverage based on database describe, once the
previous configurations steps are done, how to create and configure an Imagemosaic store using the
geoserver GUI.

The dataset used in the tutorial can be downloaded Here. It contains 3 image files and a .sld file represent-
ing a style needed for correctly render the images.

21.10.2 Configuration

In order to load a new CoverageStore from the GeoServer GUI two steps are needed:

1. Create a new directory in which you store all your tif files (the mosaic granules) and three configura-
tion files. This directory represents the MOSAIC_DIR.

2. Install and setup a DBMS instance, this DB is that one where the mosaic indexes will be stored.

3. Another important thing is that the web container where geoserver is deployed must have the time-
zone properly configured.

In order to set the time in Coordinated Universal Time (UTC) add this switch when launching the java
process:

834 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

-Duser.timezone=GMT

If a shapefile is used (see next chapter) also this switch is needed in order to manage properly the timezone:

-Dorg.geotools.shapefile.datetime=true

Note: The above properties enables support for timestamp (date and time) data in Shapefile stores. Support
for timestamp is not part of the DBF standard, which only supports Date instead, and only few applications
understand it. As long as shapefiles are only used for GeoServer input that is not a problem, but the above
setting will cause issues if you have WFS enabled and users also download shapefiles as GetFeature output:
if the feature type extracted has timestamps the generated shapefile will have as well, making it difficult to
use the generated shapefile in desktop applications. As a rule of thumb, if you also need WFS support it is
advisable to use an external store (PostGIS, Oracle) instead. Of course, if all that’s needed is a date, using
shapefile as an index without the above property is fine as well.

MOSAIC_DIR and the Configuration Files

The user can name the and place the MOSAIC_DIR as and where he wants.

The MOSAIC_DIR contains all mosaic granules files and the 3 needed configuration files. The files are in
.properties format.

Note: Every tif file must follow the same naming convention. In this tutorial will be used {coverage-
name}_{timestamp}.tif

In a properties file you specify your properties in a key-value manner: e.g. myproperty=myvalue

The configuration files needed are:

1. datastore.properties: contains all relevant information responsible for connecting to the database in
which the spatial indexes of the mosaic will be stored

2. indexer.properties: specifies the name of the time-variant attribute, the elevation attribute and the
type of the attributes

3. timeregex.properties: specifies the regular expression used to extract the time information from the
filename.

All the configuration files must be placed in the root of the MOSAIC_DIR. The granule images could be
placed also in MOSAIC_DIR subfolders.

Please note that datastore.properties isn’t mandatory. The plugin provides two possibilities to access to
time series data:

• Using a shapefile in order to store the granules indexes. That’s the default behavior without provid-
ing the datastore.properties file.

• Using a DBMS, which maps the timestamp to the corresponding raster source. The former uses the
time attribute for access to the granule from the mapping table.

For production installation is strong recommended the usage of a DBMS instead of shapefile in order to
improve performances.

Otherwise the usage of a shapefile could be useful in development and test environments due to less con-
figurations are needed.

21.10. Using the ImageMosaic plugin for raster time-series data 835

GeoServer User Manual, Release 2.5.x

datastore.properties

Here is shown an example of datastore.properties suitable for Postgis.

Parame-
ter

Manda-
tory

Description

SPI Y The factory class used for the datastore e.g.
org.geotools.data.postgis.PostgisNGDataStoreFactory

host Y The host name of the database.
port Y The port of the database
database Y The name/instance of the database.
schema Y The name of the database schema.
user Y The database user.
passwd Y The database password.
Loose
bbox

N
default
‘false’

Boolean value to specify if loosing the bounding box.

Estimated
extend

N
default
‘true’

Boolean values to specify if the extent of the data should be estimated.

validate
connec-
tions

N
default
‘true’

Boolean value to specify if the connection should be validated.

Connec-
tion
timeout

N
default
‘20’

Specifies the timeout in minutes.

prepared-
State-
ments

N
default
‘false’

Boolean flag that specifies if for the database queries prepared statements
should be used. This improves performance, because the database query parser
has to parse the query only once

Note: The first 8 parameters are valid for each DBMS used, the last 4 may vary from different DBMS. for
more information see GeoTools JDBC documentation

indexer.properties

Parameter Manda-
tory

Description

TimeAttribute N Specifies the name of the time-variant attribute
ElevationAt-
tribute

N Specifies the name of the elevation attribute.

Schema Y A coma separated sequence that describes the mapping between attribute
and the data type.

PropertyCol-
lectors

Y Specifies the extractor classes.

Warning: TimeAttribute is not a mandatory param but for the purpose of this tutorial is needed.

timeregex.properties

Parameter Mandatory Description
regex Y Specifies the pattern used for extracting the information from the file

836 Chapter 21. Tutorials

http://docs.geotools.org/latest/userguide/library/jdbc/index.html

GeoServer User Manual, Release 2.5.x

After this you can create a new imagemosaic datastore.

Install and setup a DBMS instance

First of all note that the usage of a DBMS to store the mosaic indexes isn’t mandatory. If the user don’t
place in the MOSAIC_DIR the datastore.properties file the plugin uses a shapefile. The shapefile will be
created into the MOSAIC_DIR.

Anyway, especially for large dataset, the usage of a DBMS is strong recommended. The ImageMosaic
plugin supports all the most used DBMS.

The configuration needed are the basics: create a new empty DB with geospatial extensions, a new schema
and configure the user with W/R grants.

In this tutorial will be used PostgreSQL 9.1 together with PostGIS 2.0 .

21.10.3 Configuration examples

As example is used a set of data that represents hydrological data in a certain area in South Tyrol, a region
in northern Italy. The origin data were converted from asc format to tiff using the gdal utility gdal translate.

For this running example we will create a layer named snow.

As mentioned before the files could located in any part of the file system.

In this tutorial the chosen MOSAIC_DIR directory is called hydroalp and is placed under the root of the
GEOSERVER_DATA_DIR.

Configure the MOSAIC_DIR:

In this part is shown an entire MOSAIC_DIR configuration.

datastore.properties:

SPI=org.geotools.data.postgis.PostgisNGDataStoreFactory
host=localhost
port=5432
database=db
schema=public
user=dbuser
passwd=dbpasswd
Loose\ bbox=true
Estimated\ extends=false
validate\ connections=true
Connection\ timeout=10
preparedStatements=true

Note: In case of a missing datastore.properties file a shape file is created for the use of the indexes.

Granules Naming Convention

Here an example of the granules naming that satisfy the rule shown before:

21.10. Using the ImageMosaic plugin for raster time-series data 837

GeoServer User Manual, Release 2.5.x

$ls hydroalp/snow/*.tif

snow/snow_20091001.tif
snow/snow_20091101.tif
snow/snow_20091201.tif
snow/snow_20100101.tif
snow/snow_20100201.tif
snow/snow_20100301.tif
snow/snow_20100401.tif
snow/snow_20100501.tif
snow/snow_20100601.tif
snow/snow_20100701.tif
snow/snow_20100801.tif
snow/snow_20100901.tif

timeregex.properties:

In the timeregex property file you specify the pattern how the date(time) in the file looks like. In this
example it consists simply of 8 digits as specified below.

regex=[0-9]{8}

indexer.properties:

Here the user can specify the information that needs Geoserver for creating the table in the database. In this
table the time values are stored in the column ingestion.

TimeAttribute=ingestion
ElevationAttribute=elevation
Schema=*the_geom:Polygon,location:String,ingestion:java.util.Date,elevation:Integer
PropertyCollectors=TimestampFileNameExtractorSPI[timeregex](ingestion)

21.10.4 Create and Publish an Imagemosaic store:

Step 1: create new imagemosaic data store

We create a new data store of type raster data and choose ImageMosaic.

Note: Be aware that Geoserver creates a table which is identical with the name of your layer. If the table
already exists, it will not be dropped from the DB and the following error message appear. The same
message appear, if the generated property file already exists in the directory or there are wrong connection
parameters in datastore.properties file.

Step 2: Specify layer

We specify the directory in which the property and tif files are located (path must end with a slash) and add
the layer.

838 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.10. Using the ImageMosaic plugin for raster time-series data 839

GeoServer User Manual, Release 2.5.x

Step 3: set Coverage Parameter

The relevant parameters are AllowMultithreading and USE_JAI_IMAGEREAD. Do not forget to specify
the background value according to your the value in your tif file. If you want to control which granule
is displayed when a number of images match the time period specified then set the SORTING parameter
to the variable name you want to use for sorting followed by a space and either D or A for descending
or ascending. Descending values will mean that the latest image in a series that occurs in the time period
requested is shown.

Remember that for display correctly the images contained in the provided dataset a custom style is needed.

Set as default style the snow_style.sld contained in the dataset archive.

More information about raster styling can be found at chapter Rasters

Step 4: set temporal properties

In the tab Dimensions you can specify how the time attributes are represented.

By enabling the Time or Elevation checkbox you can specify the way of presentation. In this example query
is performed just only over the time attribute.

Below is shown a snippet of the Capabilities document for each presentation case:

Setting the presentation to List, all mosaic times are listed:

<Dimension name="time" default="current" units="ISO8601">
2009-10-01T00:00:00.000Z,2009-11-01T00:00:00.000Z,2009-12-01T00:00:00.000Z,2010-01-01T00:00:00.000Z,2010-02-01T00:00:00.000Z,2010-03-01T00:00:00.000Z,2010-04-01T00:00:00.000Z,2010-05-01T00:00:00.000Z,2010-06-01T00:00:00.000Z,2010-07-01T00:00:00.000Z,2010-08-01T00:00:00.000Z,2010-09-01T00:00:00.000Z,2010-10-01T00:00:00.000Z,2010-11-01T00:00:00.000Z,2010-12-01T00:00:00.000Z,2011-01-01T00:00:00.000Z,2011-02-01T00:00:00.000Z,2011-03-01T00:00:00.000Z,2011-04-01T00:00:00.000Z,2011-05-01T00:00:00.000Z,2011-06-01T00:00:00.000Z,2011-07-01T00:00:00.000Z,2011-08-01T00:00:00.000Z,2011-09-01T00:00:00.000Z

</Dimension>

Setting the presentation to Continuous interval only the start, end and interval extent times are listed:

<Dimension name="time" default="current" units="ISO8601">
2009-10-01T00:00:00.000Z/2011-09-01T00:00:00.000Z/P1Y11MT10H

</Dimension>

Setting the presentation to Interval and resolutions gives to user the possibility to specify the resolutions
of the interval:

840 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

<Dimension name="time" default="current" units="ISO8601">
2009-10-01T00:00:00.000Z/2011-09-01T00:00:00.000Z/P1DT12H

</Dimension>

In this case the resolution is set to one day and half

Note: For visualize the getCapabilities document go to geoserver homepage, under the right tab called
Service Capabilities click on the WMS 1.3.0 link.

For this tutorial the Presentation attribute is set to List

After this steps the new layer is available in Geoserver. Additionally Geoserver has created in the source
directory a property file and on the database he has created a table named with the name of the layer.

Generated property file:

#-Automagically created from GeoTools-
#Sat Oct 13 10:47:08 CEST 2012
Levels=100.0,100.0
Heterogeneous=false
ElevationAttribute=elevation
TimeAttribute=ingestion
AbsolutePath=false
Name=snow
Caching=false
ExpandToRGB=false
LocationAttribute=location
SuggestedSPI=it.geosolutions.imageioimpl.plugins.tiff.TIFFImageReaderSpi
LevelsNum=1

Note: The parameter Caching=false is important because in this way GeoServer doesn’t cache any data.
So the user is able to update manually the mosaic adding and removing granules to MOSAIC_DIR and
update the relative entry on DB.

21.10. Using the ImageMosaic plugin for raster time-series data 841

GeoServer User Manual, Release 2.5.x

Generated table:

Note: The user must create manually the index on the table in order to speed up the search by attribute.

Step 5: query layer on timestamp:

In order to display a snapshot of the map at a specific time instant you have to pass in the request an addi-
tional time parameter with a specific notation &time= < pattern > where you pass a value that corresponds
to them in the filestore. The only thing is the pattern of the time value is slightly different.

For example if an user wants to obtain the snow coverage images from the months Oct,Nov,Dec 2009 I
pass in each request &time=2009-10-01, &time=2009-11-01 and &time=2009-12-01. You can recognize in
the three images how the snow coverage changes. Here the color blue means a lot of snow.

21.10.5 Create and publish a Layer from mosaic indexes:

After the previous steps it is also be possible to create a layer that represents the spatial indexes of the
mosaic. This is an useful features when is required to handle large dataset of Mosaics with High Resolu-
tions granules, the user can easily get the footprints of the Images. In this case will be rendered only the
geometries stored on the indexes tables.

Step 1: add a postgis datastore:

and specify the connection parameters

Step 2: add database layer:

Choose from the created datastore the table that you want to publish as a layer.

Step 3: specify dimension:

In the tab Dimension specify the time-variant attribute and the form of presentation.

That’s it. Now is possible query this layer too.

842 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.10. Using the ImageMosaic plugin for raster time-series data 843

GeoServer User Manual, Release 2.5.x

844 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

21.11 Using the ImageMosaic plugin for raster with time and eleva-
tion data

21.11.1 Introduction

This tutorial is the following of Using the ImageMosaic plugin for raster time-series data and explains how
manage an Imagemosaic using both Time and Elevation attributes.

The dataset used is a set of raster images used in weather forecast, representing the temperature in a certain
zone at different times and elevations.

All the steps explained in chapter Configurations of Using the ImageMosaic plugin for raster time-series data are
still the same.

This tutorial explains just how to configure the elevationregex.properties that is an additional configura-
tion file needed, and how to modify the indexer.properties.

The dataset used is different so also a fix to the timeregex.properties used in the previous tutorial is needed.

Will be shown also how query geoserver asking for layers specifying both time and elevation dimensions.

The dataset used in the tutorial can be downloaded Here

21.11.2 Configuration examples

The additional configurations needed in order to handle also the elevation attributes are:

• Improve the previous version of the indexer.properties file

• Add the elevationregex.properties file in order to extract the elevation dimension from the filename

21.11. Using the ImageMosaic plugin for raster with time and elevation data 845

GeoServer User Manual, Release 2.5.x

indexer.properties:

Here the user can specify the information that needs Geoserver for creating the table in the database.

In this case the time values are stored in the column ingestion as shown in the previous tutorial but now is
mandatory specify the elevation column too.

Caching=false
TimeAttribute=ingestion
ElevationAttribute=elevation
Schema=*the_geom:Polygon,location:String,ingestion:java.util.Date,elevation:Double
PropertyCollectors=TimestampFileNameExtractorSPI[timeregex](ingestion),DoubleFileNameExtractorSPI[elevationregex](elevation)

elevationregex.properties:

Remember that every tif file must follow this naming convention:

{coveragename}_{timestamp}_[{elevation}].tif

As in the timeregex property file the user must specify the pattern that the elevation in the file name looks
like. In this example it consists of 4 digits, a dot ‘.’ and other 3 digits.

an example of filename, that is used in this tutorial is:

gfs50kmTemperature20130310T180000000Z_0600.000_.tiff

The geoserver imagemosaic plugin scans the filename and search for the first occurrence that match with
the pattern specified. Here the content of timeregex.properties:

regex=(?<=_)(\\d{4}\\.\\d{3})(?=_)

timeregex.properties:

As you can see the time in this dataset is specified as ISO8601 format:

20130310T180000000Z

Instead of the form yyyymmdd as in the previous tutorial. So the regex to specify in timeregex.properties
is:

regex=[0-9]{8}T[0-9]{9}Z(\?!.*[0-9]{8}T[0-9]{9}Z.*)

21.11.3 Coverage based on filestore

Once the mosaic configuration is ready the store mosaic could be loaded on geoserver.

The steps needed are the same shown the previous chapter. After the store is loaded and a layer published
note the differences in WMS Capabilities document and in the table on postgres.

WMS Capabilities document

The WMS Capabilities document is a bit different, now there is also the dimension elevation. In this exam-
ple both time and elevation dimension are set to List .

846 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

<Dimension name="time" default="current" units="ISO8601">
2013-03-10T00:00:00.000Z,2013-03-11T00:00:00.000Z,2013-03-12T00:00:00.000Z,2013-03-13T00:00:00.000Z,2013-03-14T00:00:00.000Z,2013-03-15T00:00:00.000Z,2013-03-16T00:00:00.000Z,2013-03-17T00:00:00.000Z,2013-03-18T00:00:00.000Z

</Dimension>
<Dimension name="elevation" default="200.0" units="EPSG:5030" unitSymbol="m">

200.0,300.0,500.0,600.0,700.0,850.0,925.0,1000.0
</Dimension>

The table on postgres

With the elevation support enabled the table on postgres has, for each image, the field elevation filled with
the elevation value.

Note: The user must create manually the index on the table in order to speed up the search by attribute.

Query layer on timestamp:

In order to display a snapshot of the map at a specific time instant and elevation you have to pass in the
request those parameters.

• &time= < pattern > , as shown before,

• &elevation= < pattern > where you pass the value of the elevation.

For example if an user wants to obtain the temperature coverage images for the day 2013-03-10 at 6 PM at
elevation 200 meters must append to the request:

&time=2013-03-10T00:00:00.000Z&elevation=200.0

Same day at elevation 300.0 meters:

&time=2013-03-10T00:00:00.000Z&elevation=300.0

Note that if just the time dimension is append to the request will be displayed the elevation 200 meters (if
present) because of the default attribute of the tag <Dimension name="elevation" ... in the WMS
Capabilities document is set to 200

21.11. Using the ImageMosaic plugin for raster with time and elevation data 847

GeoServer User Manual, Release 2.5.x

21.12 Building and using an image pyramid

GeoServer can efficiently deal with large TIFF with overviews, as long as the TIFF is below the 2GB size
limit.

Once the image size goes beyond such limit it’s time to start considering an image pyramid instead.

An image pyramid builds multiple mosaics of images, each one at a different zoom level, making it so that
each tile is stored in a separate file. This comes with a composition overhead to bring back the tiles into
a single image, but can speed up image handling as each overview is tiled, and thus a sub-set of it can be
accessed efficiently (as opposed to a single GeoTIFF, where the base level can be tiled, but the overviews
never are).

This tutorial shows how to build an image pyramid with open source utilities and how to load it into
GeoServer. The tutorial assumes you’re running at least GeoServer 2.0.2.

21.12.1 Building a pyramid

For this tutorial we have prepared a sample BlueMarble TNG subset in GeoTIFF form. The image is tiled
and JPEG compressed, without overviews. Not exactly what you’d want to use for high performance data
serving, but good for redistribution and as a starting point to build a pyramid.

In order to build the pyramid we’ll use the gdal_retile.py utility, part of the GDAL command line utilities
and available for various operating systems (if you’re using Microsoft Windows look for FWTools).

The following commands will build a pyramid on disk:

848 Chapter 21. Tutorials

http://data.opengeo.org/bmreduced.tiff
http://www.gdal.org/gdal_retile.html
http://fwtools.maptools.org/

GeoServer User Manual, Release 2.5.x

mkdir bmpyramid
gdal_retile.py -v -r bilinear -levels 4 -ps 2048 2048 -co "TILED=YES" -co "COMPRESS=JPEG" -targetDir bmpyramid bmreduced.tiff

The gdal_retile.py user guide provides a detailed explanation for all the possible parameters, here is a
description of the ones used in the command line above:

• -v: verbose output, allows the user to see each file creation scroll by, thus knowing progress is being
made (a big pyramid construction can take hours)

• -r bilinear: use bilinear interpolation when building the lower resolution levels. This is key to get good
image quality without asking GeoServer to perform expensive interpolations in memory

• -levels 4: the number of levels in the pyramid

• -ps 2048 2048: each tile in the pyramid will be a 2048x2048 GeoTIFF

• -co “TILED=YES”: each GeoTIFF tile in the pyramid will be inner tiled

• -co “COMPRESS=JPEG”: each GeoTIFF tile in the pyramid will be JPEG compressed (trades small size
for higher performance, try out it without this parameter too)

• -targetDir bmpyramid: build the pyramid in the bmpyramid directory. The target directory must exist
and be empty

• bmreduced.tiff : the source file

This will produce a number of TIFF files in bmpyramid along with the sub-directories 1, 2, 3, and 4.

Once that is done, and assuming the GeoServer image pyramid plug-in is already installed, it’s possible to
create the coverage store by pointing at the directory containing the pyramid and clicking save:

Figure 21.36: Configuring a image pyramid store

When clicking save the store will look into the directory, recognize a gdal_retile generated structure and
perform some background operations:

• move all tiff files in the root to a newly create directory 0

• create an image mosaic in all sub-directories (shapefile index plus property file)

• create the root property file describing the whole pyramid structure

Once that is done the user will be asked to choose a coverage, which will be named after the pyramid root
directory:

21.12. Building and using an image pyramid 849

http://www.gdal.org/gdal_retile.html

GeoServer User Manual, Release 2.5.x

Figure 21.37: Choosing the coverage for publishing

Publish the layer, and then setup the layer parameter USE_JAI_IMAGEREAD to false to get better scalability:

Figure 21.38: Tuning the pyramid parameters

Submit and go to the preview, the pyramid should be ready to use:

21.12.2 Notes on big pyramids

The code that is auto-creating the pyramid indexes and metadata files might take time to run, especially if:

• the pyramid zero level is composed of many thousands of files

• the system is busy with the disk already and that results in higher times to move all the files to the 0
directory

If the delay is too high the request to create the store will time out and might break the pyramid creation.
So, in case of very big pyramids consider loosing some of the comfort and creating the 0 directory and
moving the files by hand:

cd bmpyramid
mkdir 0
mv *.tiff 0

850 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Figure 21.39: Previewing the pyramid

21.13 Storing a coverage in a JDBC database

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

21.13.1 Introduction

This tutorial describes the process of storing a coverage along with its pyramids in a jdbc database. The
ImageMosaic JDBC plugin is authored by Christian Mueller and is part of the geotools library.

The full documentation is available here:http://docs.geotools.org/latest/userguide/library/coverage/jdbc/index.html

This tutorial will show one possible scenario, explaining step by step what to do for using this module in
GeoServer (since Version 1.7.2)

21.13.2 Getting Started

We use postgis/postgres as database engine, a database named “gis” and start with an image from open-
streetmap. We also need this utility http://www.gdal.org/gdal_retile.html . The best way to install with
all dependencies is downloading from here http://fwtools.maptools.org/

21.13. Storing a coverage in a JDBC database 851

http://docs.geotools.org/latest/userguide/library/coverage/jdbc/index.html
http://www.gdal.org/gdal_retile.html
http://fwtools.maptools.org/

GeoServer User Manual, Release 2.5.x

Create a working directory, lets call it working ,download this image with a right mouse click (Image save
as ...) and save it as start_rgb.png

Check your image with:

gdalinfo start_rgb.png

This image has 4 Bands (Red,Green,Blue,Alpha) and needs much memory. As a rule, it is better to use
images with a color table. We can transform with rgb2pct (rgb2pct.py on Unix).:

rgb2pct -of png start_rgb.png start.png

Compare the sizes of the 2 files.

Afterwards, create a world file start.wld in the working directory with the following content.:

0.0075471698
0.0000000000
0.0000000000
-0.0051020408
8.9999995849
48.9999999796

21.13.3 Preparing the pyramids and the tiles

If you are new to tiles and pyramids, take a quick look here
http://star.pst.qub.ac.uk/idl/Image_Tiling.html

852 Chapter 21. Tutorials

http://star.pst.qub.ac.uk/idl/Image_Tiling.html

GeoServer User Manual, Release 2.5.x

21.13.4 How many pyramids are needed ?

Lets do a simple example. Given an image with 1024x1024 pixels and a tile size with 256x256 pixels.We can
calculate in our brain that we need 16 tiles. Each pyramid reduces the number of tiles by a factor of 4. The
first pyramid has 16/4 = 4 tiles, the second pyramid has only 4/4 = 1 tile.

Solution: The second pyramid fits on one tile, we are finished and we need 2 pyramids.

The formula for this:

number of pyramids = log(pixelsize of image) / log(2) - log (pixelsize of tile) / log(2).

Try it: Go to Google and enter as search term “log(1024)/log(2) - log(256)/log(2)” and look at the result.

If your image is 16384 pixels , and your tile size is 512 pixels, it is

log(16384)/log(2) - log(512)/log(2) = 5

If your image is 18000 pixels, the result = 5.13570929. Thake the floor and use 5 pyramids. Remember, the
last pyramid reduces 4 tiles to 1 tile, so this pyramid is not important.

If your image is 18000x12000 pixel, use the bigger dimension (18000) for the formula.

For creating pyramids and tiles, use http://www.gdal.org/gdal_retile.html from the gdal project.

The executeable for Windows users is gdal_retile.bat or only gdal_retile, Unix users call gdal_retile.py

Create a subdirectory tiles in your working directory and execute within the working directory:

gdal_retile -co "WORLDFILE=YES" -r bilinear -ps 128 128 -of PNG -levels 2 -targetDir tiles start.png

What is happening ? We tell gdal_retile to create world files for our tiles (-co “WORLDFILE=YES”), use
bilinear interpolation (-r bilinear), the tiles are 128x128 pixels in size (-ps 128 128) , the image format should
be PNG (-of PNG), we need 2 pyramid levels (-levels 2) ,the directory for the result is tiles (-targetDir
tiles) and the source image is start.png.

Note: A few words about the tile size. 128x128 pixel is proper for this example. Do not use such small sizes
in a production environment. A size of 256x256 will reduce the number of tiles by a factor of 4, 512x512 by
a factor of 16 and so on. Producing too much tiles will degrade performance on the database side (large
tables) and will also raise cpu usage on the client side (more image operations).

Now you should have the following directories

• working containing start.png , start.wld and a subdirectory tiles.

• working/tiles containing many *.png files and associated *.wld files representing the tiles of
start.png

• working/tiles/1 containing many *.png files and associated *.wld files representing the tiles of
the first pyramid

• working/tiles/2 containing many *.png files and associated *.wld files representing the tiles of
the second pyramid

21.13.5 Configuring the new map

The configuration for a map is done in a xml file. This file has 3 main parts.

1. The connect info for the jdbc driver

2. The mapping info for the sql tables

21.13. Storing a coverage in a JDBC database 853

http://www.gdal.org/gdal_retile.html

GeoServer User Manual, Release 2.5.x

3. Configuration data for the map

Since the jdbc connect info and the sql mapping may be reused by more than one map, the best practice is
to create xml fragments for both of them and to use xml entity references to include them into the map xml.

First, find the location of the GEOSERVER_DATA_DIR. This info is contained in the log file when starting
GeoServer.:

- GEOSERVER_DATA_DIR: /home/mcr/geoserver-1.7.x/1.7.x/data/release

Put all configuration files into the coverages subdirectory of your GeoServer data directory. The location
in this example is

/home/mcr/geoserver-1.7.x/1.7.x/data/release/coverages

1. Create a file connect.postgis.xml.inc with the following content

<connect>
<!-- value DBCP or JNDI -->
<dstype value="DBCP"/>
<!-- <jndiReferenceName value=""/> -->
<username value="postgres" />
<password value="postgres" />
<jdbcUrl value="jdbc:postgresql://localhost:5432/gis" />
<driverClassName value="org.postgresql.Driver"/>
<maxActive value="10"/>
<maxIdle value="0"/>

</connect>

The jdbc user is “postgres”, the password is “postgres”, maxActive and maxIdle are parameters of the
apache connection pooling, jdbcUrl and driverClassName are postgres specific. The name of the database
is “gis”.

If you deploy GeoServer into a J2EE container capable of handling jdbc data sources, a better approach is

<connect>
<!-- value DBCP or JNDI -->
<dstype value="JNDI"/>
<jndiReferenceName value="jdbc/mydatasource"/>

</connect>

For this tutorial, we do not use data sources provided by a J2EE container.

2. The next xml fragment to create is mapping.postgis.xml.inc

<!-- possible values: universal,postgis,db2,mysql,oracle -->
<spatialExtension name="postgis"/>
<mapping>

<masterTable name="mosaic" >
<coverageNameAttribute name="name"/>
<maxXAttribute name="maxX"/>
<maxYAttribute name="maxY"/>
<minXAttribute name="minX"/>
<minYAttribute name="minY"/>
<resXAttribute name="resX"/>
<resYAttribute name="resY"/>
<tileTableNameAtribute name="TileTable" />
<spatialTableNameAtribute name="SpatialTable" />

</masterTable>
<tileTable>

854 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

<blobAttributeName name="data" />
<keyAttributeName name="location" />

</tileTable>
<spatialTable>

<keyAttributeName name="location" />
<geomAttributeName name="geom" />
<tileMaxXAttribute name="maxX"/>
<tileMaxYAttribute name="maxY"/>
<tileMinXAttribute name="minX"/>
<tileMinYAttribute name="minY"/>

</spatialTable>
</mapping>

The first element <spatialExtension> specifies which spatial extension the module should use. “uni-
versal” means that there is no spatial db extension at all, meaning the tile grid is not stored as a geometry,
using simple double values instead.

This xml fragment describes 3 tables, first we need a master table where information for each pyramid level
is saved. Second and third, the attribute mappings for storing image data, envelopes and tile names are
specified. To keep this tutorial simple, we will not further discuss these xml elements. After creating the
sql tables things will become clear.

3. Create the configuration xml osm.postgis.xml for the map (osm for “open street map”)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE ImageMosaicJDBCConfig [

<!ENTITY mapping PUBLIC "mapping" "mapping.postgis.xml.inc">
<!ENTITY connect PUBLIC "connect" "connect.postgis.xml.inc">]>

<config version="1.0">
<coverageName name="osm"/>
<coordsys name="EPSG:4326"/>
<!-- interpolation 1 = nearest neighbour, 2 = bilinear, 3 = bicubic -->
<scaleop interpolation="1"/>
<verify cardinality="false"/>
&mapping;
&connect;

</config>

This is the final xml configuration file, including our mapping and connect xml fragment. The coverage
name is “osm”, CRS is EPSG:4326. <verify cardinality="false"> means no check if the number of
tiles equals the number of rectangles stored in the db. (could be time consuming in case of large tile sets).

This configuration is the hard stuff, now, life becomes easier :-)

21.13.6 Using the java ddl generation utility

The full documentation is here: http://docs.geotools.org/latest/userguide/library/coverage/jdbc/ddl.html

To create the proper sql tables, we can use the java ddl generation utility. This utility is included in the
gt-imagemosaic-jdbc-version.jar. Assure that this jar file is in your WEB-INF/lib directory of
your GeoServer installation.

Change to your working directory and do a first test:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar

The reply should be:

21.13. Storing a coverage in a JDBC database 855

http://docs.geotools.org/latest/userguide/library/coverage/jdbc/ddl.html

GeoServer User Manual, Release 2.5.x

Missing cmd import | ddl

Create a subdirectory sqlscripts in your working directory. Within the working directory, execute:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar ddl -config <your geoserver data dir >/coverages/osm.postgis.xml -spatialTNPrefix tileosm -pyramids 2 -statementDelim ";" -srs 4326 -targetDir sqlscripts

Explanation of parameters

parameter description
ddl create ddl statements
-config the file name of our osm.postgis.xml file
-pyramids number of pyramids we want
-statementDelim The SQL statement delimiter to use
-srs The db spatial reference identifier when using a spatial extension
-targetDir output directory for the scripts
-spatialTNPrefix A prefix for tablenames to be created.

In the directory working/sqlscripts you will find the following files after execution:

createmeta.sql dropmeta.sql add_osm.sql remove_osm.sql

Note: IMPORTANT:

Look into the files createmeta.sql and add_osm.sql and compare them with the content of
mapping.postgis.xml.inc. If you understand this relationship, you understand the mapping.

The generated scripts are only templates, it is up to you to modify them for better performance or other
reasons. But do not break the relationship to the xml mapping fragment.

21.13.7 Executing the DDL scripts

For user “postgres”, databae “gis”, execute in the following order:

psql -U postgres -d gis -f createmeta.sql
psql -U postgres -d gis -f add_osm.sql

To clean your database, you can execute remove_osm.sql and dropmeta.sql after finishing the tutorial.

21.13.8 Importing the image data

The full documentation is here: http://docs.geotools.org/latest/userguide/library/coverage/jdbc/ddl.html

First, the jdbc jar file has to be in the lib/ext directory of your java runtime. In my case I had to copy
postgresql-8.1-407.jdbc3.jar.

Change to the working directory and execute:

java -jar <your_geoserver_install_dir>/webapps/geoserver/WEB-INF/lib/gt-imagemosaic-jdbc-{version}.jar import -config <your geoserver data dir>/coverages/osm.postgis.xml -spatialTNPrefix tileosm -tileTNPrefix tileosm -dir tiles -ext png

This statement imports your tiles including all pyramids into your database.

21.13.9 Configuring GeoServer

Start GeoServer and log in.Under Config → WCS → CoveragePlugins you should see

856 Chapter 21. Tutorials

http://docs.geotools.org/latest/userguide/library/coverage/jdbc/ddl.html

GeoServer User Manual, Release 2.5.x

If there is no line starting with “ImageMosaicJDBC”, the gt-imagemosiac-jdbc-version.jar file is
not in your WEB-INF/lib folder. Go to Config→Data→CoverageStores→New and fill in the formular

Press New and fill in the formular

Press Submit.

Press Apply, then Save to save your changes.

Next select Config→Data→Coverages→New and select “osm”.

21.13. Storing a coverage in a JDBC database 857

GeoServer User Manual, Release 2.5.x

Press New and you will enter the Coverage Editor. Press Submit, Apply and Save.

Under Welcome→Demo→Map Preview you will find a new layer “topp:osm”. Select it and see the results

If you think the image is stretched, you are right. The reason is that the original image is georeferenced
with EPSG:900913, but there is no support for this CRS in postigs (at the time of this writing). So I used
EPSG:4326. For the purpose of this tutorial, this is ok.

21.13.10 Conclusion

There are a lot of other configuration possibilities for specific databases. This tutorial shows a quick cook-
book to demonstrate some of the features of this module. Follow the links to the full documentation to dig
deeper, especially if you are concerned about performance and database design.

If there is something which is missing, proposals are welcome.

21.14 Using the GeoTools feature-pregeneralized module

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same, but a bit
more easy to use.

21.14.1 Introduction

This tutorial shows how to use the geotools feature-pregeneralized module in GeoServer. The feature-
pregeneralized module is used to improve performance and lower memory usage and IO traffic.

858 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

Note: Vector generalization reduces the number of vertices of a geometry for a given purpose. It makes no
sense drawing a polygon with 500000 vertices on a screen. A much smaller number of vertices is enough to
draw a topological correct picture of the polygon.

This module needs features with already generalized geometries, selecting the best fit geometry on demand.

The full documentation is available here:http://docs.geotools.org/latest/userguide/library/data/pregeneralized.html

This tutorial will show two possible scenarios, explaining step by step what to do for using this module in
GeoServer.

21.14.2 Getting Started

First, find the location of the GEOSERVER_DATA_DIR. This info is contained in the log file when starting
GeoServer.:

- GEOSERVER_DATA_DIR: /home/mcr/geoserver-1.7.x/1.7.x/data/release

Within this directory, we have to place the shape files. There is already a sub directory data which will be
used. Within this sub directory, create a directory streams.

Within GEOSERVER_DATA_DIR/data/streams create another sub directory called 0. (0 meaning “no
generalized geometries”).

This tutorial is based on on a shape file, which you can download from here Streams. Unzip this file into
GEOSERVER_DATA_DIR/data/streams/0.

Look for the WEB-INF/lib/ directory of your GeoServer installation. There must be a file called
gt-feature-pregeneralized-version-jar. This jar file includes a tool for generalizing shape files.
Open a cmd line and execute the following:

cd <GEOSERVER_DATA_DIR>/data/streams/0
java -jar <GEOSERVER_INSTALLATION>/WEB-INF/lib/gt-feature-pregeneralized-{version}.jar generalize 0/streams.shp . 5,10,20,50

You should see the following output:

Shape file 0/streams.shp
Target directory .
Distances 5,10,20,50
% |################################|

Now there are four additional directories 5.0 , 10.0 , 20.0 , 50.0 . Look at the size of files with the
extension shp within these directories, increasing the generalization distance reduces the file size.

Note: The generalized geometries can be stored in additional properties of a feature or the features can be
duplicated. Mixed variations are also possible. Since we are working with shape files we have to duplicate
the features.

There are two possibilities how we can deploy our generalized shape files.

1. Deploy hidden (not visible to the user)

2. Deploy each generalized shape file as a separate GeoServer feature

21.14. Using the GeoTools feature-pregeneralized module 859

http://docs.geotools.org/latest/userguide/library/data/pregeneralized.html

GeoServer User Manual, Release 2.5.x

21.14.3 Hidden Deployment

First we need a XML config file

<?xml version="1.0" encoding="UTF-8"?>
<GeneralizationInfos version="1.0">

<GeneralizationInfo dataSourceName="file:data/streams/0/streams.shp" featureName="GenStreams" baseFeatureName="streams" geomPropertyName="the_geom">
<Generalization dataSourceName="file:data/streams/5.0/streams.shp" distance="5" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/10.0/streams.shp" distance="10" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/20.0/streams.shp" distance="20" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceName="file:data/streams/50.0/streams.shp" distance="50" featureName="streams" geomPropertyName="the_geom"/>

</GeneralizationInfo>
</GeneralizationInfos>

Save this file as geninfo_shapefile.xml into GEOSERVER_DATA_DIR/data/streams.

Note: The dataSourceName attribute in the XML config is not interpreted as a name, it could be the
URL for a shape file or for a property file containing properties for data store creation (e. g. jdbc connect
parameters). Remember, this is a hidden deployment and no names are needed. The only official name is
the value of the attribute featureName in the GeneralizationInfo Element.

Start GeoServer and go to Config→Data→DataStores→New and fill in the form

Press Submit.

The next form you see is

Note: RepositoryClassName and GeneralizationInfosProviderClassName have default values which
suit for GeoTools, not for GeoServer. Change GeoTools to GeoServer in the package names to instantiate
the correct objects for GeoServer. GeneralizationInfosProviderParam could be an URL or a datastore from

860 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

the Geoserver catalog. A datastore is referenced by using workspacename:datastorename. This makes sense if
you have your own implementation for the GeneralizationInfosProvider interface and this implementa-
tion reads the infos from a database.

The configuration should look like this

Press Submit, afterward a form for the feature type opens.

Alter the Style to line, SRS is 26713 and press the Generate button labeled by Bounding Box.

Afterward, press Submit, Apply and Save.

Examine the result by pressing “My GeoServer, Demo and Map Preview. In this list there must be an entry
topp:GenStreams. Press it and you will see

21.14. Using the GeoTools feature-pregeneralized module 861

GeoServer User Manual, Release 2.5.x

Now start zooming in and out and look at the log file of GeoServer. If the deployment is correct you should
see something like this:

May 20, 2009 4:53:05 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/20.0/streams.shp streams the_geom 20.0
May 20, 2009 4:53:41 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/5.0/streams.shp streams the_geom 5.0
May 20, 2009 4:54:08 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/5.0/streams.shp streams the_geom 5.0
May 20, 2009 4:54:09 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: file:data/streams/20.0/streams.shp streams the_geom 20.0

21.14.4 Public Deployment

First we have to configure all our shape files

The Feature Data Set ID for the other shape files is

1. Streams_5

2. Streams_10

3. Streams_20

4. Streams_50

862 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

The URL needed for the other shape files

1. file:data/streams/5.0/streams.shp

2. file:data/streams/10.0/streams.shp

3. file:data/streams/20.0/streams.shp

4. file:data/streams/50.0/streams.shp

Each feature needs an Alias, here it is streams_0. For the other shape files use

1. streams_5

2. streams_10

3. streams_20

21.14. Using the GeoTools feature-pregeneralized module 863

GeoServer User Manual, Release 2.5.x

4. streams_50

Check the result by pressing My GeoServer, Demo and Map Preview. You should see your additional layers.

No we need another XML configuration file

<?xml version="1.0" encoding="UTF-8"?>
<GeneralizationInfos version="1.0">

<GeneralizationInfo dataSourceNameSpace="topp" dataSourceName="Streams_0" featureName="GenStreams2" baseFeatureName="streams" geomPropertyName="the_geom">
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_5" distance="5" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_10" distance="10" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_20" distance="20" featureName="streams" geomPropertyName="the_geom"/>
<Generalization dataSourceNameSpace="topp" dataSourceName="Streams_50" distance="50" featureName="streams" geomPropertyName="the_geom"/>

</GeneralizationInfo>
</GeneralizationInfos>

Save this file as geninfo_shapefile2.xml into GEOSERVER_DATA_DIR/data/streams.

Create the pregeneralized datastore

Now we use the CatalogRepository class to find our needed data stores

Last step

864 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

In the Map Preview you should find topp:GenStreams2 and all other generalizations. Test in the same
manner we discussed in the hidden deployment and you should see something like this in the GeoServer
log:

May 20, 2009 6:11:06 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_20 streams the_geom 20.0
May 20, 2009 6:11:08 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_10 streams the_geom 10.0
May 20, 2009 6:11:12 PM org.geotools.data.gen.PreGeneralizedFeatureSource logDistanceInfo
INFO: Using generalizsation: Streams_10 streams the_geom 10.0

21.14.5 Conclusion

This is only a very simple example using shape files. The plugin architecture allows you to get your data
and generalizations from anywhere. The used dataset is a very small one, so you will not feel a big differ-
ence in response time. Having big geometries (in the sense of many vertices) and creating maps with some
different layers will show the difference.

21.15 Setting up a JNDI connection pool with Tomcat

Warning: The screenshots on this tutorial have not yet been updated for the 2.0.x user interface. But
most all the rest of the information should be valid, and the user interface is roughly the same.

This tutorial walks the reader through the procedures necessary to setup a Oracle JNDI connection pool in
Tomcat 6 and how to retrieve it from GeoServer

21.15. Setting up a JNDI connection pool with Tomcat 865

GeoServer User Manual, Release 2.5.x

21.15.1 Tomcat setup

In order to setup a connection pool Tomcat needs a JDBC driver and the necessary pool configurations.

First off, you need to find the JDBC driver for your database. Most often it is dis-
tributed on the web site of your DBMS provider, or available in the installed version of
your database. For example, a Oracle XE install on a Linux system provides the driver
at /usr/lib/oracle/xe/app/oracle/product/10.2.0/server/jdbc/lib/ojdbc14.jar, and
that file needs to be copied into Tomcat shared libs directory, TOMCAT_HOME/lib

Once that is done, the Tomcat configuration file TOMCAT_HOME/conf/context.xml needs to be edited
in order to setup the connection pool. In the case of a local Oracle XE the setup might look like:

<Context>
...
<Resource name="jdbc/oralocal" auth="Container" type="javax.sql.DataSource"

url="jdbc:oracle:thin:@localhost:1521:xe"
driverClassName="oracle.jdbc.driver.OracleDriver"
username="dbuser" password="dbpasswd"
maxActive="20" maxIdle="3" maxWait="10000"
poolPreparedStatements="true"
maxOpenPreparedStatements="100"
validationQuery="SELECT SYSDATE FROM DUAL" />

</Context>

The example sets up a connection pool connecting to the local Oracle XE instance. The pool configuration
shows is quite full fledged:

• at most 20 active connections (max number of connection that will ever be used in parallel)

• at most 3 connections kept in the pool unused

• prepared statement pooling (very important for good performance)

• at most 100 prepared statements in the pool

• a validation query that double checks the connection is still alive before actually using it (this is not
necessary if there is guarantee the connections will never drop, either due to the server forcefully
closing them, or to network/maintenance issues).

Warning: Modify following settings only if you really know what you are doing. Using too low val-
ues for removedAbandonedTimeout and minEvictableIdleTimeMillismay result in connection
failures, if so try to setup logAbandoned to true and check your catalina.out log file.

Other parameters to setup connection pool:

• timeBetweenEvictionRunsMillis (default -1) The number of milliseconds to sleep between runs of the
idle object evictor thread. When non-positive, no idle object evictor thread will be run.

• numTestsPerEvictionRun (default 3) The number of objects to examine during each run of the idle
object evictor thread (if any).

• minEvictableIdleTimeMillis (default 1000 * 60 * 30) The minimum amount of time an object may sit
idle in the pool before it is eligable for eviction by the idle object evictor (if any).

• removeAbandoned (default false) Flag to remove abandoned connections if they exceed the removeA-
bandonedTimout. If set to true a connection is considered abandoned and eligible for removal if it has
been idle longer than the removeAbandonedTimeout. Setting this to true can recover db connections
from poorly written applications which fail to close a connection.

866 Chapter 21. Tutorials

GeoServer User Manual, Release 2.5.x

• removeAbandonedTimeout (default 300) Timeout in seconds before an abandoned connection can be
removed.

• logAbandoned (default false) Flag to log stack traces for application code which abandoned a State-
ment or Connection.

For more information about the possible parameters and their values refer to the DBCP documentation.

21.15.2 GeoServer setup

To allow a web application reference to a JNDI resource its web.xml file must be modi-
fied so that the reference is explicit. Following the above example, we have to modify
TOMCAT_HOME/webapps/geoserver/WEB-INF/web.xml and add at its very end the following dec-
laration:

<web-app>
...
<resource-ref>
<description>Oracle Datasource</description>
<res-ref-name>jdbc/oralocal</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</web-app>

Once that is done, it is possible to login into the GeoServer web administration interface and configure the
datastore.

First, choose the Oracle (JNDI) datastore and give it a name:

Figure 21.40: Choosing a JNDI enabled datastore

Then, configure the connection parameters so that the JNDI path matches the one specified in the Tomcat
configuration:

When you are doing this, make sure the schema is properly setup, or the datastore will list all the tables it
can find in the schema it can access. In the case of Oracle the schema is usually the user name, upper cased.

Once the datastore is accepted the GeoServer usage proceeds as normal.

21.15. Setting up a JNDI connection pool with Tomcat 867

http://commons.apache.org/dbcp/configuration.html

GeoServer User Manual, Release 2.5.x

Figure 21.41: Configuring the JNDI connection

868 Chapter 21. Tutorials

CHAPTER 22

Community

This section is devoted to GeoServer community modules. Community modules are considered “pending”
in that they are not officially part of the GeoServer releases. They are however built along with the nightly
builds, so you can download and play with them.

Warning: Community modules are generally considered experimental in nature and are often under
constant development. For that reason documentation in this section should not be considered solid or
final and will be subject to change.

22.1 Key authentication module

The authkey module for GeoServer allows for a very simple authentication protocol designed for OGC
clients that cannot handle any kind of security protocol, not even the HTTP basic authentication.

For these clients the module allows a minimal form of authentication by appending a unique key in the URL
that is used as the sole authentication token. Obviously this approach is open to security token sniffing and
must always be associated with the use of HTTPS connections.

A sample authenticated request looks like:

http://localhost:8080/geoserver/topp/wms?service=WMS&version=1.3.0&request=GetCapabilities&authkey=ef18d7e7-963b-470f-9230-c7f9de166888

Where authkey=ef18d7e7-963b-470f-9230-c7f9de166888 is associated to a specific user (more on
this later). The capabilities document contains backlinks to the server itself, linking to the URLs that can
be used to perform GetMap, GetFeatureInfo and so on. When the authkey parameter is provided the
backlinks will contain the authentication key as well, allowing any compliant WMS client to access secured
resources.

22.1.1 Limitations

The authkey module is meant to be used with OGC services. It won’t work properly against the adminis-
tration GUI, nor RESTConfig.

22.1.2 Key providers

Key providers are responsible for mapping the authentication keys to a user. The authentication key itself
is a UUID (Universal unique Identifier). A key provider needs a user/group service and it is responsible
for synchronizing the authentication keys with the users contained in this service.

869

http://ares.boundlessgeo.com/geoserver/
http://ares.boundlessgeo.com/geoserver/

GeoServer User Manual, Release 2.5.x

Key provider using user properties

This key provider uses a user property UUID to map the authentication key to the user. User properties are
stored in the user/group service. Synchronizing is simple since the logic has to search for users not having
the property UUID and add it. The property value is a generated UUID.

UUID=b52d2068-0a9b-45d7-aacc-144d16322018

If the user/group service is read only, the property has to be added from outside, no synchronizing is
possible.

Key provider using a property file

This key provider uses a property file named authkeys.properties. The default user/group service is
named default. The authkeys.properties for this service would be located at

$GEOSERVER_DATA_DIR/security/usergroup/default/authkeys.propeties

A sample file looks as follows:

Format is authkey=username
b52d2068-0a9b-45d7-aacc-144d16322018=admin
1825efd3-20e1-4c18-9648-62c97d3ee5cb=sf
ef18d7e7-963b-470f-9230-c7f9de166888=topp

This key provider also works for read only user/group services. Synchronizing adds new users not having
an entry in this file and removes entries for users deleted in the user/group service.

22.1.3 Configuration

Configuration can be done using the administrator GUI. There is a new type of authentication filter named
authkey offering the following options.

1. URL parameter name. This the name of URL parameter used in client HTTP requests. Default is
authkey.

2. Key Provider. GeoSever offers the providers described above.

3. User/group service to be used.

After configuring the filter it is necessary to put this filter on the authentication filter chain(s).

Note: The administrator GUI for this filter has button Synchronize. Clicking on this button saves the
current configuration and triggers a synchronize. If users are added/removed from the backing user/group
service, the synchronize logic should be triggered.

22.1.4 Provider pluggability

With some Java programming it is possible to programmatically create and register a new key to user name
mapper that works under a different logic. For example, you could have daily tokens, token generators and
the like.

In order to provide your custom mapper you have to implement the
org.geoserver.securityAuthenticationKeyMapper interface and then register said
bean in the Spring application context. Alternatively it is possible to subclass from

870 Chapter 22. Community

GeoServer User Manual, Release 2.5.x

org.geoserver.security.AbstractAuthenticationKeyMapper. A mapper (key provider)
has to implement

/**
*
* Maps a unique authentication key to a user name. Since user names are

* unique within a {@link GeoServerUserGroupService} an individual mapper

* is needed for each service offering this feature.

*
* @author Andrea Aime - GeoSolution

*/
public interface AuthenticationKeyMapper extends BeanNameAware {

/**
* Maps the key provided in the request to the {@link GeoServerUser} object

* of the corresponding user, or returns null

* if no corresponding user is found

*
* Returns <code>null</code> if the user is disabled

*
* @param key

* @return

*/
GeoServerUser getUser(String key) throws IOException;

/**
* Assures that each user in the corresponding {@link GeoServerUserGroupService} has

* an authentication key.

*
* returns the number of added authentication keys

*
* @throws IOException

*/
int synchronize() throws IOException;

/**
* Returns <code>true</code> it the mapper can deal with read only u

* user/group services

*
* @return

*/
boolean supportsReadOnlyUserGroupService();

String getBeanName();

void setUserGroupServiceName(String serviceName);
String getUserGroupServiceName();

public GeoServerSecurityManager getSecurityManager();
public void setSecurityManager(GeoServerSecurityManager securityManager);

}

The mapper would have to be registered in the Spring application context in a
applicationContext.xml file in the root of your jar. Example for an implementation named
com.mycompany.security.SuperpowersMapper:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

22.1. Key authentication module 871

GeoServer User Manual, Release 2.5.x

<beans>
<bean id="superpowersMapper" class="com.mycompany.security.SuperpowersMapper"/>

</beans>

At this point you can drop the authkey jar along with your custom mapper jar and use it in the adminis-
trator GUI of the authentication key filter.

22.2 DXF OutputFormat for WFS

The DXF OutputFormat for WFS adds the support for two additional output formats for WFS GetFeature re-
quests. The new formats, DXF and DXF-ZIP are associated to the “application/dxf” and “application/zip”
mime type, respectively. They produce a standard DXF file or a DXF file compressed in zip format.

DXF is a CAD interchange format, useful to import data in several CAD systems. Being a textual format it
can be easily compressed to a much smaller version, so the need for a DXF-ZIP format, for low bandwidth
usage.

There have been multiple revisions of the format, so we need to choose a “version” of DXF to write. The
extension implements version 14, but can be easily extended (through SPI providers) to write other versions
too.

22.2.1 USAGE

Request Example:

http://localhost:8080/geoserver/wfs?request=GetFeature&typeName=Polygons&
outputFormat=dxf

Output Example (portion):

0
SECTION

2
HEADER

9
$ACADVER

1
AC1014
...

0
ENDSEC
...

0
SECTION

2
TABLES
...

0
TABLE

2
LAYER
...

0
LAYER

5

872 Chapter 22. Community

GeoServer User Manual, Release 2.5.x

2E
330
2
100
AcDbSymbolTableRecord
100
AcDbLayerTableRecord

2
POLYGONS
70

0
62

7
6

CONTINUOUS
0

ENDTAB
...

0
ENDSEC

0
SECTION

2
BLOCKS

...
0

ENDSEC
0

SECTION
2

ENTITIES
0

LWPOLYLINE
5

927C0
330
1F
100
AcDbEntity

8
POLYGONS
100
AcDbPolyline
90

5
70

1
43

0.0
10

500225.0
20

500025.0
10

500225.0
20

500075.0
10

22.2. DXF OutputFormat for WFS 873

GeoServer User Manual, Release 2.5.x

500275.0
20

500050.0
10

500275.0
20

500025.0
10

500225.0
20

500025.0
0

ENDSEC
0

SECTION
2

OBJECTS
...

0
ENDSEC

0
EOF

Each single query is rendered as a layer. Geometries are encoded as entities (if simple enough to be ex-
pressed by a single DXF geometry type) or blocks (if complex, such as polygons with holes or collections).

Some options are available to control the output generated. They are described in the following paragraphs.

22.2.2 GET requests format_options

The following format_options are supported:

1. version: (number) creates a DXF in the specified version format (only 14 is currently supported)

2. asblock: (true/false) if true, all geometries are written as blocks and then inserted as entities. If
false, simple geometries are directly written as entities.

3. colors: (comma delimited list of numbers): colors to be used for the DXF layers, in sequence. If
layers are more than the specified colors, they will be reused many times. A set of default colors
is used if the option is not used. Colors are AutoCad color numbers (7=white, etc.).

4. ltypes: (comma delimited list of line type descriptors): line types to be used for the DXF layers,
in sequence. If layers are more than the specified line types, they will be reused many times. If
not specified, all layers will be given a solid, continuous line type. A descriptor has the following
format: <name>!<repeatable pattern>[!<base length>], where <name> is the name assigned to
the line type, <base length> (optional) is a real number that tells how long is each part of the
line pattern (defaults to 0.125), and <repeatable pattern> is a visual description of the repeatable
part of the line pattern, as a sequence of - (solid line),* (dot) and _ (empty space). For example a
dash-dot pattern would be expressed as –_*_.

5. layers: (comma delimited list of strings) names to be assigned to the DXF layers. If specified,
must contain a name for each requested query. By default a standard name will be assigned to
layers.

6. withattributes: (true/false) enables writing an extra layer with attributes from each feature, the
layer has a punctual geometry, with a point in the centroid of the original feature

874 Chapter 22. Community

GeoServer User Manual, Release 2.5.x

22.2.3 POST options

Unfortunately, it’s not currently possibile to use format_options in POST requests. The only thing we chose
to implement is the layers options, via the handle attribute of Query attributes. So, if specified, the layer of
a Query will be named as its handle attribute. The handle attribute of the GetFeature tag can also be used
to override the name of the file produced.

22.3 DDS/BIL(World Wind Data Formats) Extension

This output module allows GeoServer to output imagery and terrain in formats understood by NASA
World Wind. The mime-types supported are:

1. Direct Draw Surface (DDS) - image/dds. This format allows efficient loading of textures to the GPU
and takes the task off the WorldWind client CPU in converting downloaded PNG, JPEG or TIFF tiles.
The DDS compression is done using DXT3 with help from the worldwind library on server side.

2. Binary Interleaved by Line(BIL) - image/bil. This is actually a very simple raw binary format pro-
duced using the RAW Image Writer. The supplied GridCoverage2D undergoes appropriate subsam-
pling, reprojection and bit-depth conversion. The output can be requested as 16bit Int or 32bit Float.

22.3.1 Installing the DDS/BIL extension

1. Download the DDS/BIL extension from the nightly GeoServer community module builds. A prebuilt
version for Geoserver 2.0.x can be found on Jira - GEOS-3586.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

22.3.2 Checking if the extension is enabled

Once the extension is installed, the provided mime-types should appear in the layer preview dropbox as
shown:

The mime-types will also be listed in the GetCapabilities document:

<Format>image/bil</Format>
<Format>image/dds</Format>

22.3.3 Configuring World Wind to access Imagery/Terrain from GeoServer

Please refer to the WorldWind Forums for instructions on how to setup World Wind to work with layers
published via GeoServer. For image layers(DDS) the user need to create a WMSTiledImageLayer either via
XML configuration or programmatically. For terrain layers (BIL) the equivalent class is WMSBasicEleva-
tionModel.

22.3. DDS/BIL(World Wind Data Formats) Extension 875

http://worldwind.arc.nasa.gov/java/
http://worldwind.arc.nasa.gov/java/
http://en.wikipedia.org/wiki/S3_Texture_Compression
http://www.java2s.com/Open-Source/Java-Document/6.0-JDK-Modules/Java-Advanced-Imaging/com/sun/media/imageioimpl/plugins/raw/RawImageWriterSpi.java.java-doc.htm
http://ares.boundlessgeo.com/geoserver/master/community-latest/
http://jira.codehaus.org/browse/GEOS-3586
http://forum.worldwindcentral.com/index.php
http://builds.worldwind.arc.nasa.gov/releases/docs/latest/api/gov/nasa/worldwind/wms/WMSTiledImageLayer.html
http://builds.worldwind.arc.nasa.gov/releases/docs/latest/api/gov/nasa/worldwind/terrain/WMSBasicElevationModel.html
http://builds.worldwind.arc.nasa.gov/releases/docs/latest/api/gov/nasa/worldwind/terrain/WMSBasicElevationModel.html

GeoServer User Manual, Release 2.5.x

22.4 NetCDF

22.4.1 Adding a NetCDF data store

Figure 22.1: NetCDF in the list of raster data stores

22.4.2 Configuring a NetCDF data store

Figure 22.2: Configuring a NetCDF data store

Option Description
Workspace
Data Source Name
Description
Enabled
URL

22.5 GeoServer Printing Module

The printing module for GeoServer allows easy hosting of the Mapfish printing service within a
GeoServer instance. The Mapfish printing module provides an HTTP API for printing that is useful within
JavaScript mapping applications. User interface components for interacting with the print service are avail-
able from the Mapfish and GeoExt projects.

22.5.1 Installation

The printing module is built nightly and published to the nightly build server. The installation process is
similar to other GeoServer plugins:

• Download the file (named like geoserver-2.0.2-SNAPSHOT-printing-plugin.zip)

876 Chapter 22. Community

http://ares.boundlessgeo.com/geoserver/master/community-latest/

GeoServer User Manual, Release 2.5.x

• Extract the contents of the ZIP archive into the /WEB-INF/lib/ in the GeoServer webapp. For exam-
ple, if you have installed the GeoServer binary to /opt/geoserver-2.0.1/, the printing extension
JAR files should be placed in /opt/geoserver-2.0.1/webapps/geoserver/WEB-INF/lib/.

• After extracting the extension, restart GeoServer in order for the changes to take effect. All further
configuration can be done with GeoServer running.

22.5.2 Verifying Installation

On the first startup after installation, GeoServer should create a print module configuration file in
GEOSERVER_DATA_DIR/printing/config.yaml. Checking for this file’s existence is a quick way to
verify the module is installed properly. It is safe to edit this file; in fact there is currently no way to modify
the print module settings other than by opening this configuration file in a text editor. Details about the
configuration file are available from the Mapfish website <http://www.mapfish.org/doc/print/>.

If the module is installed and configured properly, then you will also be able to retrieve a list of configured
printing parameters from http://localhost:8080/geoserver/pdf/info.json . This service must be working
properly for JavaScript clients to use the printing service.

Finally, you can test printing in this sample page. You can load it directly to attempt to produce a map
from a GeoServer running at http://localhost:8080/geoserver/. If you are running at a different host and
port, you can download the file and modify it with your HTML editor of choice to use the proper URL.

Warning: This sample script points at the development version of GeoExt. You can modify it for
production use, but if you are going to do so you should also host your own, minified build of GeoExt
and OpenLayers. The libraries used in the sample are subject to change without notice, so pages using
them may change behavior without warning.

22.5.3 Using the Print Module in Applications

See the print documentation on the GeoExt web site for information about using the print service in web
applications.

22.6 Python

The Python extension allows users to extend GeoServer dynamically by writing Python scripts via jython,
the Java implementation of Python.

22.6.1 Installing the Python Extension

1. Download the Python extension from the GeoServer download page.

Warning: Ensure the extension matching the version of the GeoServer installation is downloaded.

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

22.6. Python 877

http://localhost:8080/geoserver/pdf/info.json
http://localhost:8080/geoserver/
http://geoext.org/search.html?q=print
http://jython.org
http://geoserver.org/display/GEOS/Download

GeoServer User Manual, Release 2.5.x

Verifiying the Installation

To verify the extension has been installed properly start the GeoServer instance and navigate to the data directory. Upon a successfull install a new directory
named python will be created.

22.6.2 Python Extension Overview

The python extension provides a number of scripting hooks throughout GeoServer. These scripting hooks
correspond to GeoServer “extension points”. An extension point in GeoServer is a class or interface that is
designed to be implemented and dynamically loaded to provide a specific function. The classic example is
a WMS or WFS output format, but GeoServer contains many extension points.

Figure 22.3: Python scripting extension hooks

Implementing a GeoServer extension point in python involves writing scripts and placing them in the
appropriate directory under the GeoServer data directory. When the python extension is installed it creates
the following directory structure:

GEOSERVER_DATA_DIR/
...
python/

app/
datastore/
filter/
format/
lib/
process/

Each directory correponds to a GeoServer extension point.

The app directory consists of python scripts that are intended to be invoked over http through a wsgi
interface.

The datastore directory consists of python modules that implement the geotools data store interface.
The geotools data store interface is the extension point used to contribute support for vector spatial data
formats from shapefiles to postgis.

The filter directory consists of modules that implement filter functions. Filter functions are used in WFS
queries and in SLD documents.

878 Chapter 22. Community

http://wsgi.org/wsgi

GeoServer User Manual, Release 2.5.x

The format directory consists of modules that implement the various output format extension points in
GeoServer. This includes WMS GetMap, GetFeatureInfo and WFS GetFeature.

The lib directory contains common modules that can be used in implementing the other types of modules.
These types of modules are typically utility modules.

The process directory consists of modules that implement the geotools process interface. Implements of
this extension point are used as processes in the GeoServer WPS.

Continue to Python Scripting Hooks for more details.

22.6.3 Python Scripting Hooks

app

The app hook provides a way to add scripts that are invoked via http. Scripts are provided with a WSGI
environment for execution. A simple hello world example looks like this:

def app(environ, start_response):
start_response(’200 OK’, [(’Content-type’,’text/plain’)])
return ’Hello world!’

The script must define a function named app that takes an environ which is a dict instance that contains
information about the current request, and the executing environment. The start_response method starts the
response and takes a status code and a set of response headers.

The app method returns an iterator that generates the response content, or just a single string representing
the entire body.

For more information about WSGI go to http://wsgi.org.

datastore

TODO

filter

The filter hook provides filter function implementations to be used in an OGC filter. These filters appear in
WFS queries, and in SLD styling rules.

A simple filter function looks like this:

from geosever.filter import function
from geoscript.geom import Polygon

@function
def areaGreaterThan(feature, area):
return feature.geom.area > area

The above function returns true or false depending on if the area of a feature is greater than a certain
threshold.

22.6. Python 879

http://wsgi.org

GeoServer User Manual, Release 2.5.x

format

The format hook provides output format implementations for various ows service operations. Examples
include png for WMS GetMap, geojson and gml for WFS GetFeature, html and plain text for WMS GetFea-
tureInfo.

Currently formats fall into two categories. The first are formats that can encode vector data (features). A
simple example looks like:

from geoserver.format import vector_format

@vector_format(’property’, ’text/plain’)
def write(data, out):
for feature in data.features:
out.write("%s=%s\n" % (f.id, ’|’.join([str(val) for val in f.values()])))

The above function encodes a set of features as a java property file. Given the following feature set:

Feature(id="fid.0", geometry="POINT(0 0)", name="zero")
Feature(id="fid.1", geometry="POINT(1 1)", name="one")
Feature(id="fid.2", geometry="POINT(1 1)", name="two")

The above function would output:

fid.0=POINT(0 0)|one
fid.1=POINT(1 1)|two
fid.2=POINT(2 2)|three

Vector formats can be invoked by the following service operations:

• WFS GetFeature (?outputFormat=property)

• WMS GetMap (?format=property)

• WMS GetFeatureInfo (?info_format=property)

A vector format is a python function that is decorated by the vector_format decorator. The decorator
accepts two arguments. The first is the name of the output format. This is the identifier that clients use to
request the format. The second parameter is the mime type that describes the type of content the format
creates.

The second type of output format is one that encodes a complete map. This format can only be used with
the WMS GetMap operation.

TODO: example

process

The process hook provides process implementations that are invoked by the GeoServer WPS. A simple
example looks like:

from geoserver import process
from geoscript.geom import Geometry

@process(’Buffer’, ’Buffer a geometry’, args=[(’geom’, Geometry)],
result=(’The buffered result’, Geometry))

def buffer(geom):
return geom.buffer(10)

880 Chapter 22. Community

GeoServer User Manual, Release 2.5.x

A process is a function that is decorated by the process decorator. The decorator takes the following
arguments:

title The title of the process to displayed to clients
description The description of the process.
version The version of the process
args The arguments the process accepts as a list of tuples
result The result of a process as a tuple

The args parameter is a list of tuples describing the input arguments of the process. Each tuple can contain
up to three values. The first value is the name of the parameter and is mandatory. The second value is the
type of the parameter and is optional. The third value is a description of the parameter and is optional.

The result parameter describes the result of the process and is a tuple containing up to two values. This
parameter is optional. The first value is the type of the result and the second value is a description of the
result.

22.7 Scripting

The GeoServer scripting extension allows users to extend GeoServer dynamically by writing scripts in
languages other than Java.

22.7.1 Installing the Scripting Extension

Note: The various language runtime libraries increase GeoServer’s memory footprint, specifically the “Per-
mGen” (Permanent Generation) space. When installing the scripting extension we recommended that you
increase PermGen capacity to 256m. This is done with the option -XX:MaxPermSize=256m. If installing
multiple language extensions this size may need to be increased even further.

Python

Currently, the only scripting language that is distributed as a package for download is Python. This ex-
tension is a community extension, in that it is not included with the list of extensions on the standard
GeoServer download page. Instead, the community extensions are built each night on the nightly build
server.

To access the Python scripting extension:

1. Navigate to the nightly build server.

2. Click the folder that contains the correct branch of GeoServer for your version (for example: for 2.2.2,
click on 2.2.x):

3. Click community-latest. This folder contains the most recently built community extensions for the
branch.

4. Download the file that contains the string “python”. For example:
geoserver-2.2-SNAPSHOT-python-plugin.zip.

5. Extract the contents of the archive into the /WEB-INF/lib/ directory of GeoServer. For ex-
ample, if GeoServer was installed at /opt/geoserver-2.2.2/, extract the archive contents in
/opt/geoserver-2.1.0/webapps/geoserver/WEB-INF/lib/.

6. Restart GeoServer.

22.7. Scripting 881

http://geoserver.org/display/GEOS/Download
http://ares.boundlessgeo.com/geoserver/
http://ares.boundlessgeo.com/geoserver/
http://ares.boundlessgeo.com/geoserver/

GeoServer User Manual, Release 2.5.x

Upon a successful install a new directory named scripts will be created inside the data directory.

22.7.2 Supported Languages

Support for the following scripting languages is available:

• Python

• JavaScript

• Groovy

• Beanshell

• Ruby

Adding support for additional languages is relatively straight forward. The requirements for adding a new
language are:

1. The language has an implementation that runs on the Java virtual machine

2. The language runtime provides a JSR-223 compliant script engine

GeoScript

GeoScript is a project that adds scripting capabilities to the GeoTools library. It can be viewed as bindings
for GeoTools in various other languages that are supposed on the JVM. It is the equivalent of the various
language bindings that GDAL and OGR provide.

Currently GeoScript is available for the following languages:

• Python

• JavaScript

• Groovy

The associated GeoServer scripting extension for these languages come with GeoScript for that language
enabled. This means that when writing scripts one has access to the GeoScript modules and packages like
they would any other standard library package.

Those languages that don’t have a GeoScript implementation can still implement the same functionality
that GeoScript provides but must do it against the GeoTools api directly. The downside being that usually
the GeoTools api is much more verbose than the GeoScript equivalent. But the upside is that going straight
against the GeoTools api is usually more efficient.

Therefore GeoScript can be viewed purely as a convenience for script writers.

22.7.3 Scripting Extension Overview

The scripting extension provides a number of extension points called “hooks” throughout GeoServer. Each
hook provides a way to plug in functionality via a script. See the Scripting Hooks section for details on each
of the individual scripting hooks.

Scripts are located in the GeoServer data directory under a directory named scripts. Under this directory
exist a number of other directories, one for each scripting hook:

882 Chapter 22. Community

http://java.sun.com/developer/technicalArticles/J2SE/Desktop/scripting/
http://geoscript.org
http://geoscript.org/py
http://geoscript.org/js
http://geoscript.org/groovy

GeoServer User Manual, Release 2.5.x

GEOSERVER_DATA_DIR/
...
scripts/
apps/
lib/
wps/

The apps directory provides an “application” hook allowing for one to provide a script invokable over
http.

The wps directory provides a Web Processing Service (WPS) process hook to contribute a process invokable
via WPS.

The lib directory is not a hook but is meant to be a location where common scripts may be placed. For
instance this directory may be used as a common location for data structures and utility functions that may
be utilized across many different scripts.

Note: How the lib directory (or if it is utilized at all) is language specific.

See Scripting Hooks for more details.

Creating scripts involves creating a script in one of these hook directories. New scripts are picked up auto-
matically by GeoServer without a need to ever restart the server as is the case with a pure Java GeoServer
extension.

22.7.4 Scripting Hooks

This page describes all available scripting hooks. Every hook listed on this page is implemented by all the
supported language extensions. However, depending on the language, the interfaces and api used to write
a script may differ. Continue reading for more details.

Applications

The “app” hook provides a way to contribute scripts that are intended to be run over http. An app corre-
sponds to a named directory under the scripts/apps directory. For example:

GEOSERVER_DATA_DIR/
...
scripts/
apps/

hello/

An app directory must contain a main file that contains the “entry point” into the application. Every time
the app is invoked via an http request this main file is executed.

The contains of the main file differ depending on the language. The default for all languages is simply that
the main file contain a function named “run” that takes two arguments, the http request and response. For
example, in beanshell:

import org.restlet.data.*;

run(request,response) {
response.setEntity("Hello World!", MediaType.TEXT_PLAIN);

}

22.7. Scripting 883

GeoServer User Manual, Release 2.5.x

As explained above this api can differ depending on the language. For example in Python we have the well
defined WSGI specification that gives us a standard interface for Python web development. The equivalent
Python script to that above is:

def app(environ, start_response):
start_response(’200 OK’, [(’Content-Type’, ’text/plain’)])
return [’Hello World!’]

For the JavaScript app hook, scripts are expected to export an app function that conforms to the JSGI
specification (v0.3). The equivalent ‘Hello World’ app in JavaScript would look like the following (in
/scripts/apps/hello/main.js):

exports.app = function(request) {
return {
status: 200,
headers: {"Content-Type": "text/plain"},
body: ["Hello World"]

}
};

Applications are http accessible at the path /script/apps/{app} where {app} is the name of the appli-
cation. For example assuming a local GeoServer the url for for the application would be:

http://localhost:8080/geoserver/script/apps/hello

Web Processing Service

The wps hook provides a way to provides a way to contribute scripts runnable as a WPS process. The
process is invoked using the standard WPS protocol the same way an existing well-known process would
be.

All processes are located under the scripts/wps directory. Each process is located in a file named for the
process. For example:

GEOSERVER_DATA_DIR/
...
scripts/
wps/

buffer.bsh

A process script must define two things:

1. The process metadata: title, description, inputs, and outputs

2. The process routine itself

The default for languages is to define the metadata as global variables in the script and the process routine
as a function named “run”. For example, in groovy:

import com.vividsolutions.jts.geom.Geometry

title = ’Buffer’
description = ’Buffers a geometry’

inputs = [
geom: [name: ’geom’, title: ’The geometry to buffer’, type: Geometry.class],
distance: [name: ’distance’, title: ’The buffer distance’, type: Double.class]

]

884 Chapter 22. Community

http://wsgi.org
http://wiki.commonjs.org/wiki/JSGI

GeoServer User Manual, Release 2.5.x

outputs = [
result: [name: ’result’, title: ’The buffered geometry’, type: Geometry.class]

]

def run(input) {
return [result: input.geom.buffer(input.distance)]

}

In Python the api is slightly different and makes use of Python decorators:

from geoserver.wps import process
from com.vividsolutions.jts.geom import Geometry

@process(
title=’Buffer’,
description=’Buffers a geometry’,
inputs={
’geom’: (Geometry, ’The geometry to buffer’),
’distance’:(float,’The buffer distance’)

},
outputs={
’result’: (Geometry, ’The buffered geometry’)

}
)
def run(geom, distance):
return geom.buffer(distance);

In JavaScript, a script exports a process object (see the GeoScript JS API docs for more detail) in or-
der to be exposed as a WPS process. The following is an example of a simple buffer process (saved in
scripts/wps/buffer.js):

var Process = require("geoscript/process").Process;

exports.process = new Process({
title: "JavaScript Buffer Process",
description: "Process that buffers a geometry.",
inputs: {
geom: {

type: "Geometry",
title: "Input Geometry",
description: "The target geometry."

},
distance: {

type: "Double",
title: "Buffer Distance",
description: "The distance by which to buffer the geometry."

}
},
outputs: {
result: {

type: "Geometry",
title: "Result",
description: "The buffered geometry."

}
},
run: function(inputs) {
return {result: inputs.geom.buffer(inputs.distance)};

}
});

22.7. Scripting 885

http://geoscript.org/js/api/process.html

GeoServer User Manual, Release 2.5.x

Once implemented a process is invoked using the standard WPS protocol. For example assuming a local
GeoServer the url to execute the process would be:

http://localhost:8080/geoserver/wps
?service=WPS
&version=1.0.0
&request=Execute
&identifier=XX:buffer
&datainputs=geom=POINT(0 0)@mimetype=application/wkt;distance=10

(Substitue XX:buffer for the script name followed by the extension. E.g. py:buffer for Python or
js:buffer for JavaScript.)

22.7.5 Scripting Reference

Python

GeoServer Python API Documentation

Script Hooks

app In Python the app hook is based on WSGI which provides a common interface for Python web ap-
plication development. This is not a comprehensive introduction to WSGI, that can be found here, but the
app script must provide a function named app that takes a dictionary containing information about the
environment, and a function to start the response.

def app(environ, start_response):
do stuff here

The function must be present in a file named main.py in a named application directory. Application direc-
tories live under the scripts/apps directory under the root of the data directory:

GEOSERVER_DATA_DIR/
...
scripts/
apps/

app1/
main.py
...

app2/
main.py
...

The application is web accessible from the path /script/apps/{app} where {app} is the name of the
application. All requests that start with this path are dispatched to the app function in main.py.

Hello World Example In this example a simple “Hello World” application is built. First step is to create a
directory for the app named hello:

cd $GEOSERVER_DATA_DIR/scripts/apps
mkdir hello

Next step is to create the main.py file:

cd hello
touch main.py

886 Chapter 22. Community

http://wsgi.org
http://webpython.codepoint.net/wsgi_tutorial

GeoServer User Manual, Release 2.5.x

Next the app function is created and stubbed out:

def app(environ, start_response):
pass

Within the app function the following things will happen:

1. Report an HTTP status code of 200

2. Declare the content type of the response, in this case “text/plain”

3. Generate the response, in this case the string “Hello World”

Steps 1 and 2 are accomplished by invoking the start_response function:

start_response(’200 OK’, [(’Content-Type’, ’text/plain’)])

Step 3 is achieved by returning an array of string content:

return [’Hello World’]

The final completed version:

def app(environ, start_response):
start_response(’200 OK’, [(’Content-Type’, ’text/plain’)])
return [’Hello World!’]

Note: WSGI allows for additional methods of generating responses rather than returning an array. In
particular it supports returning an generator for the response content. Consult the WSGI documentation
for more details.

wps In Python the wps/process interface is much like the other languages, with a few differences. A
process is defined with a function named run that is decorated with the geoserver.wps.process dec-
orator:

from geoserver.wps import process

@process(...)
def run(...):

do something

The function is located in a file under the scripts/wps directory under the root of the data directory. A
WPS process requires metadata to describe itself to the outside world including:

• A name identifying the process

• A short title describing the process

• An optionally longer description that describes the process in more detail

• A dictionary of inputs describing the parameters the process accepts as input

• A dictionary of outputs describing the results the process generates as output

In python the name is implicitly derived from the name of the file that contains the process function. The
rest of the metadata is passed in as arguments to the process decorator. The title and description
are simple strings:

@process(title=’Short Process Title’,
description=’Longer and more detailed process description’)

def run():
pass

22.7. Scripting 887

GeoServer User Manual, Release 2.5.x

The inputs metadata is a dictionary keyed with strings matching the names of the process inputs. The
values of the dictionary are tuples in which the first element is the type of the input and the second value is
the description of the input. The keys of the dictionary must match those declared in the process function
itself:

@process(
...
inputs={’arg1’: (<arg1 type>, ’Arg1 description’),

’arg2’: (<arg2 type>, ’Arg2 description’)}
)
def run(arg1, arg2):
pass

The outputs metadata is the same structure as the inputs dictionary except that for it describes the output
arguments of the process:

@process(
...
outputs={’result1’: (<result1 type>, ’Result1 description’),

’result2’: (<result2 type>, ’Result2 description’)}
)
def run(arg1, arg2):
pass

A process must generate and return results matching the outputs arguments. For processes that return
a single value this is implicitly determined but processes that return multiple values must be explicit by
returning a dictionary of the return values:

@process(
...
outputs={’result1’: (<result1 type>, ’Result1 description’),

’result2’: (<result2 type>, ’Result2 description’)}
)
def run(arg1, arg2):
do something
return {
’result1’: ...,
’result2’: ...

}

Buffer Example In this example a simple buffer process is created. First step is to create a file named
buffer.py in the scripts/wps directory:

cd $GEOSERVER_DATA_DIR/scripts/wps
touch buffer.py

Next the run function is created and stubbed out. The function will take two arguments:

1. A geometry object to buffer

2. A floating point value to use as the buffer value/distance

def run(geom, distance):
pass

In order for the function to picked up it must first be decorated with the process decorator:

888 Chapter 22. Community

GeoServer User Manual, Release 2.5.x

from geoserver.wps import process

@process(title=’Buffer’, description=’Buffers a geometry’)
def run(geom, distance):
pass

Next the process inputs and outputs must be described:

from geoscript.geom import Geometry

@process(
...,
inputs={ ’geom’: (Geometry, ’The geometry to buffer’),

’distance’: (float,’The buffer distance’)},
outputs={’result’: (Geometry, ’The buffered geometry’)}

)
def run(geom, distance):
pass

And finally writing the buffer routine which simply just invokes the buffer method of the geometry
argument:

@process(...)
def run(geom, distance):
return geom.buffer(distance)

In this case since the process returns only a single argument it can be returned directly without wrapping
it in a dictionary.

The final completed version:

from geoserver.wps import process
from geoscript.geom import Geometry

@process(
title=’Buffer’,
description=’Buffers a geometry’,
inputs={’geom’: (Geometry, ’The geometry to buffer’),

’distance’:(float,’The buffer distance’)},
outputs={’result’: (Geometry, ’The buffered geometry’)}

)
def run(geom, distance):
return geom.buffer(distance);

GeoScript-PY

As mentioned previously GeoScript provides scripting apis for GeoTools in various languages. Naturally
the GeoServer Python extension comes with GeoScript Python enabled. In the buffer example above an
example of importing a GeoScript class was shown.

The GeoScript Python api is documented here.

API Reference

In much the same way as GeoScript provides a convenient scripting layer on top of GeoTools the Python
scripting extension provides a geoserver Python module that provides convenient access to some of the
GeoServer internals.

22.7. Scripting 889

http://geoscript.org/py/api/index.html#api

GeoServer User Manual, Release 2.5.x

The GeoServer Python api is documented here.

JavaScript

The GeoServer scripting extension provides a number of scripting hooks that allow script authors to take
advantage of extension points in GeoServer.

Hooks

The App Hook In JavaScript the app hook is based on JSGI which provides a common interface for
JavaScript web application development. The app script must export a function named app that accepts a
request object and returns a response object.

export.app = function(request) {
// handle the request and return a response

}

The function must be exported from a file named main.js in a named application directory. Application
directories live under the scripts/apps directory in the root of the data directory:

GEOSERVER_DATA_DIR/
...
scripts/
apps/

app1/
main.js
...

app2/
main.js
...

The application is web accessible from the path /script/apps/{app} where {app} is the name of the
application. All requests that start with this path are dispatched to the app function in main.js.

Hello World Example In this example a simple “Hello World” application is built. The first step is to
create a directory for the app named hello:

cd $GEOSERVER_DATA_DIR/scripts/apps
mkdir hello

Next step is to create the main.js file:

cd hello
touch main.js

Within the app function the following things will happen:

1. Report an HTTP status code of 200

2. Declare the content type of the response, in this case “text/plain”

3. Generate the body of response, in this case the string “Hello World”

This is accomplished with the following code:

890 Chapter 22. Community

http://wiki.commonjs.org/wiki/JSGI

GeoServer User Manual, Release 2.5.x

export.app = function(request) {
return {
status: 200, // step 1
headers: {"Content-Type": "text/plain"}, // step 2
body: ["Hello World"] // step 3

};
};

The body of the response shown above is an array. In general, this can be any object with a forEach
method. In this way, an app can returned chunked content instead of returning the entire body content at
once.

The WPS Hook In GeoScript JS, the geoscript/process module provides a Process constructor.
A process object wraps a function with a title, description, and additional metadata about the inputs and
outputs. With the GeoServer scripting extension, when a script exports a process, it is exposed in GeoServer
via the WPS interface.

To better understand how to construct a well described process, we’ll examine the parts of the previously
provided buffer.js script:

var Process = require("geoscript/process").Process;

exports.process = new Process({
title: "JavaScript Buffer Process",
description: "Process that buffers a geometry.",
inputs: {
geom: {

type: "Geometry",
title: "Input Geometry",
description: "The target geometry."

},
distance: {

type: "Double",
title: "Buffer Distance",
description: "The distance by which to buffer the geometry."

}
},
outputs: {
result: {

type: "Geometry",
title: "Result",
description: "The buffered geometry."

}
},
run: function(inputs) {
return {result: inputs.geom.buffer(inputs.distance)};

}
});

When this script is saved in the $GEOSERVER_DATA_DIR/scripts/wps directory, it will be available to
WPS clients with the identifier js:buffer. In general, the process identifier is the name of the script
prefixed by the language extension.

First, the require function is used to pull in the Process constructor from the geoscript/process
module:

var Process = require("geoscript/process").Process;

22.7. Scripting 891

GeoServer User Manual, Release 2.5.x

Next, a process is constructed and assigned to the process property of the exports object. This makes it
available to other JavaScript modules that may want to import this process with the require function in
addition to exposing the process to GeoServer’s WPS. The title and description provide WPS clients with
human readable information about what the process does.

exports.process = new Process({
title: "JavaScript Buffer Process",
description: "Process that buffers a geometry.",

All the work of a process is handled by the run method. Before clients can execute a process, they need
to know some detail about what to provide as input and what to expect as output. In general, processes
accept multiple inputs and may return multiple outputs. These are described by the process’ inputs and
outputs properties.

inputs: {
geom: {
type: "Geometry",
title: "Input Geometry",
description: "The target geometry."

},
distance: {
type: "Double",
title: "Buffer Distance",
description: "The distance by which to buffer the geometry."

}
},

The buffer process expects two inputs, named geom and distance. As with the process itself, each of
these inputs has a human readable title and description that will be provided to WPS clients. The type
property is a shorthand string identifying the data type of the input. See the Process API docs for more
detail on supported input and output types.

outputs: {
result: {
type: "Geometry",
title: "Result",
description: "The buffered geometry."

}
},

The buffer process provides a single output identified as result. As with each of the inputs, this output is
described with type, title, and description properties.

To see what this process metadata looks like to a WPS client, call the WPS DescribeProcess method:

http://localhost:8080/geoserver/wps
?service=WPS
&version=1.0.0
&request=DescribeProcess
&identifier=js:buffer

Finally, the run method is provided.

run: function(inputs) {
return {result: inputs.geom.buffer(inputs.distance)};

}
});

The run method takes a single inputs argument. This object will have named properties correspond-
ing the the client provided inputs. In this case, the geom property is a Geometry object from the

892 Chapter 22. Community

http://geoscript.org/js/api/process.html
http://localhost:8080/geoserver/wps?service=WPS&version=1.0.0&request=DescribeProcess&identifier=js:buffer

GeoServer User Manual, Release 2.5.x

geoscript/geom module. This geometry has a buffer method that is called with the provided distance.
See the Geometry API docs for more detail on available geometry properties and methods.

The run method returns an object with properties corresponding to the above described outputs - in this
case, just a single result property.

To see the results of this processs in action, call the WPS Execute method:

http://localhost:8080/geoserver/wps
?service=WPS
&version=1.0.0
&request=Execute
&identifier=js:buffer
&datainputs=geom=POINT(0 0)@mimetype=application/wkt;distance=10

GeoScript JS

To provide a JavaScript interface for data access and manipulation via GeoTools, the GeoServer scripting
extension includes the GeoScript JS library. To best leverage the scripting hooks in GeoServer, read through
the GeoScript JS API docs for detail on scripting access to GeoTools functionality with JavaScript.

GeoServer JavaScript Reference

In much the same way as GeoScript JS provides a convenient set of modules for scripting access to GeoTools,
the GeoServer scripting extension includes a geoserver JavaScript module that allows convenient access
to some of the GeoServer internals. See the GeoServer JavaScript API Documentation for more detail.

GeoServer JavaScript API Documentation The scripting extension includes a geoserver/catalog
module that allows scripts to access resources in the GeoServer catalog.

The catalog module
var catalog = require("geoserver/catalog");

Properties
namespaces

Array A list of namespace objects. Namespaces have alias and uri properties.

catalog.namespaces.forEach(function(namespace) {
// do something with namespace.alias or namespace.uri

});

Methods
getVectorLayer(id)

Parameters id – String The fully qualified feature type identifier (e.g. “topp:states”)

Returns geoscript.layer.Layer

Access a feature type in the catalog as a GeoScript Layer.

var states = catalog.getVectorLayer("topp:states");

22.7. Scripting 893

http://geoscript.org/js/api/geom/geometry.html
http://localhost:8080/geoserver/wps?service=WPS&version=1.0.0&request=Execute&identifier=js:buffer&datainputs=geom=POINT(0%200)@mimetype=application/wkt;distance=10
http://geoscript.org/js/
http://geoscript.org/js/api/index.html
http://geoscript.org/js/api/layer.html

GeoServer User Manual, Release 2.5.x

22.8 SpatiaLite

SpatiaLite is the spatial extension of the popular SQLite embedded relational database.

Note: GeoServer does not come built-in with support for SpatiaLite; it must be installed through an ex-
tension. Furthermore it requires that additional native libraries be available on the system. Proceed to
Installing the SpatiaLite extension for installation details.

22.8.1 SpatiaLite version

The GeoServer SpatiaLite extension includes its own versions of SQLite (3.7.2) and SpatiaLite (2.4.0) and
therefore these libraries need not be installed on the system in order to use the extension. However this
internal version of SpatiaLite is compiled against the PROJ and GEOS libraries so they must be installed on
the system in order for the extension to function. See Native Libraries for more details.

22.8.2 Supported platforms

This extension is supported for Windows, Linux, and Mac OS X. Both 32-bit and 64-bit platforms are sup-
ported. For Mac OS X only Intel based machines are supported (ie. not PowerPC).

22.8.3 Installing the SpatiaLite extension

1. Download the SpatiaLite extension from the nightly GeoServer community module builds.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance.

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

3. Ensure the native library dependencies are satisfied.

22.8.4 Native Libraries

The version of SpatiaLite included in the extension is compiled against the GEOS and PROJ libraries so
they must be installed on the system. If the libraries are not installed on the system the extension will not
functionand remain disabled.

Note: Pre-compiled libraries are available for the following platforms and can be found here.

In general if the libraries are installed in a “default” location then they should be picked up by java with no
problem. However some systems will require further configuration that differs based on operating system.

Windows

The DLL’s must be copied into the C:\WINDOWS\system32 directory.

894 Chapter 22. Community

http://http://www.gaia-gis.it/spatialite/
http://www.sqlite.org
http://geos.osgeo.org
http://ares.boundlessgeo.com/geoserver/master/community-latest/
http://geos.osgeo.org
http://docs.geotools.org/latest/userguide/library/jdbc/spatiallite.html#native-libraries

GeoServer User Manual, Release 2.5.x

Linux

If the libraries are not installed in a default search location like /usr/lib then the LD_LIBRARY_PATH
environment variable must be set and visible to Java.

Mac OS X

Same as Linux except that the DYLD_LIBRARY_PATH environment variable is used.

22.8.5 Adding a SpatiaLite database

Once the extension is properly installed SpatiaLite will show up as an option when creating a new data
store.

Figure 22.4: SpatiaLite in the list of vector data sources

22.8.6 Configuring a SpatiaLite data store

database The name of the database to connect to. See notes below.
schema The database schema to access tables from. Optional.
user The name of the user to connect to the database as. Optional.
password The password to use when connecting to the database. Optional, leave

blank for no password.
max connections
min connections

Connection pool configuration parameters. See the Database
Connection Pooling section for details.

The database parameter may be specified as an absolute path or a relative one. When specified as a rel-
ative path the database will created in the spatialite directory, located directly under the root of the
GeoServer data directory.

22.9 libjpeg-turbo Map Encoder Extension

This plugin brings in the ability to encode JPEG images as WMS output using the libjpeg-turbo library. Cit-
ing its website the libjpeg-turbo library is a derivative of libjpeg that uses SIMD instructions (MMX, SSE2,
NEON) to accelerate baseline JPEG compression and decompression on x86, x86-64, and ARM systems.
On such systems, libjpeg-turbo is generally 2-4x as fast as the unmodified version of libjpeg, all else being
equal. I guess it is pretty clear why we wrote this plugin! Note that the underlying imageio-ext-turbojpeg

22.9. libjpeg-turbo Map Encoder Extension 895

http://libjpeg-turbo.virtualgl.org//

GeoServer User Manual, Release 2.5.x

Figure 22.5: Configuring a SpatiaLite data store

uses TurboJpeg which is a higher level set of API (providing more user-friendly methods like “Compress”)
built on top of libjpeg-turbo.

Warning: The speedup may vary depending on the target infrastructure.

The module, once installed, simply replace the standard JPEG encoder for GeoServer and allows us to use
the libjpeg-turbo library to encode JPEG response for GetMap requests.

Note: It is worth to point out that the module depends on a successful installation of the libjpeg-turbo
native libraries (more on this later).

22.9.1 Installing the libjpeg-turbo native library

Installing the libjpeg-turbo native library is a precondition to have the relative GeoServer Map Encoder
properly installed; once the GeoServer extension has been installed as we explain in the following section,
the needed JARs with the Java bridge to the library are in the classpath, therefore all we need to do is to
install the native library itself to start encoding JPEG at turbo speed.

To perform the installation of the libjpeg-turbo binaries (or native library) you have to perform the following
steps:

1. go to the download site here and download the latest available stable release (1.2.90 at the time of
writing)

2. select the package that matches the target platform in terms of Operating System (e.g. Linux rather
than Windows) and Architecture (32 vs 64 bits)

896 Chapter 22. Community

http://sourceforge.net/projects/libjpeg-turbo/files/

GeoServer User Manual, Release 2.5.x

3. perform the installation using the target platform conventions. As an instance for Windows you
should be using an installer that installs all the needed libs in a location at user’s choice. On Ubuntu
Linux systems you can use the deb files insted.

4. Once the native libraries are installed, you have to make sure the GeoServer can load them. This
should happen automatically after Step 2 on Linux, while on Windows you should make sure that the
location where you placed the DLLs is part of the PATH environment variable for the Java Process for
the GeoServer.

Warning: When installing on Windows, always make sure that the location where you placed the DLLs
is part of the PATH environment variable for the Java Process for the GeoServer. This usually means
that you have to add such location to the PATH environmental variable for the user that is used to run
GeoServer or the system wide variables.

Warning: When installing on Linux, make sure that the location where you placed the DLLs is part
of the LD_LIBRARY_PATH environment variable for the Java Process for the GeoServer. This usually
happens automatically for the various Linux packages, but in some cases you might be forced to do that
manually

Note: It does not hurt to add also the location where where the native libraries where installed to the Java
startup options -Djava.library.path=<absolute_and_valid_path>

22.9.2 Installing the GeoServer libjpeg-turbo extension

Warning: Before moving on make sure you installed the libjpeg-turbo binaries as
per the section above.

1. Download the extension from the nightly GeoServer community module builds.

Warning: Make sure to match the version of the extension to the version of the
GeoServer instance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer in-
stallation.

22.9.3 Checking if the extension is enabled

Once the extension is installed, the following lines should appear in the GeoServer log:

10-mar-2013 19.16.28 it.geosolutions.imageio.plugins.turbojpeg.TurboJpegUtilities load
INFO: TurboJPEG library loaded (turbojpeg)

or:

10 mar 19:17:12 WARN [turbojpeg.TurboJPEGMapResponse] - The turbo jpeg encoder is available for usage

22.9.4 Disabling the extension

When running GeoServer the turb encoder can be disabled by using the Java switch for the JVM process:

22.9. libjpeg-turbo Map Encoder Extension 897

http://ares.opengeo.org/geoserver/master/community-latest/

GeoServer User Manual, Release 2.5.x

-Ddisable.turbojpeg=true

In this case a message like the following should be found in the log:

WARN [map.turbojpeg] - The turbo jpeg encoder has been explicitly disabled

Note: We will soon add a section in the GUI to check the status of the extension and to allow users to
enable/disable it at runtime.

22.10 NetCDF Output format

This plugin brings in the ability to encode WCS 2.0.1 Multidimensional output as NetCDF files using the
Unidata NetCDF Java library.

22.10.1 Installing the GeoServer NetCDF Output format extension

1. Download the extension from the nightly GeoServer community module builds.

Warning: Make sure to match the version of the extension to the version of the GeoServer in-
stance!

2. Extract the contents of the archive into the WEB-INF/lib directory of the GeoServer installation.

22.10.2 Getting a NetCDF output file

Make sure to specify NetCDF as value of the format parameter within the getCoverage request. As an in-
stance: http://localhost:8080/geoserver/wcs?request=GetCoverage&service=WCS&version=2.0.1&coverageId=it.geosolutions__V&Format=application/x-
netcdf...

22.10.3 Current limitations

• Only WGS84 output CRS is supported

• Input coverages/slices should share the same bounding box (lon/lat coordinates are the same for the
whole ND cube)

• NetCDF output will be produced only when input coverages come from a StructuredGridCoverage2D
reader (This will allows to query the GranuleSource to get the list of granules in order to setup dimen-
sions slices for each sub-coverage)

22.11 JDBCConfig

The JDBCConfig module enhances the scalibility performance of the GeoServer Catalog. It allows exter-
nalising the storage of the Catalog configuration objects (such as workspaces, stores, layers) to a Relational
Database Management System, rather than using xml files in the GeoServer Data Directory. This way the
Catalog can support access to unlimited numbers of those configuration objects efficiently.

898 Chapter 22. Community

http://ares.opengeo.org/geoserver/master/community-latest/
http://localhost:8080/geoserver/wcs?request=GetCoverage&service=WCS&version=2.0.1&coverageId=it.geosolutions__V&Format=application/x-netcdf
http://localhost:8080/geoserver/wcs?request=GetCoverage&service=WCS&version=2.0.1&coverageId=it.geosolutions__V&Format=application/x-netcdf

GeoServer User Manual, Release 2.5.x

22.11.1 Installing JDBCConfig

To install the JDBCConfig module:

1. Download the module. The file name is called geoserver-*-jdbcconfig-plugin.zip, where *
is the version/snapshot name.

2. Extract this file and place the JARs in WEB-INF/lib.

3. Perform any configuration required by your servlet container, and then restart. On startup, JDBC-
Config will create a configuration directory jdbcconfig in the GeoServer Data Directory.

4. Verify that the configuration directory was created to be sure installation worked then turn off
GeoServer.

5. Configure JDBCConfig (:ref:’community_jdbcconfig_config’), being sure to set enabled, initdb,
and import to true, and to provide the connection information for an empty database.

6. Start GeoServer again. This time JDBCConfig will connect to the specified database, initialize it, im-
port the old catalog into it, and take over from the old catalog. Subsequent start ups will skip the
initialize and import steps unless you re-enable them in jdbcconfig.properties.

7. Log in as admin and a message should appear on the welcome page:

22.11.2 JDBCConfig configuration

The JDBCConfig module is configured in the file jdbcconfig/jdbcconfig.properties inside the
GeoServer Data Directory. The following properties may be set:

• enabled: Use JDBCConfig. Turn off to use the data directory for all configuration instead.

• initdb: Initialize an empty database if this is set on true.

• import : The import configuration option tells GeoServer whether to import the current catalog from
the file system to the database or not. If set to true, it will be imported and the config option will be
set the value ‘false’ for the next start up to avoid trying to re-import the catalog configuration.

• initScript: Path to initialisation script .sql file. Only used if initdb = true.

• jndiName: The JNDI name for the data source. Only set this if you want to use JNDI, the JDBC
configuration properties may still be set for in case the JNDI Lookup fails.

• jdbcUrl: JDBC direct connection parameters.

• username: JDBC connection username.

• password: JDBC connection password.

• pool.minIdle: minimum connections in pool

• pool.maxActive: maximum connections in pool

• pool.poolPreparedStatements: whether to pool prepared statements

• pool.maxOpenPreparedStatements: size of prepared statement cache, only used if
pool.poolPreparedStatements = true

• pool.testOnBorrow: whether to validate connections when obtaining from the pool

• pool.validationQuery: validation query for connections from pool, must be set when
pool.testOnBorrow = true

22.11. JDBCConfig 899

http://geoserver.org/display/GEOS/Download

